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APPENDIX A

As explained in the text, Sec. II, the eigenvalue
problem of the reduced Hamiltonian was programed
and solved on the MIT IBM 709 Computer. The
eigenvalues are obtained as power series expansions in
x=gzij, pHz)ha. The numerical values for the parameters
c and o; that were defined in Sec. II are given here for
each of the two isotopes. The range in x for which the
polynomials represent a least-squares fit to 1:10' is
indicated for each isotope also.
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a.=0.223685X10 3' c=0.267612
Polynomial eigenvalue (40(x&46)

2.316903 +1.50033553g
0.86901164+1.4957920x+0.33443613X10 4x'

—0.59367231+1.4945862g+0.41532171X10 'x'
—2.0373559 +1.4961546x+0.27660517X 10 'x'

0.49712389 +0.50465860x —0.33488876X10 'x'
0.29224395 +0.50087606x—0.66565343 X10 'x'

—0.049036121+0.49689940x+0.22625953 X10 4x'
—0.59396607 +0.49437571x+0.41384716X10 4x'

0.86907202 —0.50465872x+0.33490513X10 4x'
0.29219691—0.49934555g—0.66783485X 10 ~x

—0.34427185—0.49605450x—0.30019072X 10 4x'
—1.0151464 —0.49514143g—0.34712166X10 4x'

2.316903 —1.50033553g
0.49722175—1.4957938x—0.33424295X10 x'

—1.0153650 —1.4953551x—0.34823223 X 10 4x'
—2.3021966 —1.4969776x—0.20519864X10 4x'

0.=0.186204X10 ' c=0.253361
Polynomial eigenvalue (49(x&55)

2.31334025+1.5002793x
0.83834989+1.4971928x+0.18479538X10 'x'

—0.63047548+1.4963201x+0.23256223 X10—2.0673948 +1.4973609x+0.15334545X 10 xm

0 53394851 +0 50321876x—0.18855929X10 'x'
0.29675613 +0.50051653x—0.30373363X10 ~x'

—0.074441892+0.49781736g+0.13163987x 10 4x'
—0.63109763 +0.49615882x+0.23009683X10 4x'

0.8392752 —0 50321445x+0.18815248X 10 x
0.29665412—0.49966521x—0.30845920X 10 'x'

—0 31.744481 —0 49/33898x —0 16627929X10 'x
—0.97912344—0.49657774x—0.20013306X10 4x'

2.31334025—1.5002793x
0.53464419—1.4971804x—0.18597662X 10 'x'

—0.97958915—1.4967460x —0.20185368X10 4x'
—2.2881504 —1.4978089x—0.12160268X10 4g'
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Second-Order Quadrupole Effect for the Nuclear Hexadecapole Coupling in fons*
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In connection with the possible existence of a nuclear electric hexadecapole moment, and the resulting
large induced hexadecapole moment for medium and heavy ions due to antishielding effects, expressions
have been obtained for the additional induced hexadecapole moment, H; d, due to the perturbation of the
ion by the field of the nuclear quadrupole moment Q taken in second order. H; d& is proportional to Q'-.

Numerical results for some of the terms of H; d@ are presented for the Cu+, Ag+, and Hg++ ions.

I. INTRODUCTION

'HE antishielding of ions for a possible nuclear
electric hexadecapole moment H has been dis-

cussed in two previous papers. '' It has been shown
that the relevant antishielding factor g„, which gives
the HDM (hexadecapole moment) induced in the ion

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

r R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961).' R. M. Sternheimer, Phys. Rev. 123, 870 (1961).

core II;„d=—g„H, will be very large for medium and
heavy ions. Thus, it was found that for Cu+, Ag+, and
Hg++, ri„has the values t)„(Cu+)= —1200, r)„(Ag+)
= —8050, and t)„(Hg++) = —63 000.

It has been recently pointed out by Foley' that the
interaction of the nuclear quadrupole moment Q taken
in second order will also contribute to hexadecapole
effects. For the present case of ions, we are interested

' H. M. Foley (private communication).
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TABLE I. Values of Il, l2( )

Quantity

(2)m

(2)m

(2)m

(4)m

1,(4)m

(4)m

I (2)m

(4)m

(2)m

I (4)m

(2)m

I24(4)

m=o

+2/5
+2/7
+4/15
+20/77

+2/7
+2/11
+162/1001

+1/(5)»
+1/3
+3(21)&/35
+ (4/63) (21)'
+6/7 (5)&
+20(5)&/231

m=1
—1/5
+1/7
+1/5
+17/77

—4/21
+1/33
+81/1001

+ (6/35) (7/2)'—(2/21) (7/2) &

+ (2/7) (3/2)'
+(10/231)(3/2)&

m=2

—2/7
0

+8/77

+1/21—7/33—9/91

+(1/7)(3)'—10(3)&/231

m=3

—1/3—1/11

+1/11—27/143

—4/1. 1

+18/143

in the induced HDM, H;„~@, which is due to the
second-order effect in Q.

In the present paper, we will obtain the expression
for H;„d@ for any given type of second-order excitation
of the ion core. Numerical results for the Ag+ ion will
also be presented. We note that second-order quad-
rupole effects have been previously considered in con-
nection with the quadrupole hfs by Foley, Sternheimer,
and Tycko. 4 I (L)m jO OQ—~ mQ+ m S)nod|) (6)

We assume that we are considering the excitation of
nl to a particular l state, to be denoted by li. (Thus,
li ——l or li ——l&2.) The li part of Eq. (4) is given by

( +iuo) l (Quo'/r')Ill Ol,

where, in general, the integral I~, ~2&
& is defined by

II. CALCULATION OF H;ng

The equation for the first-order perturbation of the
wave function due to the nuclear Q is:

(&o—Eo)»= (—%+Ei)uo, (1)

where Ho and Eo are the unperturbed Hamiltonian and
energy eigenvalue, respectively; II» is the potential
due to the nuclear Q:

Hi —(QPoo/r') R——y, (2)

where r is in units an and Q is in units an'. Ei is the
first-order perturbation of the energy; No is r times the
unperturbed wave function; and N~ is r times the
first-order perturbation considered. The radial part of
No will be denoted by No'. Thus, we have

up=up 0),
where 0') is the angular part of the wave function
(spherical harmonic) normalized to 1:

I

' sint)de= 1.

For simplicity, in order to derive the result for I&, we
will assume that 8~=0 for the excitation considered.
(The final results for H;„o will include the possibility
of E)WO.) Then the right-hand side of Eq. (1) becomes

Obviously, we have

(L)m I (L)m .
lIl2 l2lI

(L)m I (L), —m (7)

Mi,ui'(nl ) li) =up'(1/r' —(1/r') „(3)),),

M&, being defined by

~&&—=—d /dr +li(ii+1)/r +Vp —Ep

(9)

(10)

In Eq. (9) the term ~ (1/r') ( corresponds to the term
Eiup lil Eq. (1).

A part of the second-order quadrupole effect for
B;„d@arises from the terms N~' in the electron density.
For a given m state, the sum of the corresponding
electron densities (times r') pi) for the two spin
directions is given by

) ii"=2ui"Q'(I« "'")'(oi )'.

According to the definition of the HDM as given in
Eq. (2) of reference 1, the induced HDM pertaining
to pI~ is given by

Values of I~,~2' ' are given in Table I.
In view of Eq. (5), the (nl —) li) part of u, is given by

ul(Ãl ~ ll) =QI)l ul (nl ~ li) Ol

where the radial function ui'(nl —+ li) is determined by
the equation

—Hiup ——(QPp%') up'0( . (4)
p» E'4 r'dr sin8de. (12)

4 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954). Upon inserting Eq. (11) into (12), and summing
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over all possible magnetic quantum numbers m, one X~, is proportional to E2 and is given by
obtains for the total induced HDM due to p~~

H11=16Q'&ll 2 (I 1 "'")'Il 1
"'" (13)

uo'(nl)ut'(nl —+ li)r 'dr. (21)

where E~~ is the radial integral

Eyy=— Ny f' t&. (14)

For l2=l, the presence of the X~, term ensures that the
right-hand side of Eq. (20) is orthogonal to uo'. In
this case, uo' is a solution of the homogeneous equation,
and the normalization condition shows that one must
add a suitable multiple of No' to u2', such that the
resulting N2' shall satisfy the condition

The second-order perturbation of the wave function
N2 is determined by the equation

(H()—Eo)us= (—Hi+El)ut+Esuo,

where E2 is the second-order perturbation of the energy,
and is given by

H~uol~dr sinode. (16)

H1u1 Q (I 2% )u1 Illr elr (17)

We now consider the part of u2 with azimuthal quantum
number /2. (Thus, l2 ——li or l2 ——11&2.) The 4 part of
Eq. (17) is given

( Hu ),=Q—'(u '/ro)I„, ' "I„,' mO, m (18).
Thus the l2 part of u2 can be written as follows:

u2(nt —&i, ~ i2)
=Q'I (')mI (')mu2'(nl ~ lt ~ t2) O~ (19)

where the radial function us'(nl —+lt~l2) is deter-
mined by the equation

For simplicity, in deriving the result for the induced
HDM due to N~, we will assume that E~——E2=0 for
the excitation considered. (The final expression obtained
will include the possibility that Ei or E2/0. ) With the
present assumption, the right-hand side of Eq. (15)
becomes

([ut'(nl ~ li) )'+2uo'u2'(nl ~ lt ~ l) }dr=0 (22)

[cf. Eqs. (70) and (71) of reference 4].
In this connection, it may be noted4' that for /&=l,

there is a similar requirement for Eq. (9), namely, that
the solution u&' must be made orthogonal to No' by
adding a suitable multiple of uo'.

The contribution of n2 to the induced HDM arises
from the overlap of N2 with the unperturbed function
uo. For a given ns state, the overlap density (times r2)

for both spin directions is given by

po2 ——4uous ——4uo'u2'Q'Ill, ")"Il,l, (')"Ol"Ol,". (23)

The resulting contribution to the induced HDM is
given by

p02 P4'r'dr sjn8d8.

Upon inserting (23) into (24), and summing over
all m values, one obtains for the total induced HDM
for the excitation considered (nl —+ lt —& l2):

—32Q2+ Q I (2)mI (2)mI' (4)m

where Ko2 is the radial integral:

Mlsus'(nl ~ li ~ l2)

=ut'(nl ~ lt) (1/r' —(1/r')„l&l, l,) —&l,uo'&«» (20) E02= No Q2 f i&. (26)

Term

(s, s —+d —+ g)
(s —+ d)'

(P, P-P-f)
(P, P ~f ~f)

(P ~f)'
(d, d~s —+d)
(d, d~v~d)

(d —+ d)'
(d, d~d —+g)
(d, d —+g~d)
(d, d~g g)

(d ~ g)'

64/35
32/35

384/175
128/525
96/175

64/35
256/343
128/343
640/539
64/1715

8320/41503
864/1715

TABLE II. Values of the angular factor A for Eqs. (13) and (25). In Table II, we have given the values of the factor
multiplying Q2E11 in Eq. (13) and Q'Eos in Eq. (25)
for all of the excitations involving s, p, and d electrons
(except d~ g

—+i). This factor is referred to as the
angular factor A. The notation for the types of terms
is obvious: Thus, (s —+d)' refers to the term of type
H11 pertaining to [ui'(ns —+ d) $', whereas (s, s —+ d —+ g)
denotes the term Hoo pertaining to the overlap of uo'(ns)
with u2'(ns —+ d ) g).

Concerning the values of the integrals I~,~,™,we

can make the following comments:

' R. M. Sternheimer, Phys. Rev. 84, 244 (1951);86, 316 (1952);
95, 736 (1954); and 105, 158 (1957).
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(1) For li ——l2, one has the relation TAaLz IV. Values of En(nd ~ d) and p;o [(Nd —+ d)'].

l
I(('~& =0 for I.AO.

(2) The angular factors C~~, "& for the quadrupole
antishielding factor4 2 y„(22l ~ li) are given by

Perturbation

Cu+ 3d -+ d
Ag+ 4d —+ d
Hg++ 5d ~ d

XII(nd ~ d)

275.1
480.7

1631

1200
8050

63000

p -/(0'/&)
0.0856
0.0223
0.00966

l
(2) =8 P (I g (2)m)2

m=—)
(28)

l
(4) —8 P (I (4)m) 2

m=—l

(29)

t cf. Eq. (8) of reference 1].
(4) The angular coeKcients C for the second-order

quadrupole eQect for the quadrupole hfs, as given in
Eqs. (58) and (61) of reference 4, can be obtained from
the following expressions, which are similar to Eqs. (13)
and (25):

(e.g. , Ci~&2&=48/25 for l=1, 16/7 for l=2, 224/75
for l=3).

(3) Similarly, the angular factors for the hexadecapole
antishielding factor rf„(nl —+ li) are given by

u&' has been described previously. "For Cu+, V++, and
Ag+, the Hartree-Fock (3d or 4d) wave functions' '
were used for the unperturbed functions No'. For Hg++,
only Hartree functions' were available, so that the
Hartree Sd function (without exchange) was used. In
Table III, we have given the results of these calcula-
tions. For each &unperturbed wave function, the values
of (r ') g and (r ')~s are listed in the first two columns
of the table. In the next column, we have given the
quadrupole shielding or antishielding factor y„ for all
perturbations, except for V++, where y„(3d —+li) is
not given, since the 3d function for this ion' (with
configuration 3s23ps3d4s2) pertains to a single valence
electron, rather than a completed d shell, as in the
other cases. Ke have also given the values of the
integral J(22l —& li) for each perturbation, where
J(22l ~ l,) is dehned by

For (rsl~li)' C=8 Q (I ™)'I(,)™ I (22l —& li) =— us'(ril) ui'(22l —+ l,)r 'dr. —(32)

for (ril, n, l —+ li —+ l2):
l

(2)mI (2)mI (2)m (31)

III. RESULTS

In connection with related calculations on the
second-order quadrupole effect for the nuclear hexa-
decapole coupling for atomic states, we have obtained
various perturbed wave functions for the outer (d)
electrons of the Cu+, V++, Ag+, and Hg++ ions. These
wave functions describe the nd —+ d and ed ~ g per-
turbations of the outermost d electrons, as a result of
the potential due to the nuclear quadrupole moment Q.
Thus, ui'(nd —+ d) and ui'(22d —+ g) are the appropriate
solutions of Eq. (9) with l =li= 2 for rid —& d, and l= 2,
1~=4 for ed —+ g. The procedure of the calculation of

TABLE III. Values of 7„(nd ~ lI) and J(nd —+ lI) for the Cu+,
V++, Ag+, and Hg~ iona. (The values of (r ')„4 and (r ')„4 are
in units cz 3 and eH 5, respectively. )

Perturbation (r ')„d (r )„d y (nd ~ l1) J(nd ~ l1)

The integrals J(«—&d) and J(nd —+g) enter into the
calculation of the second-order quadrupole energy
(~ Q') for atomic states.

In connection with the present work which is con-
cerned with the evaluation of the second. -order induced
HDM for ions, H;„~@,the above-mentioned calculations
of ui'(«~d) are relevant, since they permit the
evaluation of the terms proportional to Eii(rid —+d),
i.e., the terms which are due to the density
t ui'(nd —+d)]'. In view of Eq. (14), Eii(«-+d) is
given by

Eii(« ~ d) = [ui'(« —& d)]'r'dr (33)

As is seen from Table II, the angular factor associ-
ated with (« —+d)' is: 2=128/343=0.373, so that
the ratio p;, L(nd —&d)'] of H;„eo to H;„q due to a
nuclear H is given by:

p ~ $(«~ d)']=0.373Ell(« ~ d)Q2/~ rf
~

H. (34)

Table IV lists the values of Eii(3d —+d) for Cu+,
Eii(4d ~ d) for Ag+, and Eii(5d ~ d) for Hg~; the

Cu+ 3d —+ d
Cu+ 3d —+ g
V++ 3d~d
V++ 3d —+ g
Ag+ 4d —+ d
Ag+ 4d —+ g
Hg++ 5d ~ d

7.53
7.53
2.763
2.763
8.11
8.11

13.07

219.0
219.0
41.46
41.46

932.2
932.2

5577.4

—8.29
+ 0.369

~ ~ ~

—13.14
+ 0.464—27.6

24.10
2.091
5.41
0.5565

39.48
4.773

~130

' R. M. Sternheimer, Document No. 6044, ADI Auxiliary
Publications Project, Photoduplication Service, Library of
Congress, Washington, D. C.

'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).'B. H. Worsley, Proc. Roy. Soc. (London) A247, 390 (1958).

D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).
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corresponding values' of
~ q„~ and the resulting ratios

p;, [(ud —+ d)']/(Q'/H). It is seen that p;.„((ud ~d)']
is in all cases less than 0.1(Q'/H) and decreases with
increasing Z (for the ions whose outermost shell is a
filled d shell).

In connection with the other perturbations Laside
from (ud ~ d)'], we have obtained results for
(4d, 4d ~d ~ d) and (4d —+ g)' for Ag+. The equation
for the perturbation uo'(4d ~ d ~ d) was integrated
numerically:

d /dr +—6/r +Vc—Eo]u2'

=ui (4d ~ d)L1/r' —(1/r')4a] —4uo (4d), (35)

where (1/r')4m=8. 11 air ', and

Thus, Eii(4d~g)=0. 01820. The angular factor is:
2=864/1715=0.504 (see Table II). Hence the cor-
rection to p;,„is

pio. L(4d ~ g)']=1.14X10 '(Q'/H). (41)

We have also obtained an estimate of the integral
Epo(4d ~ s —+ d) for Ag+ pertaining to the overlap of
up'(4d) with the second-order perturbation

uo'(4d —+ s -+ d)

as calculated from Eq. (20). The resulting value of
p; (4d~s —+d) is +0.026(Q'/H). Thus, for Ag+, the
total effect due to (4d~d)', (4d, 4d ~d —+d), and
(4d, 4d —+ s~ d) is given by

No'N~'r-'dr =39.48. (36)
Q p;,„=(0.022+0.001+0.026) (Q'/H)

=0.049(Q'/H). (42)

We have

Ng"dr =9.746, (37)

so that, according to Eq. (22), we must have

uo'up'dr = —-', (9.746) =—4.873. (38)

This is achieved by adding a suitable multiple of Np to
the function u2 obtained by numerical integration.

The resulting value of Iso' is

Xpo up (4d)u&'(4d —+ d —+ d)r'dr= 8.10, (39)
0

which is very small compared to Eii(4d —+d)=480.7

(see Table IV). Thus the term in p;„„due to 4d ~ d -+ d
is given by

p;. (4d —+ d -+ d)
= (256/343)Eo Q ~/g„I H= .715X1 0'(Q'-/H), (40)

which is quite negligible compared to p;o„$(4d~ d) ]
L
=0.0223(Q'/H)].
We have also evaluated the (4d —+g)' term for Ag+.

The contribution of this term is completely negligible.

In the absence of calculations of the other types of
perturbations of the outermost (n=4) shell, as listed
in Table II, we cannot draw any dehnite conclusions
about the value of the complete p;,„for Ag+. However,
there are reasons to believe that among the terms due
to the d electrons, those due to ed —+ g are considerably
smaller than those due to ed —+d and ed~s. This
result is borne out by the smallness of p;,„((4d~ g)']
for Ag+, and also by the relative smallness of y„(ud~g)
as compared to y„(ed —& d), and of J(ed ~ g) in com-
parison with J(edged) for all of the cases considered
in Table III. If this assumption is correct, and if
excitations which involve d~g at any stage (e.g. ,
4d —+ d —+ g) are unimportant, then the total ratio
p;,„due to the 4d electrons of Ag+ would be essentially
given by Eq. (42), i.e., of order 0.05(Q'/H). On the
basis of previous results for y and g„, it is expected
that the inner shells (m=1,2,3) do not contribute ap-
preciably to H;„~&. However, it should be pointed out
that no calculations have been carried out for the
perturbations of the 4s and 4p electrons of the Ag+ ion.
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