ACKNOWLEDGMENTS

The author would like to gratefully acknowledge the support provided by the resources and facilities of the Microwave Spectroscopy Laboratory of the Research Laboratory of Electronics. The X-band spectrometer used in this experiment was the standard spectrometer of this laboratory. John D. Kierstead and Sayfollah B. Afshartous are to be thanked for their assistance with the experiments and with taking data. Professor David R. Whitehouse loaned us the Hewlett-Packard Transfer Oscillator and the Hewlett-Packard Frequency Converter both of which were very much appreciated. Miss Mida N. Karakashian and Miss Elizabeth J. Cambell of the Joint Computing Group, MIT, are to be thanked for programing the eigenvalue problem and seeing it through. Finally, the Computation Center, MIT, is to be thanked for providing time on the computer for the eigenvalue program.

APPENDIX A

As explained in the text, Sec. II, the eigenvalue problem of the reduced Hamiltonian was programed and solved on the MIT IBM 709 Computer. The eigenvalues are obtained as power series expansions in $x=g_{J} \mu_{0} H_{Z} / h a$. The numerical values for the parameters c and α that were defined in Sec. II are given here for each of the two isotopes. The range in x for which the polynomials represent a least-squares fit to $1: 10^{6}$ is indicated for each isotope also.

Second-Order Quadrupole Effect for the Nuclear Hexadecapole Coupling in Ions*

R. M. Sternheimer
Brookhaven National Laboratory, Upton, New York
(Received March 21, 1962)

Abstract

In connection with the possible existence of a nuclear electric hexadecapole moment, and the resulting large induced hexadecapole moment for medium and heavy ions due to antishielding effects, expressions have been obtained for the additional induced hexadecapole moment, $H_{\text {ind }}{ }^{Q}$, due to the perturbation of the ion by the field of the nuclear quadrupole moment Q taken in second order. $H_{\text {ind }}{ }^{Q}$ is proportional to Q^{2}. Numerical results for some of the terms of $H_{\text {ind }}{ }^{Q}$ are presented for the $\mathrm{Cu}^{+}, \mathrm{Ag}^{+}$, and Hg^{++}ions.

I. INTRODUCTION

T${ }^{\top} \mathrm{HE}$ antishielding of ions for a possible nuclear electric hexadecapole moment H has been discussed in two previous papers. ${ }^{1,2}$ It has been shown that the relevant antishielding factor η_{∞}, which gives the HDM (hexadecapole moment) induced in the ion

[^0]core $H_{\text {ind }}=-\eta_{\infty} H$, will be very large for medium and heavy ions. Thus, it was found that for $\mathrm{Cu}^{+}, \mathrm{Ag}^{+}$, and $\mathrm{Hg}^{++}, \eta_{\infty}$ has the values $\eta_{\infty}\left(\mathrm{Cu}^{+}\right)=-1200, \eta_{\infty}\left(\mathrm{Ag}^{+}\right)$ $=-8050$, and $\eta_{\infty}\left(\mathrm{Hg}^{++}\right)=-63000$.
It has been recently pointed out by Foley ${ }^{3}$ that the interaction of the nuclear quadrupole moment Q taken in second order will also contribute to hexadecapole effects. For the present case of ions, we are interested

[^1]Table I. Values of $I_{l_{1} l 2}{ }^{(L) m}$.

Quantity	$m=0$	$m=1$	$m=2$	$m=3$	$m=4$
$I_{\text {I }} 11{ }^{(2) m}$	+2/5	-1/5			
$\bar{I}_{22}{ }^{(2) m}$	+2/7	+1/7	-2/7		
$I_{35}{ }^{(2) m}$	+4/15	+1/5	0	-1/3	
$I_{44}{ }^{(2) m}$	+20/77	+17/77	+8/77	$-1 / 11$	-4/11
$I_{22}{ }^{(4) m}$	+2/7	-4/21	+1/21		
$I_{38}{ }^{(4) m}$	$+2 / 11$	+1/33	-7/33	+1/11	
$I_{44}{ }^{(4) m}$	+162/1001	+81/1001	-9/91	-27/143	+18/143
$I_{02}{ }^{(2) m}$	$+1 /(5)^{\frac{1}{3}}$				
$I_{04}{ }^{(4) m}$	+1/3				
$I_{13}{ }^{(2) / m}$	$+3(21)^{\frac{1}{2}} 35$	$+(6 / 35)(7 / 2)^{\frac{1}{2}}$			
${ }_{\substack{\text { I3 }}}^{(4) m}$	$+(4 / 63)(21)^{\frac{1}{4}}$ $+6 / 7(5)$	- $(2 / 21)(7 / 2)^{\frac{1}{3}}$			
	$\begin{aligned} & +6 / 7(5)^{\frac{1}{2}} \\ & +20(5)^{\frac{1}{2}} / 231 \end{aligned}$	$\begin{aligned} & +(2 / 7)(3 / 2)^{\frac{1}{3}} \\ & +(10 / 231)(3 / 2)^{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & +(1 / 7)(3) \frac{1}{3} \\ & { }_{-10(3)^{\frac{1}{2}} 231} \end{aligned}$		

in the induced HDM, $H_{\text {ind }}{ }^{2}$, which is due to the second-order effect in Q.

In the present paper, we will obtain the expression for $H_{\text {ind }}{ }^{Q}$ for any given type of second-order excitation of the ion core. Numerical results for the Ag^{+}ion will also be presented. We note that second-order quadrupole effects have been previously considered in connection with the quadrupole hfs by Foley, Sternheimer, and Tycko. ${ }^{4}$

II. CALCULATION OF $H_{\text {ind }}{ }^{Q}$

The equation for the first-order perturbation of the wave function due to the nuclear Q is:

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) u_{1}=\left(-H_{1}+E_{1}\right) u_{0} \tag{1}
\end{equation*}
$$

where H_{0} and E_{0} are the unperturbed Hamiltonian and energy eigenvalue, respectively; H_{1} is the potential due to the nuclear Q :

$$
\begin{equation*}
H_{1}=-\left(Q P_{2}{ }^{0} / r^{3}\right) \mathrm{Ry}, \tag{2}
\end{equation*}
$$

where r is in units a_{H} and Q is in units $a_{\mathrm{H}}{ }^{2} . E_{1}$ is the first-order perturbation of the energy; u_{0} is r times the unperturbed wave function; and u_{1} is r times the first-order perturbation considered. The radial part of u_{0} will be denoted by $u_{0}{ }^{\prime}$. Thus, we have

$$
\begin{equation*}
u_{0}=u_{0}^{\prime} \Theta_{l^{m}} \tag{3}
\end{equation*}
$$

where $\Theta_{l}{ }^{m}$ is the angular part of the wave function (spherical harmonic) normalized to 1 :

$$
\int_{0}^{\pi}\left|\Theta_{l^{m}}\right|^{2} \sin \theta d \theta=1
$$

For simplicity, in order to derive the result for u_{1}, we will assume that $E_{1}=0$ for the excitation considered. (The final results for $H_{\text {ind }}{ }^{2}$ will include the possibility of $E_{1} \neq 0$.) Then the right-hand side of Eq. (1) becomes

$$
\begin{equation*}
-H_{1} u_{0}=\left(Q P_{2}{ }^{0} / r^{3}\right) u_{0}{ }^{\prime} \Theta_{l^{m}}{ }^{m} \tag{4}
\end{equation*}
$$

[^2]We assume that we are considering the excitation of $n l$ to a particular l state, to be denoted by l_{1}. (Thus, $l_{1}=l$ or $l_{1}=l \pm 2$.) The l_{1} part of Eq. (4) is given by

$$
\begin{equation*}
\left(-H_{1} u_{0}\right)_{l_{1}}=\left(Q u_{0}^{\prime} / r^{3}\right) I_{l l_{1}}{ }^{(2) m} \Theta_{l_{1}}^{m} \tag{5}
\end{equation*}
$$

where, in general, the integral $I_{l_{1} l_{2}}{ }^{(L) m}$ is defined by

$$
\begin{equation*}
I_{l_{1} l_{2}}{ }^{(L) m} \equiv \int_{0}^{\pi} P_{L^{0}} \Theta_{l_{1}}^{m} \Theta_{l_{2}}{ }^{m} \sin \theta d \theta \tag{6}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
I_{l_{1} l_{2}}{ }^{(L) m}=I_{l_{2} l_{1}}{ }^{(L) m} ; \quad \text { and } \quad I_{l_{1} l_{2}}{ }^{(L) m}=I_{l_{1} l_{2}}(L),-m \tag{7}
\end{equation*}
$$

Values of $I_{l_{1} l_{2}}{ }^{(L) m}$ are given in Table I.
In view of Eq. (5), the $\left(n l \rightarrow l_{1}\right)$ part of u_{1} is given by

$$
\begin{equation*}
u_{1}\left(n l \rightarrow l_{1}\right)=Q I_{l l_{1}}{ }^{(2) m} u_{1}^{\prime}\left(n l \rightarrow l_{1}\right) \Theta_{l_{1}}^{m}, \tag{8}
\end{equation*}
$$

where the radial function $u_{1}{ }^{\prime}\left(n l \rightarrow l_{1}\right)$ is determined by the equation

$$
\begin{equation*}
M_{l_{1}} u_{1}^{\prime}\left(n l \rightarrow l_{1}\right)=u_{0}^{\prime}\left(1 / r^{3}-\left\langle 1 / r^{3}\right\rangle_{n l} \delta_{l_{1}}\right), \tag{9}
\end{equation*}
$$

$M_{l_{1}}$ being defined by

$$
\begin{equation*}
M_{l_{1}} \equiv-d^{2} / d r^{2}+l_{1}\left(l_{1}+1\right) / r^{2}+V_{0}-E_{0} . \tag{10}
\end{equation*}
$$

In Eq. (9) the term $\propto\left\langle 1 / r^{3}\right\rangle_{n l}$ corresponds to the term $E_{1} u_{0}$ in Eq. (1).

A part of the second-order quadrupole effect for $H_{\text {ind }}{ }^{Q}$ arises from the terms $u_{1}{ }^{2}$ in the electron density. For a given m state, the sum of the corresponding electron densities (times r^{2}) $\rho_{11}{ }^{m}$ for the two spin directions is given by

$$
\begin{equation*}
\rho_{11^{m}}=2 u_{1}^{\prime 2} Q^{2}\left(I_{l l_{1}}{ }^{(2) m}\right)^{2}\left(\Theta_{l_{1}}{ }^{m}\right)^{2} \tag{11}
\end{equation*}
$$

According to the definition of the HDM as given in Eq. (2) of reference 1, the induced HDM pertaining to $\rho_{11}{ }^{m}$ is given by

$$
\begin{equation*}
H_{11}{ }^{m}=8 \int_{0}^{\infty} \int_{0}^{\pi} \rho_{11^{m}} P_{4}{ }^{0} r^{4} d r \sin \theta d \theta \tag{12}
\end{equation*}
$$

Upon inserting Eq. (11) into (12), and summing
over all possible magnetic quantum numbers m, one obtains for the total induced HDM due to $\rho_{11}{ }^{m}$

$$
\begin{equation*}
H_{11}=16 Q^{2} K_{11} \sum_{m=-l}^{l}\left(I_{l l_{1}}{ }^{(2) m}\right)^{2} I_{l_{1} l_{1}}{ }^{(4) m} \tag{13}
\end{equation*}
$$

where K_{11} is the radial integral

$$
\begin{equation*}
K_{11} \equiv \int_{0}^{\infty} u_{1}^{\prime 2} r^{4} d r \tag{14}
\end{equation*}
$$

The second-order perturbation of the wave function u_{2} is determined by the equation

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) u_{2}=\left(-H_{1}+E_{1}\right) u_{1}+E_{2} u_{0} \tag{15}
\end{equation*}
$$

where E_{2} is the second-order perturbation of the energy, and is given by

$$
\begin{equation*}
E_{2}=\int_{0}^{\infty} \int_{0}^{\pi} H_{1} u_{0} u_{1} d r \sin \theta d \theta \tag{16}
\end{equation*}
$$

For simplicity, in deriving the result for the induced HDM due to u_{2}, we will assume that $E_{1}=E_{2}=0$ for the excitation considered. (The final expression obtained will include the possibility that E_{1} or $E_{2} \neq 0$.) With the present assumption, the right-hand side of Eq. (15) becomes

$$
\begin{equation*}
-H_{1} u_{1}=Q^{2}\left(P_{2}^{0} / r^{3}\right) u_{1}^{\prime} I_{l l_{1}}{ }^{(2) m} \Theta_{l_{1}}^{m} . \tag{17}
\end{equation*}
$$

We now consider the part of u_{2} with azimuthal quantum number l_{2}. (Thus, $l_{2}=l_{1}$ or $l_{2}=l_{1} \pm 2$.) The l_{2} part of Eq. (17) is given

$$
\begin{equation*}
\left(-H_{1} u_{1}\right)_{l_{2}}=Q^{2}\left(u_{1}^{\prime} / r^{3}\right) I_{l_{1}}{ }^{(2) m} I_{l_{1} l_{2}}{ }^{(2) m} \Theta_{l_{2}}{ }^{m} \tag{18}
\end{equation*}
$$

Thus the l_{2} part of u_{2} can be written as follows:

$$
\begin{align*}
& u_{2}\left(n l \rightarrow l_{1} \rightarrow l_{2}\right) \\
& =Q^{2} I_{l_{1}}{ }^{(2) m} I_{l_{12} l_{2}}{ }^{(2) m} u_{2}{ }^{\prime}\left(n l \rightarrow l_{1} \rightarrow l_{2}\right) \Theta_{l_{2}{ }^{m}}, \tag{19}
\end{align*}
$$

where the radial function $u_{2}{ }^{\prime}\left(n l \rightarrow l_{1} \rightarrow l_{2}\right)$ is determined by the equation

$$
\begin{align*}
& M_{l_{2}} u_{2}^{\prime}\left(n l \rightarrow l_{1} \rightarrow l_{2}\right) \\
& \quad=u_{1}^{\prime}\left(n l \rightarrow l_{1}\right)\left(1 / r^{3}-\left\langle 1 / r^{3}\right\rangle_{n l} \delta_{l_{1} l_{2}}\right)-\lambda_{l_{1}} u_{0}^{\prime} \delta_{l l_{2}} \tag{20}
\end{align*}
$$

Table II. Values of the angular factor A for Eqs. (13) and (25).

Term	A
$(s, s \rightarrow d \rightarrow g)$	$64 / 35$
$(s \rightarrow d)^{2}$	$32 / 35$
$(p, p \rightarrow p \rightarrow f)$	$384 / 175$
$(p, p \rightarrow f \rightarrow f)$	$128 / 525$
$(p \rightarrow f)^{2}$	$96 / 175$
$(d, d \rightarrow s \rightarrow d)$	$64 / 35$
$(d, d \rightarrow d \rightarrow d)$	$256 / 343$
$(d \rightarrow d)^{2}$	$128 / 343$
$(d, d \rightarrow d)$	$640 / 539$
$(d, d \rightarrow g \rightarrow d)$	$64 / 1715$
$(d, d \rightarrow g \rightarrow g)$	$8320 / 41503$
$(d \rightarrow g)^{2}$	$864 / 1715$

$\lambda_{l_{1}}$ is proportional to E_{2} and is given by

$$
\begin{equation*}
\lambda_{l_{1}} \equiv \int_{0}^{\infty} u_{0}^{\prime}(n l) u_{1}^{\prime}\left(n l \rightarrow l_{1}\right) r^{-3} d r \tag{21}
\end{equation*}
$$

For $l_{2}=l$, the presence of the $\lambda_{l_{1}}$ term ensures that the right-hand side of Eq. (20) is orthogonal to $u_{0}{ }^{\prime}$. In this case, $u_{0}{ }^{\prime}$ is a solution of the homogeneous equation, and the normalization condition shows that one must add a suitable multiple of $u_{0}{ }^{\prime}$ to $u_{2}{ }^{\prime}$, such that the resulting $u_{2}{ }^{\prime}$ shall satisfy the condition

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\left[u_{1}^{\prime}\left(n l \rightarrow l_{1}\right)\right]^{2}+2 u_{0}^{\prime} u_{2}^{\prime}\left(n l \rightarrow l_{1} \rightarrow l\right)\right\} d r=0 \tag{22}
\end{equation*}
$$

[cf. Eqs. (70) and (71) of reference 4].
In this connection, it may be noted ${ }^{4,5}$ that for $l_{1}=l$, there is a similar requirement for Eq. (9), namely, that the solution $u_{1}{ }^{\prime}$ must be made orthogonal to $u_{0}{ }^{\prime}$ by adding a suitable multiple of $u_{0}{ }^{\prime}$.

The contribution of u_{2} to the induced HDM arises from the overlap of u_{2} with the unperturbed function u_{0}. For a given m state, the overlap density (times r^{2}) for both spin directions is given by

$$
\begin{equation*}
\rho_{02}{ }^{m}=4 u_{0} u_{2}=4 u_{0}^{\prime} u_{2}^{\prime} Q^{2} I_{l l_{1}}{ }^{(2) m} I_{l_{1} l_{2}}{ }^{(2) m} \Theta_{l}{ }^{m} \Theta_{l_{2}}{ }^{m} \tag{23}
\end{equation*}
$$

The resulting contribution to the induced HDM is given by

$$
\begin{equation*}
H_{02}{ }^{m}=8 \int_{0}^{\infty} \int_{0}^{\pi} \rho_{02}{ }^{m} P_{4}{ }^{0} r^{4} d r \sin \theta d \theta \tag{24}
\end{equation*}
$$

Upon inserting (23) into (24), and summing over all m values, one obtains for the total induced HDM for the excitation considered $\left(n l \rightarrow l_{1} \rightarrow l_{2}\right)$:

$$
\begin{equation*}
H_{02}=32 Q^{2} K_{02} \sum_{m=-l}^{l} I_{l 1_{1}}{ }^{(2) m} I_{l_{1} l_{2}}{ }^{(2) m} I_{l l_{2}}{ }^{(4) m}, \tag{25}
\end{equation*}
$$

where K_{02} is the radial integral:

$$
\begin{equation*}
K_{02} \equiv \int_{0}^{\infty} u_{0}^{\prime} u_{2}^{\prime} r^{4} d r \tag{26}
\end{equation*}
$$

In Table II, we have given the values of the factor multiplying $Q^{2} K_{11}$ in Eq. (13) and $Q^{2} K_{02}$ in Eq. (25) for all of the excitations involving s, p, and d electrons (except $d \rightarrow g \rightarrow i$). This factor is referred to as the angular factor A. The notation for the types of terms is obvious: Thus, $(s \rightarrow d)^{2}$ refers to the term of type H_{11} pertaining to $\left[u_{1}{ }^{\prime}(n s \rightarrow d)\right]^{2}$, whereas $(s, s \rightarrow d \rightarrow g)$ denotes the term H_{02} pertaining to the overlap of $u_{0}{ }^{\prime}(n s)$ with $u_{2}{ }^{\prime}(n s \rightarrow d \rightarrow g)$.

Concerning the values of the integrals $I_{l_{1} l_{2}}{ }^{(L) m}$, we can make the following comments:

[^3](1) For $l_{1}=l_{2}$, one has the relation
\[

$$
\begin{equation*}
\sum_{m=-l}^{l} I_{l l}^{(L) m}=0 \quad \text { for } \quad L \neq 0 . \tag{27}
\end{equation*}
$$

\]

(2) The angular factors $C_{l l_{1}}{ }^{(2)}$ for the quadrupole antishielding factor ${ }^{4,5} \gamma_{\infty}\left(n l \rightarrow l_{1}\right)$ are given by

$$
\begin{equation*}
C_{l l_{1}}^{(2)}=8 \sum_{m=-l}^{l}\left(I_{l l_{1}}^{(2) m}\right)^{2} \tag{28}
\end{equation*}
$$

(e.g., $C_{l l}{ }^{(2)}=48 / 25$ for $l=1,16 / 7$ for $l=2,224 / 75$ for $l=3$).
(3) Similarly, the angular factors for the hexadecapole antishielding factor $\eta_{\infty}\left(n l \rightarrow l_{1}\right)$ are given by

$$
\begin{equation*}
C_{l l_{1}}{ }^{(4)}=8 \sum_{m=-l}^{l}\left(I_{l l_{1}}{ }^{(4) m}\right)^{2} \tag{29}
\end{equation*}
$$

[cf. Eq. (8) of reference 1].
(4) The angular coefficients C for the second-order quadrupole effect for the quadrupole hfs, as given in Eqs. (58) and (61) of reference 4, can be obtained from the following expressions, which are similar to Eqs. (13) and (25) :
For $\left(n l \rightarrow l_{1}\right)^{2}: \quad C=8 \sum_{m=-l}^{l}\left(I_{l l_{1}}{ }^{(2) m}\right)^{2} I_{l_{1} l_{1}}{ }^{(2) m}$;
for $\left(n l, n l \rightarrow l_{1} \rightarrow l_{2}\right):$

$$
\begin{equation*}
C=16 \sum_{m=-l}^{l} I_{l l_{1}}{ }^{(2) m} I_{l_{1} l_{2}}{ }^{(2) m} I_{l l_{2}}{ }^{(2) m} . \tag{31}
\end{equation*}
$$

III. RESULTS

In connection with related calculations on the second-order quadrupole effect for the nuclear hexadecapole coupling for atomic states, we have obtained various perturbed wave functions for the outer (d) electrons of the $\mathrm{Cu}^{+}, \mathrm{V}^{++}, \mathrm{Ag}^{+}$, and Hg^{++}ions. These wave functions describe the $n d \rightarrow d$ and $n d \rightarrow g$ perturbations of the outermost d electrons, as a result of the potential due to the nuclear quadrupole moment Q. Thus, $u_{1}{ }^{\prime}(n d \rightarrow d)$ and $u_{1}{ }^{\prime}(n d \rightarrow g)$ are the appropriate solutions of Eq. (9) with $l=l_{1}=2$ for $n d \rightarrow d$, and $l=2$, $l_{1}=4$ for $n d \rightarrow g$. The procedure of the calculation of

Table III. Values of $\gamma_{\infty}\left(n d \rightarrow l_{1}\right)$ and $J\left(n d \rightarrow l_{1}\right)$ for the Cu^{+}, $\mathrm{V}^{++}, \mathrm{Ag}^{+}$, and Hg^{++}ions. (The values of $\left\langle r^{-3}\right\rangle_{n d}$ and $\left\langle r^{-5}\right\rangle_{n d}$ are in units $a_{\mathrm{H}}{ }^{-3}$ and $a_{\mathrm{H}^{-5}}$, respectively.)

Perturbation	$\left\langle r^{-3}\right\rangle_{n d}$	$\left\langle r^{-5}\right\rangle_{n d}$	$\gamma_{\infty}\left(n d \rightarrow l_{1}\right)$	$J\left(n d \rightarrow l_{1}\right)$
$\mathrm{Cu}^{+} 3 d \rightarrow d$	7.53	219.0	-8.29	24.10
$\mathrm{Cu}^{+} 3 d \rightarrow g$	7.53	219.0	+0.369	2.091
$\mathrm{~V}^{++} 3 d \rightarrow d$	2.763	41.46	\cdots	5.41
$\mathrm{~V}^{++} 3 d \rightarrow g$	2.763	41.46	\ldots	0.5565
$\mathrm{Ag}^{+} 4 d \rightarrow d$	8.11	932.2	-13.14	39.48
$\mathrm{Ag}^{+} 4 d \rightarrow g$	8.11	932.2	+0.464	4.773
$\mathrm{Hg}^{++} 5 d \rightarrow d$	13.07	5577.4	-27.6	~ 130

Table IV. Values of $K_{11}(n d \rightarrow d)$ and $\rho_{\mathrm{ion}}\left[(n d \rightarrow d)^{2}\right]$.

Perturbation	$K_{11}(n d \rightarrow d)$	$\left\|\eta_{\infty}\right\|$	$\rho_{\text {ion }} /\left(Q^{2} / H\right)$
$\mathrm{Cu}^{+} 3 d \rightarrow d$	275.1	1200	0.0856
$\mathrm{Ag}^{+} 4 d \rightarrow d$	480.7	8050	0.0223
$\mathrm{Hg}^{++} 5 d \rightarrow d$	1631	63000	0.00966

$u_{1}{ }^{\prime}$ has been described previously. ${ }^{5,6}$ For $\mathrm{Cu}^{+}, \mathrm{V}^{++}$, and Ag^{+}, the Hartree-Fock ($3 d$ or $4 d$) wave functions ${ }^{7,8}$ were used for the unperturbed functions $u_{0}{ }^{\prime}$. For Hg^{++}, only Hartree functions ${ }^{9}$ were available, so that the Hartree $5 d$ function (without exchange) was used. In Table III, we have given the results of these calculations. For each unperturbed wave function, the values of $\left\langle r^{-3}\right\rangle_{n d}$ and $\left\langle r^{-5}\right\rangle_{n d}$ are listed in the first two columns of the table. In the next column, we have given the quadrupole shielding or antishielding factor γ_{∞} for all perturbations, except for V^{++}, where $\gamma_{\infty}\left(3 d \rightarrow l_{1}\right)$ is not given, since the $3 d$ function for this ion ${ }^{8}$ (with configuration $3 s^{2} 3 p^{6} 3 d 4 s^{2}$) pertains to a single valence electron, rather than a completed d shell, as in the other cases. We have also given the values of the integral $J\left(n l \rightarrow l_{1}\right)$ for each perturbation, where $J\left(n l \rightarrow l_{1}\right)$ is defined by

$$
\begin{equation*}
J\left(n l \rightarrow l_{1}\right) \equiv \int_{0}^{\infty} u_{0}{ }^{\prime}(n l) u_{1}{ }^{\prime}\left(n l \rightarrow l_{1}\right) r^{-3} d r \tag{32}
\end{equation*}
$$

The integrals $J(n d \rightarrow d)$ and $J(n d \rightarrow g)$ enter into the calculation of the second-order quadrupole energy $\left(\propto Q^{2}\right)$ for atomic states.

In connection with the present work which is concerned with the evaluation of the second-order induced HDM for ions, $H_{\text {ind }}{ }^{Q}$, the above-mentioned calculations of $u_{1}^{\prime}(n d \rightarrow d)$ are relevant, since they permit the evaluation of the terms proportional to $K_{11}(n d \rightarrow d)$, i.e., the terms which are due to the density $\left[u_{1}^{\prime}(n d \rightarrow d)\right]^{2}$. In view of Eq. (14), $K_{11}(n d \rightarrow d)$ is given by

$$
\begin{equation*}
K_{11}(n d \rightarrow d)=\int_{0}^{\infty}\left[u_{1}^{\prime}(n d \rightarrow d)\right]^{2} r^{4} d r . \tag{33}
\end{equation*}
$$

As is seen from Table II, the angular factor associated with $(n d \rightarrow d)^{2}$ is: $A=128 / 343=0.373$, so that the ratio $\rho_{\text {ion }}\left[(n d \rightarrow d)^{2}\right]$ of $H_{\text {ind }}{ }^{Q}$ to $H_{\text {ind }}$ due to a nuclear H is given by:

$$
\begin{equation*}
\rho_{\mathrm{ion}}\left[(n d \rightarrow d)^{2}\right]=0.373 K_{11}(n d \rightarrow d) Q^{2} /\left|\eta_{\infty}\right| H \tag{34}
\end{equation*}
$$

Table IV lists the values of $K_{11}(3 d \rightarrow d)$ for Cu^{+}, $K_{11}(4 d \rightarrow d)$ for Ag^{+}, and $K_{11}(5 d \rightarrow d)$ for Hg^{++}; the

[^4]corresponding values ${ }^{2}$ of $\left|\eta_{\infty}\right|$ and the resulting ratios $\rho_{\text {ion }}\left[(n d \rightarrow d)^{2}\right] /\left(Q^{2} / H\right)$. It is seen that $\rho_{\text {ion }}\left[(n d \rightarrow d)^{2}\right]$ is in all cases less than $0.1\left(Q^{2} / H\right)$ and decreases with increasing Z (for the ions whose outermost shell is a filled d shell).

In connection with the other perturbations [aside from $\left.(n d \rightarrow d)^{2}\right]$, we have obtained results for $(4 d, 4 d \rightarrow d \rightarrow d)$ and $(4 d \rightarrow g)^{2}$ for Ag^{+}. The equation for the perturbation $u_{2}^{\prime}(4 d \rightarrow d \rightarrow d)$ was integrated numerically:

$$
\begin{align*}
& \quad \begin{array}{l}
{\left[-d^{2} / d r^{2}+6 / r^{2}+V_{0}-E_{0}\right] u_{2}^{\prime}} \\
\quad \\
\quad=u_{1}^{\prime}(4 d \rightarrow d)\left[1 / r^{3}-\left\langle 1 / r^{3}\right\rangle_{4 d}\right]-\lambda_{d} u_{0}^{\prime}(4 d),
\end{array} \\
& \text { where }\left\langle 1 / r^{3}\right\rangle_{4 d}=8.11 a_{\mathrm{H}}{ }^{-3} \text {, and } \tag{35}
\end{align*}
$$

$$
\begin{equation*}
\lambda_{d}=\int_{0}^{\infty} u_{0}^{\prime} u_{1}^{\prime} r^{-3} d r=39.48 \tag{36}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{0}^{\infty} u_{1}^{\prime 2} d r=9.746 \tag{37}
\end{equation*}
$$

so that, according to Eq. (22), we must have

$$
\begin{equation*}
\int_{0}^{\infty} u_{0}^{\prime} u_{2}^{\prime} d r=-\frac{1}{2}(9.746)=-4.873 \tag{38}
\end{equation*}
$$

This is achieved by adding a suitable multiple of $u_{0}{ }^{\prime}$ to the function $u_{2}{ }^{\prime}$ obtained by numerical integration.

The resulting value of K_{02} is

$$
\begin{equation*}
K_{02}=\int_{0}^{\infty} u_{0}^{\prime}(4 d) u_{2}^{\prime}(4 d \rightarrow d \rightarrow d) r^{4} d r=8.10 \tag{39}
\end{equation*}
$$

which is very small compared to $K_{11}(4 d \rightarrow d)=480.7$ (see Table IV). Thus the term in $\rho_{\text {ion }}$ due to $4 d \rightarrow d \rightarrow d$ is given by

$$
\begin{align*}
& \rho_{\text {ion }}(4 d \rightarrow d \rightarrow d) \\
& \quad=(256 / 343) K_{02} Q^{2} /\left|\eta_{\infty}\right| H=7.51 \times 10^{-4}\left(Q^{2} / H\right), \tag{40}
\end{align*}
$$

which is quite negligible compared to $\rho_{\text {ion }}\left[(4 d \rightarrow d)^{2}\right]$ $\left[=0.0223\left(Q^{2} / H\right)\right]$.

We have also evaluated the $(4 d \rightarrow g)^{2}$ term for Ag^{+}. The contribution of this term is completely negligible.

Thus, $K_{11}(4 d \rightarrow g)=0.01820$. The angular factor is: $A=864 / 1715=0.504$ (see Table II). Hence the correction to ρ_{ion} is

$$
\begin{equation*}
\rho_{\mathrm{ion}}\left[(4 d \rightarrow g)^{2}\right]=1.14 \times 10^{-6}\left(Q^{2} / H\right) \tag{41}
\end{equation*}
$$

We have also obtained an estimate of the integral $K_{02}(4 d \rightarrow s \rightarrow d)$ for Ag^{+}pertaining to the overlap of $u_{0}{ }^{\prime}(4 d)$ with the second-order perturbation

$$
u_{2}^{\prime}(4 d \rightarrow s \rightarrow d)
$$

as calculated from Eq. (20). The resulting value of $\rho_{\text {ion }}(4 d \rightarrow s \rightarrow d)$ is $+0.026\left(Q^{2} / H\right)$. Thus, for Ag^{+}, the total effect due to $(4 d \rightarrow d)^{2},(4 d, 4 d \rightarrow d \rightarrow d)$, and $(4 d, 4 d \rightarrow s \rightarrow d)$ is given by
$\sum \rho_{\text {ion }}=(0.022+0.001+0.026)\left(Q^{2} / H\right)$

$$
\begin{equation*}
=0.049\left(Q^{2} / H\right) \tag{42}
\end{equation*}
$$

In the absence of calculations of the other types of perturbations of the outermost $(n=4)$ shell, as listed in Table II, we cannot draw any definite conclusions about the value of the complete $\rho_{\text {ion }}$ for Ag^{+}. However, there are reasons to believe that among the terms due to the d electrons, those due to $n d \rightarrow g$ are considerably smaller than those due to $n d \rightarrow d$ and $n d \rightarrow s$. This result is borne out by the smallness of $\rho_{\text {ion }}\left[(4 d \rightarrow g)^{2}\right]$ for Ag^{+}, and also by the relative smallness of $\gamma_{\infty}(n d \rightarrow g)$ as compared to $\gamma_{\infty}(n d \rightarrow d)$, and of $J(n d \rightarrow g)$ in comparison with $J(n d \rightarrow d)$ for all of the cases considered in Table III. If this assumption is correct, and if excitations which involve $d \rightarrow g$ at any stage (e.g., $4 d \rightarrow d \rightarrow g$) are unimportant, then the total ratio $\rho_{\text {ion }}$ due to the $4 d$ electrons of Ag^{+}would be essentially given by Eq. (42), i.e., of order $0.05\left(Q^{2} / H\right)$. On the basis of previous results for γ_{∞} and η_{∞}, it is expected that the inner shells ($n=1,2,3$) do not contribute appreciably to $H_{\text {ind }}{ }^{Q}$. However, it should be pointed out that no calculations have been carried out for the perturbations of the $4 s$ and $4 p$ electrons of the Ag^{+}ion.

ACKNOWLEDGMENT

I wish to thank Professor H. M. Foley for pointing out to me the existence of the second-order quadrupole effect and for suggesting some of the present calculations.

[^0]: * Work performed under the auspices of the U. S. Atomic Energy Commission.
 ${ }^{1}$ R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961).
 ${ }^{2}$ R. M. Sternheimer, Phys. Rev. 123, 870 (1961).

[^1]: ${ }^{3}$ H. M. Foley (private communication).

[^2]: ${ }^{4}$ H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev. 93, 734 (1954).

[^3]: ${ }^{5}$ R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 86, 316 (1952); 95, 736 (1954); and 105, 158 (1957).

[^4]: ${ }^{6}$ R. M. Sternheimer, Document No. 6044, ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C.
 ${ }^{7}$ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A157, 490 (1936).
 ${ }^{8}$ B. H. Worsley, Proc. Roy. Soc. (London) A247, 390 (1958).
 ${ }^{9}$ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A149, 210 (1935).

