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Effect of Local Order on Energy Bands in Binary Alloys
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Equations are developed giving the dependence of the energy band shape on the state of local and long-
range order in an alloy. The approximation used is the "empty-lattice virtual crystal" model, in which a free
electron gas is perturbed by a fiuctuating potential of zero average value. The energy correction is expressed
in terms of the nearest-neighbor order parameter a and long-range parameter X; this is done with the aid of
a qualitative formula giving nonnearest-neighbor parameters as functions of o.. The result is evaluated
numerically, and it is shown how the band bottom gets squeezed out into a long tail as n proceeds from the
perfect short-range order —+ random ~ clustered cases. The eRect of long-range order is discussed and the
conclusions are compared with those of a previous tight-binding calculation.

I. INTRODUCTION

~ 'HE change in energy band shape caused by varia-
tion in local order can have considerable influence

on the physical properties of alloys. In a previous paper'
the author discussed this problem in tight-binding ap-
proximation, in connection with the effect of order on
paramagnetic susceptibility. The present work treats
the opposite, weak-binding case, and uses a perturbation
approach.

The earliest investigations of this question were con-
fined to the random (zero local order) state. James and
Ginzbarg' and Landauer and Helland' employed com-
puters to obtain energy levels for a random one-di-
mensional alloy, while Parmenter' solved the random
three-dimensional case by perturbation methods. The
results showed that the effect of complete disorder was
to produce a "tailing o8" of energy levels into previously
forbidden regions. Later, Flinn' demonstrated that cer-
tain second-order perturbation sums could be expressed
in terms of the Cowley order parameters, ' and thus
obtained the total electronic energy of an alloy as a
function of local order. Recently, Corciovei and Grecu' '
have considered the dependence of energy bands on
long-range order, and, to a certain extent, the following
discussion is complementary to their work.

Our calculation follows that of Flinn' up to the point
where an expression is obtained for the correction to the
single-particle energy levels at the bottom of the band,
due to the state of order. At this stage, we introduce an
"order function" which is evaluated by assuming a
simple formula giving all distant Cowley parameters' in
terms of n the nearest-neighbor parameter, and X the
long-range order parameter. This yields the energy e (k),
and the state density g(e), as functions of n and )I.. It is
shown how increasing local disorder squeezes the band
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R. H. Parmenter, Phys. Rev. 97, 587 (1955).

~ P. A. Flinn, Phys. Rev. 104, 350 (1956).'I. M. Cowley, Phys. Rev. 77, 669 (1950).
7 A. Corciovei and D. Grecu, Rev. phys. Acad. rep. populaire
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bottom out into a long rat-tail. The long-range order in
the case considered has much less effect. The conclusions
obtained are essentially a generalization of the results
of Parmenter. 4

eo (Q) —k2 ~ $ 0 —V'—e sk ~ r (4)

(Note: Hall' has shown that it is also feasible to take
7'+D P, as the unperturbed Hamiltonian in such
calculations. ) Then, to second order,

1(~ I V.+Vr
I

&') I'
e(&)=k'+(&I V,+VfIk)+Q, (5)

k' —(k')'
where

V~=D P, V(r—~); Vr=p, C(~) V(r—s).
' G. L. Hall, Phys. Rev. 116, 604 (1959).

II. HAMILTONIAN AND PERTURBATION

Since we are interested only in qualitative results, it
will be adequate for our purposes to assume a simple
cubic lattice, of edge length I., volume U, spacing d,
density p, and containing E atoms. The fractions of A
and 8 atoms are mg, mg, respectively, and we assume
that the one-electron potentials on both types of atoms
are proportional to the space function, V(r). Then the
one-electron Hamiltonian is

BC= 7'+D Q, V(r—~)+Q, C(~) V(r—z), (1)

where
C(~)= —rrttt if ~ at A-atom,

=+tttg if ~ at B-atom,

and the units are atomic. The term in D is an average
potential and is perfectly periodic, while the last term
is the Quctuating perturbation due to the disorder. The
C's have been chosen so that

g, C(~) =0.
As Flinn' points out, if there is long-range order, then

C(~) has a periodic component, while for local order,
C(~) will have a nonrandom number of sign changes as
~ traverses the crystal.

We take 3Co=V' as the unperturbed part of the
Hamiltonian, with solutions
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The various terms may be evaluated using

(kI V, Ik')=DV ' P exp(iK s)F(K) =Dplx, x,F(K),

where

p=X/V, K=k —k', Ko=2ord '(e„n„,e,),

shall see in Sec. IU, this singularity is only logarithmic,
so the sum (integral) over K is convergent, and the
qualitative properties of the solution are not disturbed.
It should be mentioned, however, that the use of secogd-
order perturbation theory in this sort of calculation has
never been rigorously justified. ]

III. THE ORDER FUNCTiON
e,=0, k1, , F(K) = exp(iK. r) U(r)d'r, (6)

and
{kIVf Ik')= U ' P, C(~) exp(iK. ~)F(K).

Substituting Eqs. (6) and (7) into Eq. (5), we find

In the order function [Eq. (9)], the ~ sum may be
rewritten in a form allowing introduction of the Cowley'

(7) order parameters. We first note that, assuming y is

given, the number of terms in the ~ sum is

IF(K,) I
1 IF(K) I'

o(k) =k'+D'p' Q +—Q
xo~o 2k. K, Jtoo Vo x~o 2k K—Lt'

X{+C(p)C( ) exp[iK. (to —)]). (8)

where

O(K) =P„,, C(p) C(~) exp[iK (to—~)]
=P, exp(iK g)[P, C(y+s)C(g)],

(9)

and in the ~ summation, the limits of ~ depend on g as
follows:

If p,)0, then 0&~ o.;&~(L p;);-
if p, =0, then 0&~ 7.;&~ L;
if p;&0, then

I p, I
& of;( L, i=x, y, s. (9a)

We may then write o(k) in the empty lattice model as

We have dropped the first-order term since it is k
independent and note that the cross-product terms like
(kI V„Ik')(k'I V~Ik) have vanished because of the 8~ ~,
factor in (kIV~Ik') and the fact that P, C(~)=0
[Eq. (3)].Thus, the correction is broken into two parts:
The D' term which is the standard result for a periodic
lattice, with Brillouin zones given by 2k Ko ——Ko, and
the last term which is the additional piece due to atomic
disorder.

The D' term in Eq. (8) renders this equation invalid
in the neighborhood of the Brillouin zone boundaries.
To avoid this complication, we drop this term, thus ob-
taining the "empty lattice virtual crystal" approxima-
tion of Parmenter. ' As he points out, since electrons at
the bottom of higher bands behave as free electrons of
altered effective mass, we may expect that our solution
will give a qualitative picture of the inhuence of order on
the band bottom in the more realistic filled-lattice case.

Finally, we introduce the "order function"

~(~)= II (~-l.'I),
'4=S, NJ, Z

Thus
P(e A I&)=m~[1—n(e)]

P(e;~IA)=m [1—(e)],
P(g; A

I A) = 1—ma[1 —n(ti)],

P(&; aIa) =1—m, [1—(~)],
P(r; A)=my, P(r; B)=mg.

(14)

(15)

Substituting Eqs. (15), (14), and (13) in Eq. (12) we

find

P, C(p+~)C(~) =X(y)mgman(ti), (16)

which differs from Flinn's result' in that he has neglected
the p dependence of Ã. Thus, the order function may be
written

+M—1

O(K, . n(y) .)=myna~ Q n(io„n„,m, )

where Sf=number of atoms on each crystal edge,
e,=p;d ', and we have used Eq. (9a). Suppose egg(g)
of these iV(y) terms have an A atom on both ~ and ~+y;
then, using Eq. (2), the sum over just these will yield
1V~~(y)ma'. Similarly, with Egin(y) cases of A on ~, 8
on ~+ti, etc. , we And (assuming Fri~ %~a) th——at

C(p+&)C(o) 7t AA(p) iioB ++BB(p)iioA

—2$pic (g)nzgnze. (12)

The iV»'s may be written in terms of P(~; X),
the probability of finding an X atom on site c, and

P(p; XI V), the probability that we will find an X on

g+~, given a F' on ~, as follows:

Ngg(p) =IV(p)P(~; A)P(y; A IA); (»)
X„(p)=X(p)P(~; 73)P(~; A Ia),

etc. The conditional probabilities are expressed directly
in terms of the Cowley order parameters, n(y), defined

by

IF(K) I'
o(k) =k'+ P O(K).

xylo 2k K—&o
(10) (M—

I
s, I )e'" '"'. (17)

[Note: The perturbation theory is invalid in the neigh-
borhood of K such that 2k K—K'=0. However, as we

To proceed further, we need an explicit expression for
n(n). This will be determined by the nature of the
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interatomic forces and will be temperature dependent.
Nevertheless, for qualitative purposes, we may choose
a simple form for n(n) in the following fashion.

If there is no long-range order present, n(n) —+ 0 as

~n~ ~ pp, while, if there is long-range order, n(n) ~
ppr, (6nite) as

~
n~ ~ pp. Thus, n(n) may be broken up

into

s is

P(A „iBp) =P(A,Bp)P '(Bp)
=P (Bp)LP(A, A y,Bp)+P(A,B —1 Bp)]
=9'(A-IA-~ Bp)P(A--~IBp)

+P(A.[B,Bo)P(B. IB.)j, (»)

where
n(n) =u'(n)+nz,

liml,
l

„pp'(n) =0. (18) P(A.~X. „B,) =P(A.)X,), (26)

from standard probability theory. We now assume that

We shall first obtain an expression for nl, in terms of
the long-range parameter X and then a crude formula for
n'(n) in terms of the nearest-neighbor parameter n.

from which

1 f 5$+ f b /gpss

+
2 —1 PE+ 1 8$+

(19)

ra 2pppApppBA+pplA~ rb —2ppz+'I+1+flp+ (20)

Suppose g is such that ~, ~+ p lie on the same sublat-
tice (Cowley "even" case). Then we may have the given
B in P(p; A

~
B) Lsee Eq. (14)j on an a site or a b site. In

these two cases,

P(A tB on a)=P(A on a) =r,=ppp~(1+2pN~X),
(21)

P(A ~IB on b) =P(A on b) =1—rb plA(1 281BX),

so that n, = —2ppp~X and nb=+2prpgX The w. eighted
average of o. is

n(even) =P(B on u)a, +P(B on b)nb=4mznzgXP. (22)

Similarly,

A. Long-Range Cowley Parameter

%e take as a basis a two-sublattice crystal, with
alternating u and b sites properly occupied by A and 8
atoms, respectively. I.et r„rb be the fraction of a, b

sites actually occupied by A' s, 8's. Then the long-range
order parameter X is the average of X for the two
sublattices,

i.e., that, if we are given both a nearest-neighbor and an
arbitrary configuration of more distant atoms, the
nearest neighbor alone determines the probability.
Thus,

P(A
~
Bp) =P(A

~
A p)P(A —1 ~Bp)

+P(A.IB. )P(B. IBo) (»)-

P(~; A
~
B)=P(A

~
Bp) = ppp~L1 —(~i') (~--i') j, (28)

from which o, „'=n~'0, „~', so that

(29)

where we write n for nq' and
~

pp
~

since n „' must be inde-

pendent of the sign of e. Thus, in this simple case, all

higher order Cowley parameters are determined by n the
nearest-neighbor parameter. In turn, o. itself is deter-

mined physically by nearest-neighbor interaction energy
and temperature.

In the three-dimensional case, the above a,rgument is

not valid. There have been some calculations of higher

order o.'s, notably those of Cowley, ' who found n for the

first five shells of neighbors in Cu3Au, and Fosdick, "
Flinn and McManus, " who did Monte Carlo calcula-

tions of n~ and o,2. Since we are interested only in quali-

tative results, it will be sufhcient if we simply choose a
function for a'(n) which is mathematically tractable and

physically not too unreasonable. An obvious choice is

the generalization of Eq. (29):

Q (odd) = —45lgppp~X, (23) n, '(pp I pp ) —nl ~el+I ~pl+I ~zl (30)

where "odd" means ~, ~+la always lie on different
sublattices. In general, we find the result

nl, = 4nsgmgV ( 1)"*+"p+" . —(24)

B. Local Cowley Order Parameters

Consider the one-dimensional case 6rst. Given a 8
atom at the origin 0 the probability of an A atom on site

t Note: Eq. (24) is not true for n=0. In this case, Eqs.
(14) and (18) demand that np=np'+nz ——1. Since later
in Eq. (29) we use np'= 1, we may set nr, =0 for n=0;
this choice has no effect on any of the results to be
obtained. ]

Of course, in contrast to the true Cowley n(n), this

function is anisotropic, being constant on the surface of

a regular octahedron surrounding the origin. However,

for qualitative purposes, we assume that Eq. (30) is

adequa, te. (Note, using Eq. (14), that n)0, n 0
represent clustering order and short-range order, re-

spectively. ]
C. Expression for Order Function

Substituting the sum of Eqs. (30) and (24) into Eq.
(17), we obtain

' L. D. Fosdick, Phys. I~ev. 116, 565 (1959).
"P, A, Flinn and G, M. MpManus, Phys. Rev. 124, 54 (&961),
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0(K,n, l~) =4mA2mB9, 2 II Q (M—
~
I;

~ )
i=x, y, z mi=M+I

X ( 1) I n'le'" '"'+mAmB

-P+ (M 1)pM (M 1)PM 1P—M
+c.c.

(1-P)'
where

p neixid

The case for n= —1 Lfirst term in Eq. (31)j gives

C (K,, —1)=M28x. x .

where
E.,=rrd '(2mi+1), m;=0, &1,

Thus, the complete order function may be written

0(K,n, X) =Ol,„g „„g,(K,X)+Ol„,l(K,n),
where

Olong-range(K, 7i) =4m~'mB 7i 1P II fiK;, rr „p
i=x, y, z

ol„,i(K,n) =mgmB II 4 (E;,n)
2=X, yz Z

(32)

(33)

Lsee Eq. (32).j
If n is not too close to &1,Eq. (35) may be simplified.

In Eq. (32), if we set P= 1—6 and if A))M ', then it is
easily shown that Mp/(1 —p)+c.c. is much larger than
the sum of the other terms. Under this condition we find

(M —
~

22~) n~"*~e"" x*"'. (31)
i=x, y, z ni M+&

The e; sum involving n yields

+M—1

C(E;,n)= Q (M—
~

22;~) n"l* le'x'e"'
n '=—M+1

—
p pM

=M+M +c.c.

(Note that, in atomic units, A = 2Z, where Z= effective
charge. )

For numerical estimates, we use the following, all in
atomic units:

mx 1/2, ——
a=1, F=1/d'=1/64, mB=1/2.

(40)

These values apply to a 50—50 Cu —Xi alloy. The u
value was estimated roughly from Mott and Jones, "
Eq. (85), applied to the holes in the Cu —Ni 3d band.

The X2 term in Eq. (37) may be crudely evaluated for
low k, by first restricting the sum to the first eight K,
values [because of the rapid drop-off of F(K)$, and then
expanding in powers of k Kn z This yields

5 ~ 2~A2yg~2$2p2~2+2 4d2$2

elong-range (~) = 1+
(3~2/d2) (a2+3~2/iE2)2 3~2

= —V(2 05X10 ')(1+2 16k2) (41)

We see immediately that the effect of the long-range
term is to introduce Srillouin zone edges, hence energy
gaps, at k values satisfying 2k K,=E' '. These zone
edges are at values intermediate to those of the D' term
in Eq. (8), and are the same as those for the well-known
case of perfect long-range order. The new gaps vanish
when X —& 0 in a manner which has been discussed by
Corciovei and Grecu. ~ ' Here we shall only be interested
in the behavior of this term for small k.

In order to evaluate Eq. (37), we need an explicit ex-
pression for F(K) as defined in Eq. (6). We make the
usual assumption that U(r) is given by the shielded
Coulomb potential,

P(r) =Ar 'e-«
so that'

F(K) =A e'"'e 'r 'der =42rA(rt'+K') '. (39)

We now consider the local order part of Eq. (37).
Substituting Eq. (39) in Eq. (37), and converting from
a sum to an integral, noting that there are V(22r) '
points per unit volume in K-space, we find

Oi...i(K,n) =XmAmB (36)
i=*,a, z 1+n' 2n cos—(E,d)

if (1—in'))&iV-:.

IV. EFFECT OF ORDER ON ENERGY LEVELS
AND DENSITY OF STATES

The general expression for the corrected energy levels
in the nW &1 case is obtained from Eqs. (35), (36), (9),
and (10) and is

ei„,i(k,n) = 2pmgmBA2I (k,n),

I(k,n) =—
(tt2+Its)2(2k. K +2)

i F(K.) /'
e(k) —l'22+4m~2mB27i2p2 Q

&. 2k K,—E',2

~F(K) ('
+—m~mB P

P'2 x 2k. K—+2

CX

II — . (42)
i=a, u, z 1+n 2n cos(Kid)

I' N. F. Mott and H. Jones, The Theory of the Properties of
Metals arid A/toys (Clarendon Press, Oxford, England, 1936),p. 87.

We shall look at several special cases of Eq. (42),
CP namely, (1) n=0, (2) 0(n(1, (3) n(0. In each case,

XII, (37) the integral is evaluated numerically and substituted in
i=*,w, * 1+n' —2n cos(K,d)

with K, defined as in Eq. (33).
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Case 1. n=0 (Complete Disorder

large k: k)&—cos ' 2' l1+n

d
l(1-2k)

2n i
In t ese cases we may use

inL(E —2k/E+2k)] =—4k/E (small k), (50)
Here, l(k,n) is

from which we 6nd
=—E/k, (large k), (51)

Case Z. 0&n(1 (Clusteririg)

Examination of O(K )
'

. (,o. in Eq. t'36 f
xima o eight (1+n)'/~1 n'—

g g 'g'
~ ~

a at e origin will iv
oug criterion is

a &4n-/de,

which means the fi t '
hrs eig t secondar

duced by a factor ) IIO U
order function ma

nder these cicircumstances, the

symmetric function

'
n may e approximated ba e y the spherically

(46)

(1—n')'
Olocal (E,n) Nm/imp

L1+n' —2n cos(Ed/K3)]'

(for E& re&3/d),

=0 (for E)irv3/d). (47)

I(k,0) =— d'E
(a'+E')' (2k K—E')

1 E E—2k

k 0 (a'+E')' E 2k
ln

after inte rgration over angle. This has be

does, i.e.,
, an we obtain the sb

'
same final result as he

ei„,i(k, n=0~ = —2m.= ) = —
t 2~p m, m, /'i/a( a'+4k')]. (45

(52)

Case 3. —1(n(0 (Short Rarige Order-)

In this case, O(K,n) in Eq. (36) shows a mi

and will be Qattened out b ' unene out by the (a'+E' —' fun

provi e we extendp d the integration to
, t e position of the secondon ary minimum.

Case 4. n ~1 (Complete Clustering

Kquation (37) is not valid for this case , nor can we use

b k
or complete clusterin the

wo parts, one with 'u

i s. t is ea,siest to work directly from

O(K) =Q„C(p) exp(iK p)
&(Q, C(~) exp( —iK.c). (53)

Iko., n) 0) =constant, (small k)
~ k ', (large k)

showing that e(k) —+ k' as k ~ n~. Noote t t the results
are va i rom e per urbation-theoretic

longer present.
in e integrand is no
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d +0.2
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f +1.0
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-30
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Fxo. 2. Density of states g vs energy e for a free electron gas
perturbed by a fluctuating potential with specified local order
parameter n. Units of g are arbitrary; of e, atomic.

comes progressively thinner until o. —+ I and the state
density goes to that of a free electron gas. (It should be
noted that the value of ~ for which the band shape be-
comes truly tail-like depends on a and A. As Parmenter4
shows, for small enough a or large enough A we can find
a tail even in the n= 0 case.)

The e8ect of long-range order on these curves is rela-
tively small, as we can see by recognizing that the curve
n= —1 in Fig. 1 is just e=k'+et, „s„„s„the second term
being given by Kq. (41) when X=1. LOf course, if we
consider the new band gaps which appear, as mentioned
just after Eq. (37), then the effect of long-range order is
the dominant one, since it enters in first order. ' s]

These results may be briefly compared with those for
the tight-binding case. If the 3d hole wave functions are
suKciently localized around just the A atoms in an AB
alloy, it has been shown' that the energy expression has
the form

Breaking up the sum into its A and 8 components, we
6nd

e(k) = ep D(1+—n) f(k), (56)

Z. C(~) exp(sK 1)
=Z" C(u) exP(sK 1)+2' C(V) exP(sK 1)
=me P~ exP(iK P) —m~ Po exP(sK 1s)

=m~ÃgSK, K,—mg~7~8K, K,
=0 (54)

Thus, for complete clustering, the second-order term in

Kq. (10) vanishes.

where de/dk is found from Fig. 1.The results are plotted
in Fig. 2. Their significance is easily seen by starting
with the curve for n= —1 (perfect order). As the order
begins to dissolve, moving toward the random (n=O)
case, the band gets pushed out and progressively flatter.
In the clustering region, a rat-like tail forms, which be-

Case 5. n= —1 (Comp/etc Short Range Order)-

The calculation here is exactly the san1e as that for
perfect long-range order, and we obtain Eq. (41) with
P =1.The numerical results for all five cases are shown
ln Fig.

The density of states, g(e) may be found from

de de de V dc
g(e) =—=— k'

de dk dk 2m' ~ dk

where f(k) is a bounded function of k, n is the local
order parameter for nearest neighbors, and 6p, D are
constants. Then, as n goes from —1 —+ +1, the energy
band broadens from zero to some finite value. Since the
number of states in the band is conserved, this broaden-
ing implies a simultaneous decrease in band height. This
result is in qualitative agreement with the conclusions
for the weak binding case, as seen from Fig. 2.

Experimental detection of the change of band shape
with order cannot be carried out by measurement of
magnetic properties, since in this case the eGect is
dominated by variations due to exchange. ' However, by
choosing physical properties more directly related to
band shape —like soft x-ray spectrum, Knight shift, or
low-temperature speci6c heat, " for example —the phe-
nomenon might be made observable.
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