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Magnetic Resonance with Strong Radio-Frequency Fields in Solids
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In order to explain nuclear magnetic resonance signals in solids,
Redfield has proposed that, when a strong rf magnetic field is
applied, the spin system can be described by the existence of a spin
temperature in the rotating frame, that can be different from the
lattice temperature. In the present work, we observe the fiuorine
resonance in a single crystal of CaF2, with the dc field in the (111]
direction. In our method of observation, the passage through the
line is slow, but the modulation is fast, compared to the spin-
lattice relaxation time. The signal is recorded after lock-in detec-
tion. It is shown that this technique permits one to study sepa-
rately the behavior of the spin system when isolated from the
lattice, and the eGect of the spin-lattice relaxation.

Because the modulation period is fast compared to the spin-
lattice relaxation time, the study of the corresponding fast varia-
tion of the magnetization gives the "response" of the spin system
when isolated from the lattice. From this study, we have been able
to verify Redfield's hypothesis independently of any relaxation
theory and to measure the local field Hl, ——0.90~0.025 6, in
good agreement with the theoretical value I1g=0.884 G calcu-
lated from first principles.

In order to study the variation of the equilibrium magnetization
as a function of the distance from resonance, we extend Redfield's
theory to the case of relaxation by fixed paramagnetic impurities.
We show that, although the relaxation field varies with the dis-
tance of the nuclear spin to a paramagnetic impurity, Redfield's
formulas are still valid, with some modifications which take into
account the correlation between the fields experienced by two
neighboring spins, and the possibility of not being in the extreme
narrowing situation. The comparison with the experimental results
is complicated by the probable existence of several types of para-
magnetic impurities with different relaxation times. However, it
has been possible to demonstrate a strong correlation between the
relaxation fields at two neighboring nuclear spins, as can be ex-
pected for this model.

A practical consequence of this study is to provide a method of
obtaining usable signals in solids with large linewidths and very
long relaxation times, where the ordinary absorption signal is
practically undetectable.

I. INTRODUCTION

A CONSIDERABLE amount of both theoretical
and experimental work has been performed on

nuclear magnetic resonance in liquids, resulting in a
3ustification and generalization of Bloch equations. '

In contrast very few studies have been made on solids,
since the pioneer work of Redfield' who has fruitfully
utilized the concept of spin temperature in the rotating
frame to interpret the nuclear magnetic resonance
signals in metals. This work has been extended, for the
experimental part, to ionic crystals, by Goldburg. '
These experiments have been performed under "slow
passage" conditions, i.e., waiting long enough for the
magnetization to reach its equilibrium value.

The interpretation of the results cannot separate the
effect of the existence of a spin temperature from that of
the relaxation, and a theory of the spin-lattice relaxation
is required. For this reason, Slichter and Holton' have
performed resonance experiments during times short
compared to relaxation times. During such a short time,
the spin system is effectively isolated from the lattice,
giving the possibility to verify Redfield's hypothesis
independently of any relaxation theory. The results so
obtained confirm the existence of a spin temperature,
but in the considered system (Na resonance in NaC1) a

*Present address: Ecole Polytechnique, 17 Rue Descartes,
Paris, France.

' F. Bloch, Phys. Rev. 70, 460 (1946). The reader will find a
complete exposition of the subject, as well as references in A.
Abragam, The Principles of nuclear 3fagnetism (The Clarendon
Press, Oxford, 1961), Chap. VIII.' A. G. Redfield, Phys. Rev. 98, 1787 (1955).' W. I. Goldburg, Phys. Rev. 122, 831 (1961).

4 C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

quantitative interpretation of the results is complicated
by the effect of the quadrupole interactions with the
lattice defects, the magnitude of which is unknown.

In the present work, we observe the resonance of a
system of spins I=—,', for which there are no quadrupole
interactions. In particular, we have studied the fiuorine
nuclei in cubic CaF2. Most of the experiments have been
performed on a single crystal with the magnetic field in
the $111) direction. The method of observing the
signals has all the advantages of lock-in detection: good
signal-to-noise ratio and automatic recording, per-
mitting a quantitative and precise comparison of experi-
ment with theory. With this method, we have been able
(a) to study the "response" of the spin system when
isolated from the lattice, i.e., to verify the existence of a
spin temperature in the rotating frame and to measure
the value of the "local field" BL, which is an important
parameter in the theory, verifying that we get the value
calculated from first principles; (b) to study the relaxa-
tion of the spin system, and to measure the equilibrium
value of the magnetization as a function of the rf field
and of the distance from resonance.

In order to analyze the results and to explain the
shape of the resonance signals in CaF~, we must extend
Redfield's relaxation theory in solids to the case of the
relaxation by Axed paramagnetic impurities. 5 A prac-
tical result of this study is to give a method for obtaining
and utilizing magnetic resonance signals having a good
signal-to-noise ratio for samples in which the usual
absorption signal is practically undetectable (solids with
large linewidths and very long relaxation times).

s N. Bloembergen, Physica 15, 386 (1949).
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II. SPIN SYSTEM ISOLATED FROM
THE LATTICE

Spin Interactions in the Rotating Frame

We consider a system of spins I, in a magnetic field
He (along the s axis) and in a field Hi, perpendicular to
He and rotating at the angular velocity o~ close to the
I.armor frequency res ——&He of the spins I. In the rotating
frame where Hi (chosen to be along the y axis) is fixed,
the effective' Hamiltonian of the spin system is

K=Z+BCq+ time-dependent terms.

The Zeeman energy of the system Z is given by

Z= —yAH g; I,,
where H is the effective external field in the rotating
frame with coordinates

(Z) (X,) I(I+1)y'as
Sy

EP Hr, ' Hs+Hr, ' 3 k8
(6)

where I is the number of spins,

H'= His+A',

tr (Xg)'

tr(y'O' P I;,')

We have made use of the fact that

In any case, we shall see that this hypothesis is well
justified by our experimental results.

With the density matrix 0., we are able to calculate the
thermal average (Q) of an operator Q by a trace calcu-
lation, (Q)=tr(oQ). In particular, if we apply this
relation to the energy operators Z and K&, we obtain

H =0, H„=Hi, H, =Hp (re/y)=—A.

The dipolar energy of the spins Kd is given by

Xd ——g N,,(I,'I; 3I,,I,,],—

where

trZ = trig ——trZBCg ——0.

Ke can verify, by direct comparison, that in the case

(3) of a single-spin species, the value of Hz, is given by

H,s=-', (Zs), (&)

17'A'
I;,=— (3 cos'0,,—1).' 2,"

Here, 0,, is the angle between the vector r;; joining two
spins I; and I; and the s axis. We have supposed, for the
sake of simplicity, that there are no pseudo™exchange
interactions' between the spins. The time-dependent
terms have a frequency of the order of co and 2' and their
eRect will be neglected. This approximation is justified
in references 2 and 4, and will not be discussed here.

Spin Temperature in the Rotating Frame

We assume, following Redfield, that the spin system
is described, in the rotating frame, by a density
matrix 0 .'

exp( —X/ke, )

tr [exp( —X/k8, )]
where the parameter 0, is the spin temperature in the
rotating frame, and can be quite different from the
lattice temperature 0~. In the high-temperature ap-
proximation (R((ke,), the expression for o becomes

where (A') is the second moment of the unsaturated
absorption line. ' In the same manner, we find for the
total magnetization operator M= yh Q; I; that (M) is
along H and has the magnitude (M) = —(Z)/H, which
follows directly from the de6nition of Z. In particular,
it is to be remarked that the component of iV orthogonal
to Hi in the z0y plane is zero. The absorption is com-
pletely "saturated. "Thus, a necessary condition for the
validity of the spin temperature hypothesis is that the
rf field Hi be large enough to saturate completely the
absorption line.

Adiabatic Fast Variation of the Magnetization

We wish to solve the problem of the variation of the
magnetization (M), when the field H is changed
adiabatically (in the thermodynamic sense) but fast
enough for the spin system to be considered as isolated
from the lattice (variation fast compared to the spin-
lattice relaxation). For an isolated system, the variation
d(3C) of the internal energy of the system is equal to the
work done by the applied forces

d(SC)= —(M) dH,

L1]—x/ke,

tr(1]
(3) which, from (6) and the definition of (M), yields

d(M) Hr, ' dH

(M) Hr, '+Hs H

This is readily integrated to give

Although quite dificult to justify rigorously, the
existence of a density matrix of this form, in the rotating
frame seems quite reasonable; Abragam and Proctor'
and RedhelcP give a thorough discussion of its validity.

' N. F. Ramsey and E. M. Purcell, Phys. Rev. 85, 143 (1952).' A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).

(M) (H'+ Hi, ')&/H =const.

' J. H. Van Vleck, Phys, Rev. 74, 1168 (1948).

(10)
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Experimental Procedure

In the limits of validity of the existence of a spin
temperature, the magnetization is along I and the
signal is in phase with H&. It is then necessary to use a
spectrometer tuned on the dispersion mode, resulting in
a signal proportional to M„.The use of high rf levels (up
to Hi 1.5 G——, rotating component) requires a very
stable compensation and the crossed-coil system is best
suited. The utilization of a fast modulation of frequency
0 allows a lock-in detection resulting in a signal-to-noise
ratio much larger than that which can be obtained with
transient methods.

However, it is to be remarked that, because of the
very long spin-Lattice relaxation times (between 5 and
30 sec), we are not in the usual slow passage conditions,
where the magnetization has, at all times, its equilib-
rium value and the recorded signal, after coherent
detection, is sot the derivative of the signal obtained
without modulation. As usual, in the lock-in detection
of a line, the passage through resonance has two compo-
nents: (a) a slow passage ("slow scan") linear in time
D(t) = (Hi/r)t where the passing time r, defined as

1 dap 1

Hi dh IIi dt

is typically of the order of several minutes, so that
r))T, i (T,i is the spin-lattice relaxation time) and the
magnetization reaches its equilibrium value 3f,q deter-
mined by the relaxation mechanism in the sample; (b) a
fast sinusoidal modulation of the form b(t) =H sin(Qt)
(we have used the values 0/22r=20 cps, 40 cps, and
80 cps) where 1/Q«T, i, so that during a modulation
period, relaxation has no time to operate and the spin
system is practically isolated from the lattice. Accord-
ingly, for the fast modulation 8, the variation of the
magnetization around its equilibrium value 3f,q is the
adiabatic variation given by Eq. (10).We shall call this
method, where r)&T,~&)1/0, the "slow scan-fast modu-
lation" technique. The analysis of the signal obtained
by this method will give information both on the spin
temperature model and on the relaxation process. In-
deed, the study of the fast variation of the magnetiza-
tion, corresponding to the fast modulation, shall give the
response of the spin system when isolated from the
lattice, resulting in the determination of Hl. to be com-
pared with the theoretical value (7). The measurement
of the equilibrium value M,q will permit a study of the
spin-lattice relaxation of the system.

Shape of the Signal. Determination of HL,

The signal, in the dispersion mode, is proportional to
3I„=(3E)Hi/H. At a distance 6 from resonance, and
for a modulation 8(/) =H sinOi, for which, as we have
seen, we can apply Eq. (10), the variation of 3E, is

' K. Halbach, Helv. Phys. Acta 27, 259 (1954)2

given by

3II (t){PA+fi(t)7~+H22+HI2}~
=31 (0){g2+H 2+H~2}k (11)

where 3f'„(0)=3Ii„,q is, in fact, the equilibrium value of
3fy in the absence of modulation, and is a function of
the distance to resonance

31,.q =3f,qH i/H. (12)

We develop the expression (11) up to the second order
in 8)

M„(t) M„,q—
M'y « LV+HP+Hr, 2

1 262—
(H 22+Hi, 2)

3'+Ll(3'). (13)
2 (62+H '+H ')'

The component at the frequency 0, which is the usual
signal obtained by lock-in detection is then propor-
tional to

Si(6): 3Iy eq
Hi 62+H22+Hr2

(14)

In the absence of a relaxation theory which gives

My. q as a function of 6, one cannot predict the shape of
the signal. Now, if we select the component at the
frequency 20, we obtain

1 ~H ~
2 H 2(2g2 —(H 2+H~2) j

S,(g) =-~
~

3I„., (15)
4&H, i (g2+H 2+H 2)2

Here again the shape of 52 depends upon My «. But,
quite independently of this shape, one can see that S2
becomes zero for a value Ap of 6 such that

622= -'2 (HP+Hz, 2). (16)

in good agreement with Bruce's measurements. "This

"C.R. Bruce, Phys. Rev. 107, 43 (j.957).

Thus, if 31„.q/0 (and we shall see that 31„qbecomes
zero only for b, =O), the values of 6 for which S2——0
permit a measurement of III.'" independently of any
relaxation theory. Figure 1 shows the shape of S2(h),
and Fig. 2 shows the linear dependence between hp' and
HP, con6rming Eq. (16). From this curve, we measure
the value of Hl. for the fluorine spins in CaF2 in the
$1111direction

HI.V3 = 1.56&0.04 G,

whereas the calculated value of the second moment of
the absorption line is

(a )'*„=1.53 G,

and the measured value is

(bP)'. =1.52&0.03 G,



MAGNETIC RESONANCE KITH STRONG rf FIELDS IN SOLI DS

1.5
I

0.5
l

0.1 H*, (t-~a')
tU O.R 0.5 0.4. 6.5 0.6 Oy

f)l5TANCE F'RON RE,SONANCE 6, (Gauss)

Fro. 1. Shape of the signal Sp(a) obtained at double the modula-
tion frequency. The value d 0 for which S2=0 does not depend on
the relaxation and permits the measurement of III,.

result seems a good experimental justification of Eqs.
(6), which are a, direct consequence of the spin tempera-
ture hypoth esis.

III. THEORY OF RELAXATION

Equilibrium Magnetization in the Rotating Frame

The shapes of the signals Si and S& LEqs. (14) and
(15)j are determined by the value of the equilibrium
magnetization M,q which results from the interaction
of the spin system with the lattice and can only be given
a relaxation theory. We characterize the interactions
responsible for the relaxation by a fluctuating Hamil-
tonian 3C'(t) considered as a perturbation. We consider
the case where 3C'(f) has the form

3C'(f) =P, 3C,'(f),

where each 3C,'(t) applies to a single spin I,. This
includes a large class of relaxation processes, excluding,
however, the case of relaxation by the modulation of the
dipole-dipole interactions between the spins by lattice
vibrations. " In any case, this mechanism is very in-
effective for relaxation in solids. The motion of a spin
operator will then have two components, one arising
from the static Hamiltonian 3C=Z+3C~ and the other
from the relaxation 3C'(t). Now, we have already sup-
posed, in Sec. II, that the effect of the static Hamil-
tonian K is to establish among the spins a temperature
8,. The time of establishment of such a temperature is
of the order of 1/yHr, =50 lisec, much shorter than the
relaxation times which are of the order of a few seconds.
Thus, if one is interested only in times long compared
to 1/yHr, , the effect of the static interactions 3C=Z+3Cq
is simply to maintain at all times a spin temperature 0,
in the rotating frame, this temperature having a slow
variation caused by the relaxation. This slow variation
is, in particular, that of the total energy (3C) which, in
the absence of the perturbing Hamiltonian 3C'(f), would

u I. Wailer, Z. Physik 79, 370 (1932).

i 1 I I I

FIG. 2. Measurement of 60 as a function of H~'. The straight
line through the experimental points has the equation 2602
=H12+HI, ', with Hy. =0.90 G, in good agreement with the theo-
retical value Iffy=0.884 for the fluorine nuclei in CaFs (field in
the $111]direction).

be constant. The principles of the reasoning are then the
following: in order to study the relaxation of (3C), we
shall consider only the slow variation Larising from
3C'(t)$ of the two components (Z) and (3Cq) of (3C); in
order to take into account the much faster effect due to
the static interaction 3'., we shall simply write that the
spin system is all the time in a state described by a
temperature, i.e., by a density matrix o of the form (4)
or (5). Accordingly, (Z) and (3C&) are not independent
but have to satisfy Eqs. (6) during their slow motion
caused by the relaxa, tion 3C'(1).

We shall see in the following paragraphs that in the
case of the existence of a spin temperature, the effect
of 3C'(t) is to relax the average value of the magnetiza-
tion (M) according to the equations"-:

where ufo is the magnetization at thermal equilibrium
in the absence of the rf field H~. The partial differentials
in the equations indicate that only the effect of the
relaxation is considered. If the e6ect of the static
Hamiltonian BC was absent, and in particular without
the interactions between the spins, these equations
would be independent and would define the motion of
the magnetization; indeed, they are the equations of
motion that one obtains for liquids where precisely the
interactions between spins are decoupled by the fast
Brownian motion. In fact, the static interactions 3C

maintain a density matrix o of the form (5) causing

"The quantity T2 of the equations has no relation with the
inverse linewidth of the unsaturated line in the solid. It is, in fact,
in the limit of large rf field H1, a transverse relaxation time, a
quantity for which Redfield uses the notation T2, in reference 2
(p. ~792).
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)
(3e).

H H'+Hz'
(M) =—

(Mp) I (M) I

Hi (HP+d, ') &

(19)
Therefore, its total motion is given by

(M) to lie along the effective field H. The values of proportional to (3C) is from Eqs. (6)
(M, ) and (M„)are not independent, but must satisfy at
all times the condition

From Eqs. (18) and (19), one obtains the effect of
relaxation on the motion of (Z) = —(M) H:

where

1—(M)= ——
I (M)—M„j,

dt T
(23)

with

(20) M„= Xp ——Mp
H'+Hz, ' 6'+(Ti/Tp)Hi'+QHz'

1 (LV HP 1—=I —+
T. (T, T )5'+B,'

A (6'+IIi')
~p=Mp—

6'+ (Ti/Tp)IIP

Similarly, it is shown in the Appendix that, in the case
of the existence of a spin temperature, the effect of the
relaxation X'(t) on the dipole-dipole energy (Xq) is
given by

(~/~t)(X. )= —( /T )(X.),
where the quantity n has the values

n=3 if X,'(t) =X (t) for two neighboring
spins I; and I;,

and

e=-', (2+Ti/Tp) if there is no correlation be-
tween 3C (t) and X (t) for iA j.

(21)

(21')

In addition to the motion arising from the relaxation
which is given by Eqs. (20) and (21), there is the motion
caused by the static Hamiltonian 3'.. But, as was dis-
cussed previously, we take its effect into account by
imposing a spin temperature to the system; i.e., the
quantities (Z) and (Xq) are not independent but must
satisfy, at all times, Eqs. (6). We then obtain the final
equation of the motion of the total energy (X), by
combining Eqs. (20), (21), and (6) to give

where

and

1—(3e)= ——
I (x)—xp],

T

1 1 A'+ (T,/T, )HiP+nHz'

T Ti 5'+HiP+Hz, '

A (lV+HP+Hr, ')
BCp= Mp

aP+ (T,/T, )HiP+~H, 2

(22)

In this equation, the derivation is not a partial
derivation but a total one, since the static interaction K
has no effect on the motion of (3C) (the Hamiltonian X
commutes with itself). The magnetization (M), which
remains along the effective 6eld H, and which is simply

Existence of a Spin Temperature in the Case of
Relaxation by Fixed Paramagnetic Impurities

We consider a nuclear spin I, relaxed by dipole-dipole
interaction with a fixed paramagnetic impurity S:

Av7 3
3e,'(t) = S(t) I;——(S(t) r,)(I; r,), (24)

.3 .2ri ri

where r; is the vector joining the impurity S to the
nucleus I;, and where the spin S(t), which is strongly
bound to the lattice, is considered as a classical sto-
chastic variable. The transition probability of I„due
to this interaction, has the value

W, =C, (8,)/r, ', (23)

where C~ is derived in the Appendix, and 0; is the angle
between r; and the s axis. This process, where the
intensity of the relaxation varies from one spin to the
other, tends to produce different spin temperatures in
the sample. However, Bloembergen' has shown that
spin diffusion is an efficient mechanism to equalize these

and n is given by Eqs. (21').
This is the result obtained by Redfield, 2 when the

intensity of relaxation is the same for each spin I;. This
is the case for relaxation (a) by conduction electrons in
a metal or a semiconductor, (b) by quadrupolar inter-
actions with the lattice vibrations for spins larger than
—,'. For both cases, the correlation time r of X'(t) is very
short (~pr&&1), so that we have Ti Tp, and Re——dfield
has given the explicit value of M,~ only in this case.
For CaF„where the fluorine spins are relaxed by dipole-
dipole interaction with fixed paramagnetic impurities, '
the intensity of the relaxing 6eld varies with the dis-
tance of the nuclear spin to a paramagnetic impurity
and consequently is very different from one spin to an
other. Also, the correlation time 7. of the relaxing
Hamiltonian X (t) is, in this case, the spin-lattice
relaxation time of the paramagnetic impurity and we do
not always have the condition cur(&1. Therefore, we
must generalize Redfield's analysis to situations where

(a) the intensity of the relaxing field varies from one
spin to another, and (b) we have Ti/T, in Eqs. (18).
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temperatures. In fact, De Gennes" has found for this
model that, in the case of very diluted impurities, there
is a single spin temperature for the great majority of the
spins of the system.

The system is perturbed only in the vicinity of an
impurity, but outside of a sphere of radius a& diffusion
insures the existence of a spin temperature. The length
a& is given by""

(26)

where D is the spin diffusion coefficient, assumed to be
isotropic, and (Cr) is the angular average of Cr(e,). The
radius a& is typically of the order of a few interatomic
distances. Blumberg" has given a very physical analysis
of this model, with a few experimental justifications. He
shows that the relaxation tends to produce two regions
with different spin temperatures approximately sepa-
rated by a sphere of radius rs(t) around an impurity S.
This sphere spreads from an initial time 3=0 according
to the relation rs(t) = ((Cr)1)'is. On the other hand, spin
diffusion tends to equalize temperatures according to
the diffusion law rD(t) = (D1)&. The two effects balance
out at the distance ai given by Eq. (26), and for r) ur,
the diffusion is dominant and insures the existence of a
single spin temperature in the system. Blumberg's and
De Gennes' analysis are relative to relaxation along the
s axis, but they can be readily extended to relaxation
along the effective field H in the rotating frame. One
has, then, to replace the coefficient Ci of Eq. (2S) by
another coefFicient Crr representing relaxation along H.
The value of CII, as well as the value of the diffusion D
depends, in general, upon the magnitude and direction
of B, and the corresponding variation of the radius alI
is very complicated and cannot be studied without a
theory of spin diffusion, which is so far nonexistent.
Fortunately, we shall see that the equilibrium mag-
netization 3f,~, at least in the case of a single type of
paramagnetic impurity, is independent of a~, so that
we are able to avoid the dificult question of the
dynamics of spin diffusion.

Relaxation Theory

In a general theory of relaxation, "' it is shown that
the motion of the density matrix in the rotating frame
arising from the effect of a Auctuating perturbing
Hamiltonian 3C'(1) is given by

8 00

~(1)= ([3C'(1), [3—C'(1—r'), ~(t) —~,1])..dr', (27)
8$ 0

where [A,Bj is the commutator of A with 8, and the

"P.G. De Gennes, J. Phys. Chem. Solids 7, 345 (1958).
'4 G. R. Khontsichvili, Proc. Georgian Acad. Sci. (U.S,S.R.) 4,

3 (1956).
'~ W. E. Blumberg, Phys. Rev. 119, 79 (1960)."A. G. Redfield, IBM J. Research Develop. 1, 19 (1957).

ymir&(1 and yHl, v((1, (29)

where r is the correlation time of 3C'(t).
We have not assumed the case of extreme narrowing

here, which would be expressed by the condition co7(&1.
The relaxation of an observable represented by an
operator Q, is then given from the density matrix by

(Q(1))=«[Q (1)j (30)

With the special form (17) of the Hamiltonian 3C'(t),
we can obtain relaxation equations for a single spin
operator. For example, applied to the operators I;„and
I,„Eqs.(27) and (30) yield

8—(I'*)= W '((I' )-Io)
Bt

8—(I;„)= —Ws, (I,„),
03

(31)

as is shown in detail in the Appendix.
In the situation considered by Redfield, ' all the lV's

are equal and a simple summation gives Eqs. (18) with
1/Tr Wi and 1/Ts——Ws. But in th——e case of relaxation
by fixed paramagnetic impurities, we have

Wi, ——Cr(0;)/r, W„=C, (0,)/r, (32)

where C~ and C2 are calculated in the Appendix. The
values of the Ws vary from one spin to another and we
have not, a priori, equations of the form (18) for the
total magnetization (M). But, if there is a spin tem-
perature in the rotating frame, then Eqs. (31) give
again the expressions (18). This is caused by the
particular form (S) of the density matrix o.. For this
form, it is easy to see that all the average values (I;)
relative to a particular spin I, are proportional to (M).
We have seen that there is a spin temperature in the
rotating frame for all the spins outside of a sphere of
radius u~ around each impurity. Then, if we limit the
summation to these spins, which are practically the

"F.Bloch, Phys. Rev. 105, 1206 (1957). The reader will also
And in the book of reference 1 (Chap. XII, pp. 511—517) the de-
tailed justification of Eqs. (27) and (28) in the presence of an rf
6eld H1 when pH&r«1. The argument can be readily extended in
the presence of 3'.q with yHI.r«1.

( ), around the integrand. indicates that one averages
over the random components of 3C'(1). The perturbing
Hamiltonian 3C (t) is expressed in the rotating coordi-
nate system and is related to the expression 3C&,b'(1) in
the laboratory frame of reference by

3C~(1)—e+iHosrzi 3C 1(1)&
—irroMzi (28)

Equation (27), which, in fact, expresses the relaxation
in the absence of rf field and spin-spin interactions, is
still valid in the presence of these interactions, " pro-
vided that the fluctuations of 3C'(1) are rapid compared
to the frequency corresponding to these interactions,
i.e., when
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only ones observed, the trace calculation gives Eqs. (18)
with

1 1 Ci(e)

Q rg+aIi Q ~i)rJEi f

where e is the number of spins which are in the summa-
tion, i.e., practically the total number of nuclei. If a» is
large enough, we may replace the sum by an integration
to obtain

4~ (c,) 1 4~ (c,)———S ———S )
Ty 3 8» Tg 3 glr

(34)

where 1V is the number of impurities per cm' and (Ci)
and'(C2) are the angular averages given in the Appendix.

The same calculation applied to the operator K~,
where we limit the summations to the spins located
outside of the spheres of radius a& gives Eq. (21) with
the same expressions (34) for Ti and T2. This is again
due essentially to the form (5) of the density matrix 0.
Because of this form, the average value of any bilinear
combination of operators relative to two spins I; and I;,
such as (I;,I;,) or (I,,I,,), is proportional to (Ka). It is
to be remarked that in the relaxation by a Axed para-
magnetic impurity, the fields "seen" by two neighboring
spins are strongly correlated. One can then predict,
in Eq. (21), a value of n close to 3, or, if Ti))T2, an
intermediate value between 3 and —,'(2+T,/T, ), if the
correlation is not complete.

We have, thus, extended the validity of Eq. (23),
which gives the value M,~ of the equilibrium magnetiza-
tion in the rotating frame, to the situation of relaxation
by fixed paramagnetic impurities.

T, (C2) 7 2
+ ~2r2

T~ (Ci) 6 3
(35)

from the values of Ci and C2 (see Appendix).
The correlation time r is simply the spin-lattice

relaxation time of the impurities. 'The ratio Ti/T2 is
independent of u» and the signal, at a given frequency
&o, will be determined by Eqs. (14) and (23), where
Ti/T2 is independent of A and Hi. In fact, if we take
into account the fact that the diffusion as well as

Equilibrium Magnetization in the
Case of Relaxation by Fixed

Paramagnetic Impurities

We have seen that a» varies in a complicated manner
with the magnitude and direction of H and the expres-
sions (34) show that, in general, it is not possible to make
quantitative predictions on T~ and T2 separately. But,
as for the equilibrium magnetization M,~ which depends
only on the ratio T&/T&, the situation can be more
favorable, and we distinguish two cases:

(1) There is only one type of impurity. In this case,
we have

relaxation are anisotropic, the perturbed region around
each impurity is not rigorously a sphere of radius a»,
but a volume of a more complicated shape. However,
one can expect that the ratio Ti/T& will vary only very
slightly with 6 and 8&.

(2) If there are several types of impurities with
different relaxation times rI„then

Q k(C2k)&k/iiak'

T2 Qk(cik)+k/+Ixk
(36)

This ratio will depend, in general, on the radii a»I,
relative to the different impurities, and the ratio Ti/Tk
is not independent of H. It is only in the case where all
the relaxation times 7.1, are short enough, so that
~rk«1 (extreme narrowing case), that the ratio Ti/T~
is constant. In this situation, all the values of (Cik) and
(C,k) are equal and we have (see Appendix) Ti/T2 ——7/6.
This again is a case where the equilibrium magnetization
is independent of a» and of the diffusion.

Comparison with Experiment

From Eqs. (12), (14), and (23), the expression of the
signal Si(A) obtained by coherent detection at the
modulation frequency is:

Si(h) = —Mo
Hg

A2 Irgg
X (37)

(A2+H 2+HL2)fg2+, (T /T )H 2+~HL2]

Figure 3 (top) shows the theoretical shape of the
signal, when Ti/T~ and n are constant, independent of
A. With the values Ti/T2 9and n= 5, ——we have a very
good agreement with an actual recording (Fig. 3
bottom) obtained at 2 Mc/sec. The slight dissymmetry
of the curve arises from the fact that the passage
through the line is a little too fast for the magnetization
to reach its equilibrium value. The condition to have a
line rigorously symmetrical for long relaxation times
(Ti =22 sec at 2 Mc/sec) leads to scanning speeds pro-
hibitingly slow. A whole set of such curves obtained at
2 Mc/sec for different values of Hi give, within our ex-
perimental errors, a constant value of Ti/T2 ——9&1 and
n =5~1.Qle remark that the value of n falls in between
the values n=23(2+Tk/T2) =7.3 (field completely un-
correlated at two spins locations) and n=3 (complete
correlation).

At higher frequencies (8 Mc/sec and 16 Mc/sec) the
signals obtained are not compatible with the shape
given by Eq. (37) with Ti/T2 independent of 6 and Hi,
as can be seen, for example, on the recording of Fig. 4
obtained at 16 Mc/sec. This indicates that there is
certainly more than one type of paramagnetic impurities
responsible for the relaxation in our sample of CaF2. In
the absence of a detailed knowledge of the nature of the
impurities contained in the natural cyrstal that we have
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used, it is difficult to discuss quantitatively the experi-
mental results. We can, however, make the following
qualitative remarks: (a) Although the value of Tr/Ts
varies in a complicated manner with 6 and B~, we have
found that it remains within limits. It stays between
60 to 85 at 8 Mc/sec and between 230 to 290 at 16
Mc/sec, which seems to indicate, along with the value
9 at 2 Mc/sec, a rough variation in r0' as a function of
frequency, which is slightly less rapid than the variation
as ro' given by Eq. (35), in the case of a single type of
impurity. (b) The value of n deduced from the experi-
mental curves varies very little with frequency, n= 8&3.
We can attempt to give a qualitative explanation of
these results. At low frequency (2 Mc/sec) the different
values of co'v', corresponding to the different impurities,
are not very large, thus, attenuating the differences
between the paramagnetic impurities (we are close to
the extreme narrowing case) and explaining the ap-
proximate constancy of Tr/Ts. At higher frequencies,
the differences become larger, and the ratio Tr/Ts can-
not be considered as a constant any more. In addition,
the impurities with the longest relaxation times, with
the corresponding very large values of co'7', are less and
less eIIIicient for the nuclear relaxation, explaining a
variation of Tr/Ts less rapid than ~' as a function of the
the resonance frequency. The value of n which stays,
at least for the high fields, much smaller than the value
n=s(2+Tr/Ts), corroborates our model, where one
predicts an important correlation between the Quctuat-
ing field seen by two neighboring spins.

Signal-to-Noise Ratio in the "Slow Scan-Fast
Modulation" Method

One of the practical consequences of Eq. (23) is that
the signal-to-noise ratio, obtained with a strong rf field
H~ in a solid, can be much larger than the optimum

absorption signal. From Eq. (23), we obtain

Bg aH~
M„,~= Mq ——Mp (38)

H 6'+(T /T )H '+nHr, '

The maximum signal obtained in optimizing expres-
sion (38) is then

(M„) =—',Ms
(Tr/T~) Hrs+nHr, ' (39)

An absorption signal is obtained for a weak H~, the
case in which the theory of Bloembergen, Purcell, and
Pound" is applicable, at least to an order of magnitude.
The maximum absorption signal corresponds to a

FiG. 3. Signal S~ obtained in the "slow scan-fast modulation"
condition with lock-in detection. (CaFs, L111jdirection. ) H & 1.06——
G. Top: Theoretical curve PEq. (37)j with T&/Ts 9and n—=—5.
The signal is in arbitrary units. Bottom: Actual recording
obtained at 2 Mc/sec, with an integrating time of 0.65 sec,
H~ =0.25 G, 0/2s-= 20 cps. Scanning speed: 0.215 G per min.

FIG. 4. Signal SI obtained at 16
Mc/sec in the same sample as Fig. 3
(bottom). HI ——0.52 G, H =0.13 G.
Notice "bumps" in the curve, &which
indicate that T,/T. varies with the
distance from resonance D.

"N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
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component in quadrature with H~ of magnitude

(M,) =,'M—pfyTiAHj &, (40)

where AH is the half-width of the line, defined by
bH= (2/a. )J~" f(H)dH, and where f(H) is the equation
of the unsaturated absorption line such that f(Hs) =1
at resonance. This optimum is obtained for a field,
(Hi)„t„whichsaturates the line at half its value,

frame is, indeed,

= ——(M—M„)—WM,
T

where T is the relaxation time of the magnetization
along H LEq. (23)$; W is the effect of the modulation
and has the value'

(Hi)„t——(DH/yT t)&.

Equation (40) can then be written

(41) H 'sin'8
W= — Qf(Q)

& (Hi'+&'+HI. ')
(45)

(M,) .„=—,'M, (Hi).../AH.

(Ms)-* hH
p= (43)

(M.)~.x (Hi)„t$(Ti/T, )Hi'+rrHr, 'j 1/T' =1/T+ W. (46)

for a modulation 3(i) =H sinQt; and 8 is the angle of H
with the s a,xis. The normalized function f(Q) defines theThe ratio of the maximum signals obtained by the
shape of the absorption curve in the rotating frame. "

two methods is then »om Eq. (44) the magnetization reaches a decreased
value M.,/(1+WT) with a time constant T' given by

As H~ and HI, are, in general, of the same order of
magnitude, and if Ti/T, is not too large, the gain p is
of the order of p=Hi/(Hi). ,». For protons (or fluorine)
with Ti 10 sec, dH=——1 G we have (Hi)„,=2X10 ' G
and the dispersion signal obtained with a rf field H~ of
1 G is three orders of magnitude larger than the opti-
mum absorption signal.

Rotary Saturation in the Rotating Frame

In calculating the expression for the signal (Eqs. 14
and 15), we have assumed that the only effect of the
modulation is to vary, adiabatically, the magnitude
and direction of the magnetization. In fact, Redfield'
shows that a field modulation along Ho "heats up" the
spin system in the rotating frame, i.e., decreases the
magnetization (rotary saturation). The equation of
motion of the magnetization along H in the rotating

1
T

(ace-')

If the modulation frequency 0 is small

Q((y (H'+Hi, ')'*,

we have practically f(Q) = f(0), and for fixed values of
6 and H~, S"is proportional to H 'O'. Fig. 5 shows that
this is well verified by the measurements. We have used
these results to make sure that our experimental condi-
tions were such that rotary saturation had a negligible
effect when recording S~ and S2 signals, in order to
compare with the theoretical expressions.
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APPENDIX

Multiplying both sides of Eq. (27) by the operator Q
and taking the trace, we obtain

0.2 CP$
Cpkh

CPS

8—(Q) = —(a—ao),
Bt

where a=tr(o.A), as=tr(os'), and

{n,) Hs (LX (1) L&(i— ) Qjj)-d .

(cycles/sec/ @amass

FIG. 5. Time constant T' of the return of the magnetization to
its equilibrium value in presence of modulation. II&=0.65 0,6=0.5 G, a&/2+= 8 Mc/sec. The transition probability caused by
the modulation (rotary saturation) is proportional to O'H '.

We apply this equation to the operators I, and I„with
"This is the equivalent of the de6nition given in the laboratory

frame for absorption in low Qelds by L.J.F.Broer, Physica 10,801
(1943).
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a relaxation Hamiltonian X'(t) given by

3C'(t) = —yah(t) I. (A2)

Because all the operators apply only to a single spin
I;, we have dropped the subscript i from the formulas.
From Eq. (24) the fluctuating field h(t) has the
expression

+8
h(t) = ——(S(t)—(3/r')LS(t) r]r}.

ys
(A3)

If the relaxation time ~ of the paramagnetic impurity
is not too short, i.e., if co,r))1, where co, is the I.armor
frequency of the electron, only those terms containing
S, which do not involve an electronic Qip will be
efficient for nuclear relaxation. Accordingly, the effec-
tive components of h(t) are

h, (t) = (y,/r')S, (t)3 cosg sing cos (qr —&vt),

h, (t) = (y,/r')S, (t)3 cosg sing sin(p —&ut), (A4)

h, (t) = (y,/r')S, (t) (1—3 cos'0),

where 0 and y —art are, respectively, the polar and
azimuthal angles of r in the rotating frame. The only
nonvanishing averages of bilinear products of these
components are

The angular averages are

(Ci)=-',S(S+1)h'y 'y'2T(1+(g'r2)

(C)=lS(S+1)&'v 'v'L + (1+ ' ') 'j. (AS)

In order to apply the same calculation to the operator
BC& given by (3), we must distinguish two cases:

(1) The fields h, (t) and h;(t) experienced by two
spins I; and I; are identical. In this case, the relaxation
Hamiltonian relative to the two spins, 3C +BC,'
= —yah, (t) (I;+I;) commutes with I,'I, and it is
su%cient to take in 3C& only the term I;,I,, We find,
using the formulas (A5),

l9

(I—.Ib) = —Wi'L&(I'*I& ) (I'&2 +I uIfw)3 (A9)
Bt

where Wi, is the value given by (32) and (A7).
By performing the trace calculations with the density

matrix o. given by (5), we find

(A10)

where Ti is given by (33).
(2) The fields h, (t) and h;(t) at the two spins are

completely uncorrelated, i.e.,

(h.(t)h. (t—t') ),.= (h„(t)h„(t,—t')),.
78= isS(S+1) (3 cosg sing)'
y6

(A5)
)(cos(a&t'/2)e '~',

V.'
(h, (t)h, (t—t')). =-',S(S+1) (1—3 cos'0)'e

y6

(h;.(t)h;.(t))..= (h,„h;„),= (h,,h, .),=0.

In this case, we find

8
(I;,I;,)= —(W—i~+Wi;) (I;,I;,),

Bt

8
(I;,I;,)= —(W—2,+W2g)(I;,I; ),

Bt

(57)

where we have used

(S,(t)S,(t—t')). =-',S(S+1)e ". (A6)

8
(I;„I;„)= —(W—,+W ~)(I;„I;„).

Bt

Applying these formulas to Eq. (A1) we obtain Eq Taking the trace with the density matrix (5), we obtain
(1S) with

C, (g) =P'(S+ 1)i't2p 2p2 (3 cosg sing)2r (1+(g2r2)—i

C2 (0)= -',S(S+1)h'y, 'y' (A7)
XL(1—3 cos 0) 'r+ —'(3 cosg sing)'r (1+aPr')—'j.

8—(xd) = —-', (2/Ti+1/T2) «e),
Bt

where Ti and T2 are again given by (33).

(A12)






