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pletely ionic model is not valid for the lithium halides,
i.e., their bonds have significant covalent character.

As earlier indicated, the Dunham —Yil reduces to the
o,, value when the Morse" potential,

V(r) = VD/1 —e (" ")]' (28)

is applicable. Table XXI compares the —I' ll and n,
values. The comparisons indicate that this compact
expression for the potential holds to a good approxi-
mation for all the molecules but that it does not provide
an exact description for any of them.
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The well-known perturbation expansion,

E„,(Ã)(g) =Z2 g s (Ã)Z '
~-0

of the eigenvalues of the nonrelativistic Schrodinger equation for lV electrons about a nucleus of charge Z,
has been widely used in the past for the extrapolation and interpolation of atomic energies. The presence of
many small effects not explicitly taken into account by the perturbation expansion analysis reduce such
calculations to a process of empirical curve fitting of limited range and reliability. These small effects include
re]ativistic effects, the mass polarization, and the Lamb terms; to a good approximation, these effect can
also be expanded in a descending power series, but with a leading term containing Z . On the basis of three
plausible assumptions, theoretical approximations make it possible, in a semiempirical fashion, to remove a
major portion of these small effects from the experimental data. In this way accurate values for e2(~& and
good estimates for e3(~) have been obtained for 3 ~&E ~& 10. These coefficients have been used to disclose
inaccuracies and to fill gaps in the existing atomic energy data and to estimate electron affinities.

I. INTRODUCTION

LECTRONIC energies of high accuracy for atoms
~ can in theory be obtained by applying the varia-

tion principle to a wave function constructed from a
large set of suitably chosen basis functions. High ac-
curacy has been obtained only for the He isoelectronic
series'; more recently, such calculations have been made
at a somewhat lower level of accuracy for the Li- and
Be-isoelectronic series. ' Calculations at an equivalent
level for a larger number of electrons are not yet avail-
able. Further, experimental electronic energies of high
accuracy are also not available because, in general, only
the first few ionization potentials of a given isoelectronic
series have been accurately determined. ' In this paper
a semiempirical scheme is developed, based on conven-
tional perturbation theory, for the accurate extrapola-
tion of total electronic energies or of ionization po-
tentials as a function of the nuclear charge. The scheme
is used to disclose inaccuracies, to fill gaps in existing
experimental data, and to obtain estimates of the
electron afFinities. The higher-order perturbation energy
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' C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959).' A. W. Weiss, Phys. Rev. 122, 1826 (1961).
' B. Edlen, J. Chem. Phys. 83, 98 (1960).

coefficients obtained by the analysis are, in themselves
of theoretical interest.

For light atoms, the total or experimental energy4
E(N)(z) is given to a good approximation by

(N) (z) —zs P e, ()v)z—1',

2'=0
(2a)

where e;&~& is the ith-order electronic energy perturba-

4 Unless otherwise indicated, the data throughout are in atomic
units of energy, 2hcE~=pe'A ', where E~ is the Rydberg wave
number of the atom or ion in question and p is the appropriate
reduced electronic mass.' See for example, H. A. Bethe and E. E. Salpeter, Handbuch
der Physik, edited by S. Flugge (Springer-Verlag, Berlin, 1957),
Vol. 35, Part 1, p. 214 and p. 237 ff.

g(N)(Z) g (N)(Z)+g ()v)(Z) (])

where Z is the nuclear charge and X is the number of
electrons. The E„„(N)(Z) and E„(N)(Z) are the non-
relativistic and the relativistic energies, respectively,
which are defined and discussed separately below.

IL NONRELATIVISTIC ENERGY E,(N)(&)

The nonrelativistic energy E„„(N)(z)is the eigenvalue
of the appropriate nonrelativistic Schrodinger equation.
A well-known result of conventional perturbation
theory' is
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~ (N)a 1(N) a (N) b

2 1
3 18
4 1s~

5
6 1„'
7 1l
8 ]c&

9 1e~

10 2

0.625 000 000 00
1.022 805 212 62
1.559 274 208 40
2.327 526 503 21
3.258 864 897 51
4.353 532 593 16
5.661 902 482 47
7.134 334 871 78
8.770 829 761 09

0.157 66640'
0.4089
0.880
1.843
3.253
5.20
8.05

11.64
16.07

—0.008 6993'
0.014
0.04
0.18
0.49
1.0
1.3
2.0
2.9

TAar. E I. Nonrelativistic ground state electronic
energy perturbation coefhcients.

It is possible, however, to recover several of these
higher-order coefficients from the experimental data, if
the data are sufficiently accurate and if the relativistic
term E, ~ &(Z) can be evaluated.

The first step in the evaluation of these higher-order
coefficients is to remove E„&N&(Z) from E&&v&(z) to
obtain E„„&~&(Z). This is discussed in the following
section. Next, assume for generality that the first It

coefficients, no(~) through aA, ~( ), are known; these
known terms are subtracted from E„,.&~&(z) to yield
the remainder [E„,&~&(z)js, where

a Obtained from theory.
b Obtained from experimental data.' See reference 14.

[E„„&&vi (Z,~))s=E„,&N&(Z)

h—1

tion coeKcient, a quantity which is independent of Z.
The zero- and first-order coefficients, eo(~) and e~(~),
can be evaluated analytically using the zero-order wave
functions, products of hydrogenic functions, and are
listed through E= 10 in Table I. By a slightly diferent
choice of the perturbation term, an alternate expansion
of E„,&~&(z) can be obtained in terms of an arbitrary
parameter 0-, which in general will depend on S:

&Ni (Z) —(Z o)2 P n &&vi (Z ~)
i=0

(2b)

~ (N) —~ (N).
)

e &&vl = 2n &&v&o+n &&v& ~

&&v) —n &Nlos n &&vlo.+n (N&.

e.&&vi =n Q'io j—s+ (j 3)n (x&oi4—(3a)

(3b)

(3c)

+—(j—3)(j—4) ' ' ' '+" + '"'
2! j)3. (3d)

In the discussion that follows, Eq. (2a) is regarded as a
special case (o.=0) of Eq. (2b). The higher-order coefli-
cents in Eqs. (2) can be calculated directly only with
great difficulty since they contain infinite summations. 7

'Values of ~0(N) and ei(N) for 2&X&10 have been recently
calculated by D. Layzer, Ann. Phys. (New York) 8, 271 (1959)
and J. Linderberg and H. Shull, J. Mol. Spectroscopy 5, 1 (1960).

'Recently, C. W. Scherr, J. Chem. Phys. 33, 317 (1960) has
made an attempt to compute e2(') by such a direct summation
while E. A. Hylleraas and J.Midtdal, Phys. Rev. 103, 829 (1956);

where the o.i(~) are new perturbation coeKcients. The
zero-order wave functions are products of hydrogen-like
orbitals, i.e., hydrogenic orbitals in which Z has been
replaced by Z—o..

In general, the O.i(~) are functions of the e, (~) and 0.
The transformation equations relating the e, (~& and
0.;( ) can be obtained by expansion of the individual
terms of Eq. (2b) and by equating the resulting coeffi-
cients of Z with those of like power in Eq. (2a). This
yields

i=0

Substitution of Eq. (2b) in Eq. (4) yields

[E„„&~&(Z,o)]&„——(Z—o)' g n, &"& (Z—o)—'. (5)
i=&

where

= " '+(p) '~"[E n~4+" '(Z —o) "), (7)
i=1

(p) '~"[2 n. s '~&(z —o) "1
i=i

= ( 1) n~+i+i Q(Z —o+i) + ' ' '. (8)
i=0

In this manner, (I' p) approximati—ons to ns&~& are
obtained. Since 0.~( ) and a~( ) are known, the first
calculations are made for ns&~& using [E„„&~&(z,o)fs as
input data. If the first difference (p= 1) is taken, ns&~& is
contaminated by terms containing o.4(~) and higher-
order coefficients. If the second difference (p=2) is
taken, o.2(~) is contaminated by terms containing as(~)
and higher-order coefficients, etc. It would thus appear
advantageous to reduce the magnitude of the contami-
nant as far as possible by fixing p at its maximum value
of I' 1. A practical —limit to the size of p, however, is
determined by the experimental error of the data. If p

109, 1013 (1958) have obtained a more accurate estimate of this
quantity by a perturbation-variation technique. The latter result
appears to be the only accurate value of such a higher coefficient
in the literature.

Now, define a difference operator

~ f(z) =a f(z+ 1)
—a f(z—), —

(6)

where f(Z) is an arbitrary function of Z, p is a positive
integer, and 6' is the identity operator. To recover the
leading unknown coefficient ns&~& from [E„„&&v&(Z,o) 1&,

for I' adjacent pieces of data in a given isoelectronic
series, multiply Eq. (5) by (Z—o.)"+" ', form the pth
difference, and divide by p.. This yields
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~(N) e (&v)/2e (&v) (9)

is chosen too large, this error is exaggerated so that there
occur serious Quctuations among the various values of
n2(~). If sufhcient, accurate data are available, the value
of p can be selected by the criterion of the minimum
root-mean-square deviation from the average value
of o,2(~).

After ns&~& has been obtained for a given p,
(Z —o)"[8„„&'"&(Z,o)js is formed and differenced (p —1)
times to obtain a&(~'. The o.&(~') is also contaminated by
+~~+i(~) and higher-order terms, but the contaminants
are of greater magnitude than in the case of n2(~~. The
number of n;(~' which can be determined in this manner
is limited only by the quality and quantity of the spec-
troscopic data and by the quality of the relativistic
correction; the accuracy of each successive determina-
tion diminishes, however, because of the accumulation
of the contaminants. because only a limited number of
expansion coeKcients can be recovered from the data, it
wouM be desirable to use that value of 0. for which the
summation of Eq. (2b) converges most rapidly. The
general solution for the optimum value of 0. is not avail-

able, but the rate of convergence of the first few terms
can be discussed. It is shown by direct differentiation'
of the first two terms of Eq. (2b) that the value of a
which minimizes the frrsf tt()0 terms of the series, and
which is designated as o-(~&, is given by

It is desirable to apply this analysis directly to the
ionization potentials since it is these rather than the
total electronic energies which are obtained from the
experimental spectra. The ionization energies are given

by

where

I„,&~)(Z) =Z' Q e. (~)Z '
i=o

g. (N) ~.(cV—1) ~.(N)

(17a)

The eo' ' and ei(~) are evaluated theoretically and
higher e, (~& are determined by the differencing pro-
cedure outlined above.

In a formally analogous manner to the introduction
of an arbitrary parameter in the expression for the non-
relativistic energy, the nonrelativistic portion of the
ionization energy can be written as

I„,&~&(Z) = (Z—s)' P a, &-v) (Z —s)
—',

i,=o
(17b)

It follows from Eq. (1) that the ionization energy can be
decomposed into a nonrelativistic and relativistic part:

1(x)(Z) I (N)+I (N)(Z)

In view of Eqs. (2a) and (15) it is possible to write

Kith this condition, n~(~' vanishes and a variationally
bounded upper limit, E„„&~&(Z), to the energy is ob-
tained with the first term of Eq. (2b) alone.

This upper limit is given by

E„„()v)(Z) &g„„(&)(Z) =o ()&)LZ—g (&)js (10)

Substitution of Eqs. (3a) and (9) in Eq. (10) yields

E (N) (Z) —e (N)Z2+e (N)Z+P OV)]e2/4e (N) (11)

Further, as may be seen from the transformation equation (3) be-
tween the ~,. (N) and o.;(N), the sum of the first three terms of
Eq. (2b) equals the sum of the first three terms of Eq. (2a) for
all 0, i.e.,

o ov)(z —O)s+Q (&&(z—0)+Q2 ——$Q(&)z~+eg(&)z+eg(&). (12)

By comparison of Eq. (11) and Eq. (12) or directly from Eqs. (3c)
and (9), the value of n2(N) corresponding to 0.(N) is found to be

os(N) e2(N) Pe&(N)12/4eo(N) (13)

Now for all Ã, e, (s') &0 and, hence, Le, (~&g'/4eo(~&&0 also. In
addition, it has been found by an analysis of the data for all
isoelectronic sequences investigated (2&1V&10) that

(N)& 0 (14)

as could be anticipated from second-order perturbation theory.
It follows from Eqs. (11), (12), and (14) that the term
Pe, &&)g~/4eo(&) represents the best variational upper bound to
e~(N& that can be obtained with a single shielding parameter. It
further follows from this and from Eq. (13) that the magnitude
of o.~(N) has been minimized, so that the maximum rate of con-
vergence towards the sum of the first three terms of Eq. (2b) is
obtained in Eq. (10) or Eq. (11).

SH. R. Johnson and F. Rohrlich, J. Chem. Phys. 30, 1608
(1959).

where s is an arbitrary parameter and the a,'~'are
functions of the e, &~& and s. The status of s in Eq. (17b)
is ambiguous, and does not have the immediate pictorial
(i.e. , screening) and theoretical (i.e., modified perturba-
tion term) interpretation that the o. of Eq. (2b) has. The
transformation equations relating the e;(~& and a;(~'
are identical in form to those relating the e;(~~ and
(r;&~&, Eq. (3). I.et s be chosen as

g(&)= e (&)/2e (&&) (19)

Then, the first two terms of Eq. (17b) are maximized
but do not represent a variationally bounded approxi-
mation to I„„&~&(Z)as is the case for E„,&~)(Z). Thus,
the a priori assumption that the choice of Eq. (19) will

improve the rate of convergence cannot be made.

~An extended discussion of the material presented in this
section is available upon request.

IIL RELATIVISTIC ENERGY E,()v)(Z)'

Assumptions

Under the heading of the relativistic energy E,&~) (Z)
are grouped all the energy terms which are contained
in the experimental data exclusive of the nonrela-
tivistic energy. Thus, in addition to the main rela-
tivistic effects, there are other smaller terms due to
the Lamb shif t, mass polarization, etc. Although
~E,&~&(Z) ~)) ~E„&~&(Z)

~

in the range of Z considered,
the removal of the zero- and 6rst-order contributions to
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E„,&~&(Z) increases the relative magnitude of E,&~&(Z)

in the remainder suKciently to interfere with the deter-
mination of the higher-order nonrelativistic perturba-
tion-energy contributions. In the test case of the He
isoelectronic series, it was found that if no provisions
were made for the substantial removal of the relativistic
energy, the analysis yields only an order of magnitude
estimate of +2&" and fails completely in the determina-
tion of o,3(').

A erst attempt to deal with the relativistic energy
may be based on the following assumptions:

(a) The total relativistic energy of an atomic system
with X electrons can be decomposed into X one-electron
contributions.

(b) Dirac one-electron theory, '" combined with the
lowest order one-electron radiative correction" (Lamb
shift) and modified by shielding parameters in the nu-
clear charge, can be used to describe the relativistic
contribution of a single electron with sufhcient accuracy.

(c) The relativistic contribution of a closed shell is a
constant independent of the number of electrons in
outer shells.

For numerical calculations, it is convenient to expand
the Dirac energy expression W(n, k,Z) in terms of (&rZ)',
where n is the fine-structure constant, The e and k are
the Dirac quantum numbers. To insure adequate ac-
curacy in the range 1&Z&20, the expansion has been
carried through the fourth order. "
Additional accuracy was obtained by including the
Lamb shift &et, &t&(n, l,Z) (or radiative corrections) to
order o.'Z'

The various perturbation effects due to interaction
with the other electrons are approximated in an analo-
gous manner to Sommerfeld's classical treatment of
x-ray spectra" by replacing Z in the expressions for
W(n, k,Z) by (Z—p„&~&) in the expressions for W(rs, fe,Z)
and ht, &'&(rs, l,Z). The p„&~& is a relativistic shielding pa-
rameter. The relativistic energy, R„&,t(Z,p„&N&), of a
single electron with quantum numbers e, 0, and / in an.V-electron atomic system is taken to be the sum of the
relativistic portion of W(rt, k,Z) and the appropriate
ht, &t&(n, l,Z), each with the shielded Z. The total rela-
tivistic energy is then

&.' '(Z) =E.Zs Ei &-st~.si(Z, P.'"'), (20a)

where E„I,~ is the number of electrons with quantum
numbers e, k, and l and the summation extends over all
electrons. Because of assumption (c), Eq. (20a) can

' Reference 5, p. 169. '

"Reference 5, p. 189, also see J. M. Harriman, Phys. Rev.
101, 594 (1956).

"See, for example, reference 5, p. 173 ff., for a discussion of
the relative magnitude of higher-order terms for large values of Z.

"A. Sommerfeld, Atornban and SPektrallsneen (Friedrick Vieweg
und Sohn, Braunschweig, 1924), 4th ed. , p. 442 ff; and reference 5,
p. 174.

for 3&X&10.The E,&s&(Z) is given approximately by

E &s&(Z) —h, &s&(Z)+8, &s&(Z)+8 &s&(Z) (21)

where the terms on the right are the relativistic correc-
tions, the Lamb shift corrections, and the mass polariza-
tion, respectively. Recently, Pekeris, ' using an elaborate
variational wave function, has computed all three of
these effects for He-like ions with nuclear charges of
1&Z&10.By assuming an expansion in powers of Z ',
Scherr and Silverman" have recovered the leading ex-
pansion coefficients for a perturbation expansion of
8,&'&(Z), ht, &'&(Z), and h &'&(Z) from these data by a
procedure analogous to that described above for the
recovery of the nonrelativistic perturbation coefficients
and have thus been able to extrapolate these calcula-
tions accurately to the range 11&Z&20.

Test of Assumptions
These assumptions, e.g. , as embodied in Eq. (20), can

be tested in the case of the helium isoelectronic series.
For this series, Dalgarno and Stewart" have obtained
perturbation series expansions in inverse powers of Z
for the terms on the right of Eq. (21).Their expressions
may be added to provide a theoretical approximation
for E ' (Z).

+r (Z)theoret

h„&s&(Z)+ gt &si(Z)+ g &si(Z)

=n'(A4'Z'+As'Z'+As'Z'+At'Z+A&&'+ . ), (22)

where the A;"s are known, ' "slowly varying functions of
Z. The approximate value of E,&'&(Z) from Eq. (20),
to the same order, is simply

8„&'&(Z),oo„„——&r'2 4'[Z—
pi &'&)', (23)

so that this approximation has the same leading term
as the theoretical expression, Eq. (22).

A least-squares value of p&('& may be determined by
Eq. (23) by fitting it to Pekeris' values" of E,&'&(Z),

2&Z&10. Expansion of Eq. (23) with this least-squares
value of p~(') yields the least-squares approximations to
the coefficients A3', A2', etc. , for a given value of Z.
Thus, for Z= 10, this procedure gave A3' ——0.43, whereas
the As' of Eq. (22) is 0.46. It is not surprising, then, that

"C. W. Scherr and J. N. Silverman, J. Chem. Phys. (to be
published}, have applied the technique described in Sec. II above
for the determination of perturbation coefficients to L'„,&~&(Z)
values obtained from accurate variational wave functions for
X=2, 3, and 4, The perturbation coefficients so obtained have
been used to extrapolate E,(~)(Z) to larger value of Z. In a similar
m.armer, they have analyzed and extrapolated the relativistic
corrections for He-like ions, 8,&'&(Z).

"A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
A247, 245 (1958).

te For Z=1, F. &s&(1))0 and At'(1)(0.

be written as
2 1

$Z ' &(7) E—"&(Z)g= Q Q iVsslRskl(Z)ps ) (20b)
k=1 l=o
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the values of E,&s& (Z) obtained from Eq. (23) with the
least-squares value of p1"' are in good agreement for a
wide range of Z values with those'4 obtained from
Eq. (22).

It is interesting to note that if the Lamb shift is
omitted from the left side of Eq. (23) the least-squares
value of pt&s& changes by 50/~ and the root-mean-
square deviation increases by a factor of five. This indi-
cates that the Lamb shift, which is ordinarily omitted,
should properly be taken into account.

The above constitutes a severe test of the approxima-
tion as the relativistic effects are comparatively large
for the m=1 quantum shell; the relativistic effects due
to electrons with quantum number e& 1 drop off rapidly
with increasing n.

Calculation of the y„(~~

The p '~' have been calculated directly from the
experimental data by a procedure based on the work of
Sommerfeld" in his analysis of the I.»—

Limni splitting in
x-ray absorption edges. This analysis, further modified
by the addition of the Lamb shift was applied to the
2 'P; —2 'I'g optical doublet data' for the Li-, 8-, and
F-isoelectronic series for those individual Z values for
which such data are available. This procedure furnishes
p&(3), p2('), and p&(') only. The remaining p2( ) have been
obtained by a linear interpolation between these values.
Within an isoelectronic series, the p (~) are slowly
varying functions of Z.'

The relativistic corrections were then computed using
the p2( ) corresponding to the nuclear charge in ques-
tion. These relativistic corrections are not listed sepa-
rately but can be obtained by comparison of correspond-
ing entries in Tables V and VI.' "Within the framework
of the approximations made, the p„( ) and relativistic
corrections obtained in this manner should be fairly
reliable as they are based on accurately known small
differences between adjacent energy levels.

IV. INPUT DATA AND ERROR ANALYSIS

The experimental ionization potentials used as input
data are displayed in Table II. The digits used past
those reported by Edlen have not been considered as
significant, and are italicized in this table; when prop-
erly rounded, all entries will agree exactly with Ed]en's
revised values. ' lt has been assumed as the basis of the
error analysis that each number in Table II may be in

"Atomic Energy Levels, edited by C. E.Moore, National Bureau
of Standards Circular No. 467 (U. S. Government Printing Office,
Washington, D. C., 1949).' It is interesting to note that this procedure is sufficiently
sensitive to detect inaccurate experimental or estimated doublet
data. Thus, the values of p2(') for Z= 10 and Z= 16 and p2(9) for
Z = 16 determined in this manner from the data in reference 17
are clearly out of line with the smooth trend of the remaining
values in these isoelectronic series and have been replaced by
interpolated or extrapolated values."The complete set of screening parameters, p ( ), as well as the
relativistic energies, E,&'&(Z) and (E„&~&(Z)—E„&'&(Z)j, will be
supplied upon request.

TABLE II. Input values of ionization potentials. '

3
4

6
7

43.48714d
75.192Z9'
66.93
90.814

117.22
109 8367e
140.5245'
173.9317e

146.8817'
202.81
196.659Z~
238.7505g
283.244'
281.94
330.4
381.2

305 9311e
386.22
382.75
443.00
505.5
511.8
577.8
646.32

a In 103 cm 1.
b Unless otherwise indicated, these values are from B. Edlen; see

footnote 3.
The italicized digits were included in the numerical analysis since they

are reported in the literature but were not treated as significant digits in
the accompanying error analysis.

d K. Liden and N. Starfelt, Arkiv. Fysik S, 127 (1952).
e See footnote 17, Vol. I, and the additions and corrections to Vol. I

at the ends of Vols. II and III.
f S. Glad, Arkiv Fysik 7, 7 (1954).
g K. B. S. Eriksson, Arkiv Fysik 13, 303 (1958).

error by one unit in the last nonitalicized digit. A rigor-
ous arithmetic consideration of the propagation of this
uncertainty has been used to determine the maximum
possible uncertainty in each subsequent result. Vnless
otherwise noted in the tables, all results are rounded
such that the uncertainty in the last reported digit is
less than 5 units.

TABLE III. Ionization energy perturbation
coeflicients for Eq. (17b).'

3

5
6
7

9
10

$(N) e

1.5912209
2.1458760
3.0730092
3.7253536.
4.3786708
5.2334796
5.8897296
6.5459796

g2(N)d

0.0652719
0.1048156
0.216800
0.325511Z
0.44984Z
0.5765788
0.746ZOZ5
0.92ZOZ40

g (N)d

0.0231699
0.0255099
0.144539
0.30115Z6
0.476Z77
0.3389898
0.6679049
0.9Z10168

g (N)d

O.OOZ186Z—0.013588Z
0.064617
0.2061404
0.385753
0.0096664
0.349706
0.494505

a ap(N) = g and at(N) =0 for 3& N & 10.
b Only the nonitalicized digits are significant. The italized digits are

required to formally reproduce Tables V and VI.
o Computed with Eq, (19),
d Obtained from experimental data.

~ Both sets of e;(N), e.g., are consistent to the extent that the
disagreement is never greater than the uncertainty in the less
accurate s=0 results. This is an indication that the number of
significant figures taken in Table II is not more than warranted.

V. RESULTS AND DISCUSSION

Perturbation CoefBcients

The material presented in the tables is based on
Eq. (19). Parallel calculations with s=0 were also con-
ducted for comparison but are not presented. The two
sets of results are in complete qualitative agreement"
concerning the second-order coefficients, but the error
analysis discussed above indicates that the choice of
Eq. (19) is more accurate than the choice s= 0; in some
cases one additional decimal place can be confidently
reported. The third-order coefficients obtained via
Eq. (19) show the anticipated decrease in magnitude
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and vary smoothly with S while those obtained from
the choice s= 0 assume improbab1y large values in some
cases and fluctuate in sign. The greater accuracy of the
choice of Eq. (19) might be expected on the basis of the
relative magnification of the absolute error of the input
data by the factors Z~" ' and LZ—s&~i$"+" ' called
for in the discussion following Eq. (6). The differencing
analysis with p=2 has been employed to determine the
second-, third-, and fourth-order coefficients for each
isoelectronic sequence. The theoretical values of s(N',

a ' ' (u ' '=0) and thecalculatedvaluesofa2& i a3' i

and u4(~) are collected in Table III for 3&X&10.The
italicized digits in Table III are all insignificant, and
have been retained for the formal bookkeeping purpose
of reproducing the input data for Tables V and VI.
Table IV tabu1ates the theoretical values of eo'~) and
eI' ' and the values of e~(~', e3'~), and e4(~) calculated
from the a, &~' via Eq. (3), appropriately modified. The
e~' ' and ~3' ) for 3&%&10have been computed from
the corresponding e;&~i of Table III via Eq. (18) and
are presented in Table I.The accurately known values'
of ~,(2), which are a1so listed in Table I, are required as
input in these calculations.

Although there is no theoretical basis at present, it
might be anticipated that the order of magnitude of
successive perturbation coefficients decreases mono-
tonically. Thus, the point where a given set of semi-
empirical e;(~) has passed from the realm of the
semiempiric to that of the wholly empiric is indicated by
the point where this anticipated trend is reversed. "In
the present case, the e4~~i derived via Eq. (19) are, in
fact, greater in magnitude than the corresponding e3(~).
They are, however, of the same order of magnitude.
The e4( ) obtained directly from the choice s=0 are so
grossly contaminated with higher-order terms that they
are an order of magnitude larger than the corresponding

TABLE IV. Ionization energy perturbation
coeKcients for Kq. (17a).'

3

5
6
7
8
9

10

g (N)b

0.397 805 21
0.536 469 00
0.768 252 29
0.931 338 39
1.094 667 7
1.308 369 9
1.472 432 4
1.636 494 9

g (N)c

0.2512
0.471
0.964
1.409
1.95
2.85
3.59
4.43

8 (N)c

0.023
0.03
0.14
0.30
0.5
0.3
0.7
09

g (N)e

0.03
0.07
0.38
0.9
2
2

a eo(N) =$ for 3&N&10.
b Obtained from theory via Eq. (18).
'Obtained from the experimental data of Table III via transformation

equations analogous to Eq. (3).

~3' ' and, in most cases, even greater than the cor-
responding &&(~) ~ This is a further substantiation of the
fact, touched on following Eqs. (17b) and (19), and in
the above discussion, that, regarded as a numerical
technique, the choice of Eq. (19), despite its ambiguous
theoretical status, is more effective than the choice s =0.

It is of interest to note that there are approximate
relationships between the perturbation coefficients and
the number of electrons. One such relationship which
reproduces the t.2'~' for 3&X&10with fair accuracy is

e2~~i=-0.016(1V—1)1V(1V+i). (24)

When the first difference of this equation is formed,
fcf. Eq. (18)), it yields an expression for e2&~i which
is comparably accurate:

eg'~' =0.048(1V—1)1V.

Ionization Potentials

The I„„&~i(Z) recalculated or extrapolated from the
parameters of Table III for 3&1V&10 for (1V—I)
&Z&20 are collected in Table V. The first column of

TABLE V. Nonrelativistic energies. '

Z —g (') (Z) b I„„(3)(Z) I„„(4)(Z) I~~(»(Z) I„r(6)(Z) I„r(7)(Z) (8) (z) Ier(»(Z) (10)(Z) 2' (cm-~)

1 0.527 750 9744
2 2.903 724 375
3 7.279 913 341
4 13.655 566 17
5 22.030 971 51
6 32.406 246 53
7 44.781 445 08
8 59.156 595 05
9 75.531 712 30

10 93.906 806 45
11 114.281 8838
12 136.656 9483
13 161.032 0030
14 187.407 0500
15 215.782 0907
16 246.157 1264
17 278.532 1580
18 312.907 1860
19 349.282 2112
20 387.657 2338

—0.001
0.198 1557
0.669 2474
1.393 809
2.369 54
3.595 80
5.072 35
6.799 07
8.775 90

11.002 81
13.479 77
16.206 77
19.183 81
22.410 86
25.887 94
29.615 03
33.592 14
37.819 25
42.296 37

0.035
0.342 6174
0.924 043
1.759 502
2.8463
4.1838
5.7716
7.6096
9.6977

12.0359
14.6242
17.4625
20.5508
23.8892
27.4776
31.3160
35.4044
39.7429

—0.029
0.304 968
0.895 949
1.743 474
2.8443
4.1969
5.8006
7.6551
9.7600

12.1152
14.7208
17.5765
20.6824
24.0384
27.6445
31.5007
35.6069

-0,013
0.413 7947
1.087 6438
2.017 734
3.2019
4.6386
6.3271
8.2666

10,4569
12.8979
15,5893
18.5310
21,7230
25.1653
28.8577
32.8002

0.026
0.534 632
1.291 515
2.304 74
3.573
5.094
6.867
8.891

11.167
13.693
16.470
19.498
22.776
26.304
30.082

0.002
0.501 3955
1.286 075
2.334 08
3.639
5.197
7.007
9.068

11.381
13.945
16.759
19.823
23.138
26.703

0.048
0.641 6122
1.507 38
2.635 46
4.021
5.660
7.553
9.698

12.094
14.741
17.639
20.788
24.187

0.124
0.794 4591
1.739 62
2.948 514
4.416
6.138
8.114

10.342
12.822
15.554
18.537
21.770

219 355.154
219 444.534
219 457.454
219 461.256
219 463.680
219 464.582
219 466.018
219 467.088
219 468.280
219 468.594
219 469.379
219 469.597
219 470.155
219 470.313
219 470.730
219 470.851
219 471.174
219 471.605
219 471.527
219 471.604

a Atomic units.
b For Z& 10 see reference 1 (e+ values); for Z &10 see footnote 14.

"A reversal of this nature is observed in the parameters obtained by E.A. Hylleraas and J.Midtdai (loc, cia. ) in 6tting a perturbation
expansion series to their theoretical energy values for the He-isoelectroni(: sequence. In their case,

I
«"'

I
& I

«"'
I & I

~4"'
I



836 SCHERR, SILVERMAN, AN D MATSEN

TABLE VI. "Experimental" ~ energies.

Z —g&s& (Z)c

1 0.527 737 09
2 2.903 784 29
3 7.280 413 23
4 13.657 4437
5 22.036 0638
6 32.417 5919
7 44.803 6108
8 59.195 9895
9 75.596 915

10 94.008 884
11 114.434 730
12 136.877 605
13 161.340 998
14 187.828 720
15 216.344 93
16 246.894 09
17 279.481 05
18 314.11094
19 350.789 27
20 389.521 86
Maximum devia-

tion from data
in Moore'

I&» (Z)

—0.001d
0.198 1575
0.669 2831
1.393 994
2.370 12
3.597 21
5.075 27
6.80444
8.785 01'

11.017 43
13.502 14
16.239 55
19.230 32
22.474 87
25.974 03
29.728 42d
33.738 85d
38.006 13d
42.531 16d

0.0044 for
Z= 14

0.035d
0.342 6222
0.924 116
1.759 828
2.8473
4.1859
5.7756
7.6168d
9.7094

12.0540
14.6510
17.5008
20.6043
23.9615d
27.5736d
31.4412d

35.5649d
39.9458d

—0.0071 for
Z=15

—0.029d
0.304 971
0.896 086
1.744 006
2.8457
4.1998
5.8060
7.6642
9.7743

12.1369
14.7523
17.6207
20.7432'
24.1199"
27.7516d
31.6392d
35.7832d

0.0023 for
Z= 12

I&'& (Z)

—0.013'
0.413 7980
1.087 8700
2.018 526
3.2038
4.6425
6.3340
8.2782

10.4752
12.9252
15.6286
18.5859d
21.7977d
25.2645'
28.9871d
32.9662d

—0.032 for
Z=15

I&'&(Z)

0.026
0.534 115
1.290 599
2.303 29
3.571
5.091
6.863
8.887

11.162
13.688
16.464
19.491~
22.769d
26.298d
30.077d
—0.033 for

Z=16

I&s&(Z)

0.002'
0.500 4700
1.284 650
2.332 00
3.636
5.193
7.002
9.063

11.375
13.938
16.752
19.817"
23.132d
26.698d
—0.016 for

Z=17

I&'&(Z)

0.048
0.640 2953
1.505 45
2.632 71
4.017
5.656
7.548
9.691

12.087
14.734
17.631d
20.780'
24.180'
—0.012 for

Z=15

I&"&(Z)

0.123
0.792 5129
1.736 92
2,944 918
4.411
6.132
8.107

10.335
12.814
15.545d
18.528d
21.762d
—0.011 for

Z=17

a Nonrelativistic plus relativistic energies.
"To convert to cm ~, multiply by 2R~', to convert to eV, multiply by (Jsc/ev)2RIlz =(1.23977 X10 4)2RIkI.
o For Z(10 see reference i (n* values); for Z &10 see footnote 14.
d No experimental data available.
e These entries give an indication of the magnitude of the inaccuracies of the values quoted by Moore for larger values of Z.

TAB&E VII. Some electron affinity values. '

Ion

He 'S)
Li 'Sp
Be 'P)
B 3Pp
C 4S)
N 'P2
0 'P)
F 'Sp

J. Rb

~ ~ ~

0.75
1.10
0.49
1.34
3.29

Edlen'

0.19
0.82—0.19
0.33
1.24
0.05
1.49
3.50

Present
paperd

—0.02
0.95—0.78—0.36
0.69
0.06
1.30
3.34

Exp.'

&0
&0
&0
&0
1.25
&0
1.465
3.52

a In electron volts.
b Reference 8. For comparison, their arbitrary multiplicative factor of

1.1 has been divided out.' Reference 3. His 0 value seems to be a misprint and is corrected here.
d Arbitrarily presented to two decimal places. These numbers may be

too low by roughly as much as one electron volt.
e L. M. @ranscomb, private communication,

Table V also lists the values of the nonrelativistic energy
of He-like ions, E„„&s&(Z), for 1&Z&20 as obtained by
a perturbation extrapolation' of Pekeris' highly ac-
curate variational data. ' Thus, to obtain the value of
E„,&~&(Z) for any atom or ion in this range from Table
V, it is merely necessary to add the appropriate
E„„&s&(Z)and I,&~&(Z) from left to right. In Table VI,
which has a similar format to Table V, the relativistic
corrections have been added to the entries so that the
"experimental" energies are listed. In the last column
of Table V are also listed the Rydberg factors, 2R~, for
convenience in converting from a.u. to cm ' or to eV.
The ionization potentials listed in Tables V and VI are
all reported to one additional, otherwise unwarranted,
digit in order to minimize round-off error when summing

horizontally to obtain total electronic energies. " The
number of digits actually warranted for each entry, with
the exception of the first four entries in each column
(negative ions, discussed below, and the input data), is
the number of significant decimal places in the corre-
sponding n2'~'. The energies in Tables V and VI are in
atomic units4 which are the appropriate units to permit
direct comparison of experimental data with variational
energy calculations. In addition to the extrapolations to
Z equals 20, the gaps in the experimental data for Z
equals 10 are also filled. These estimates should be more
reliable than previous estimates" as the first two terms
in the extrapolation formula have been given their
theoretical values and the relativistic effects have been
taken into account. For the same reason, all of the ex-
trapolated values in Table VI, i.e., all entries for Z&
/+3, should be more accurate than the corresponding
values in the literature, "which, for the most part, are
actually based on empirical extrapolations. '

Electron AfBnities

The electron affinities of the neutral atoms are ob-
tained by extrapolation with the s(~) and a;(~) ok

Table III. The results are listed in Table VII, together

2~ From the assumption of 1 unit of possible error for the entries
in Table II, it follows that the corresponding entries of Tables V
and VI, due to the additional digit carried and to the conversion
factor to atomic units, have 46 units of possible error in the last
decimal place reported."This should probably be true also of a non-isoelectronic extra-
polation procedure, such as W. Finkelnburg and F. Stern, Phys.
Rev. 77, 303 (195&%); also see W. Finkelnhurg and W. Humhach,
Naturwiss. 42, 35 I'1955).
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with the results of some previous investigators. Esti-
mates of the uncertainty for N=3, 4, and even 5 are
very difficult to make, as (Z —s&~&) in these cases is less
than unity. For the higher E, the values may be as
much as 1 eV too low because of the large, negative,
inaccurate o.4& ' values. '4 The perturbation procedure is
quite unsuited for the investigation of negative iops, so
it is unfortunate, as Edlen remarks, ' that probably the
only practicable extrapolation procedure in this con-
nection is an isoelectronic one.

'4The situation is aggravated by the fact that summing the
perturbation series through fourth order resulted, for all Ã, in a
further arithmetic loss of significant figures due to the positive
and negative terms nearly cancelling.

The data of Johnson and Rohrlich, when account is
taken of their ud hoc multiplicative factor, and the data
of Edlen both fall within the limits set above, as they
must, since the present method of estimation furnishes
the maximum information permitted from the available
ionization energies.
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Effect of Matrix Interactions and Buffer Gases on the Atomic
Nitrogen F~yperfine Splitting*f
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Electron spin resonance studies of trapped nitrogen atoms show that the matrix interaction increases the
hyperfine splitting by some 10 to 20% of the free atom value of 10.45 Mc/sec. A similar increase in the
hyperfine splitting is produced by buffer gases used in optical spin-polarization studies of nitrogen atoms.
These effects can be accounted for by van der Waals interactions between the trapped atom and the matrix
or buffer gas particles. These interactions introduce (2s) (2p)' excited states into the nitrogen wave function.
Since the 2p shell of the 4S nitrogen atom already contains three electrons with the same spin, only that 2s
electron with opposite spin can be excited. This increases the unpaired electron density at the nucleus. An
approximate calculation of this effect, carried out using perturbation theory, is in qualitative agreement
with the experimental results. The magnitude of the effect is proportional to the polarizability of the matrix
or buffer gas particle, so that the hyperfine splitting increases with the size of the perturbing species.

INTRODUCTION
' ~LECTRON spin resonance (ESR) studies of nitro-

- ~ gen atoms trapped at liquid helium temperature
in inert gas matrices' ' have shown that the interaction
of the nitrogen atom with its surroundings increases
the nitrogen hyperfine splitting (hfs) constant by some
10 to 20% of the free atom value of 10.45 Mc/sec. '
More recently, a spin-exchange optical polarization
method has been used to determine the pressure shifts
of the nitrogen hyperfine splitting in various buffer
gases. ' The results of these two experiments are in
qualitative agreement.

* A preliminary account of this work was given at the March,
1961 meeting of the American Physical Society in Monterey,
California.

t This work supported by Bureau of Naval Weapons, Depart-
ment of the Navy, under NOrd 7386.
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Lambert and F. M. Pipkin, ibid. 7, 26 (1962).

Effects of this type have been observed previously
for hydrogen atoms and for alkali atoms in both inert
solids5 and in the gas phase. The matrix and pressure
shifts in nitrogen are, however, somewhat different from
the shifts found for hydrogen and the alkali atoms, as
might be expected from the difference in atomic struc-
ture between the two types of atoms. Specifically, the
matrix and pressure shifts always increase the nitrogen
hyperfine splitting, while the hydrogen and alkali atom
shifts are sometimes positive and sometimes negative.

In this paper we shall make an approximate calcula-
tion of the matrix and pressure shifts of the nitrogen
hyperfine splitting following an earlier treatment of the
hydrogen atom. ' In the hydrogen atom the matrix
perturbation was assumed to be a combination of van
der Waals and exchange forces. It was found that the

5 S. N. Foner, E. L. Cochran, V. A. Bowers and C. K. Jen,I. Chem. Phys. 32, 963 (1960).
6 C. K. Jen, V. A. Bowers, E. L. Cochran, and S. N. Foner,

Phys. Rev. 126, 1749 (1962).
7 L. W. Anderson, F. M. Pipkin and J. C. Baird, Jr., Phys. Rev,

Letters 4, 69 (1960).
F. J. Adrian, J. Chem. Phys. 32, 972 (1960).


