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Sound Absorption in Liquid Helium II, T &0.5 K
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The expression r=AnT /pc0' for the absorption of sound in liquid He4 II for T&0.5'K, where T is the
absolute temperature, is shown to be a simple consequence of the principles of the excitation theory of a
Bose liquid and a few other reasonable postulates. (p is the absorption, o/2s- is the frequency and c, the
velocity of the sound, and p is the density. ) As in the work of Woodruff and Ehrenreich on sound absorption
in insulating crystals, the analysis is based on the linearized Boltzmann transport equation and the Blount
formula for the energy loss from a system of interacting excitations driven by a sound wave. It is valid for
frequencies such that QT))1 and Q((ETjA, where 7- is the relaxation time for the thermal phonons and E
is Boltzmann s constant. The coefficient A is related to the rate of change of the sound velocity with density.
An attempt is made to determine the exact magnitude of A within the framework of the present considera-
tions by postulating a relative motion of the normal and superfluid components, but this approach leads to
new difficulties.

I. INTRODUCTION

S a result of the work of many investigators during
the past 24 years, the properties and behavior of

bulk superQuid helium are now largely understood. '
The theoretical structure on which this understanding
is based will be referred to as the excitation theory of a
Bose liquid; it is in the main an enlargement of Landau's
two-Quid theory of liquid helium. ' '

Among the experimental observations which have not
previously been explained in terms of this theory are
those of Chase and Berlin, ' Whitney, ' and Dransfeld,
Newell, and Wilkss on the absorption of first sound (in
the 10-Mc/sec frequency range) for temperatures less
than that of the maximum in the absorption ( 1'K).
In this temperature region they found an absorption
much greater than could be accounted for by the
analysis of Khalatnikov. ' Dransfeld, Newell, and
Wilks noted that the data of Chase and Berlin' for the
range below 0.5'K were well described by an expression
Ltheir Eq. (5)) equivalent to

I'= AQT'/pcps,

with A=A, u=0.65)&10P dyn cm 'deg 4. (P is in cm ';
rr as defined in reference g is I'/2. ) In what follows, Eq.
(1) is deduced from the principles of the excitation
theory of a Bose liquid and a few additional reasonable
postulates. These principles and postulates are enumer-
ated and discussed in the next section. The conclusions

'For a survey of this work, see, e.g. , K. R. Atkins, Liquid
Helium (Cambridge University Press, New York, 1959).

'L. Landau, J, Phys. U.S.S.R. 5, 71 (1941);11, 91 (1947),
'R. B. Dingle, Advances in Physics, edited by N. F. Mott

(Taylor and Francis, Ltd. , London, 1952), Vol. 1, p. 112.
4R. P. Feyman, Progress in Low-Temperature Physics, edited

by C. J. Gorter (Interscience Publishers, Inc. , New York, 1955),
Vol. 1, p. 17.'I. M. Khalatnikov, Uspekhi Fiz. Nauk 59, (1956); 60, 69
(1956).These two articles are translated into German in Fortschr.
Phys. 5, 211 (1957); 5, 287 (1957).

6 C. K. Chase and M. A. Herlin, Phys. Rev. 97, 1447 (1955).
~ W. M. Whitney, Phys. Rev. 105, 38 (1957).

K. Dransfeld, J. A. Newell, and J. Wilks, Proc. Roy. Soc.
(London) A243, 5OO (1958).'I. M. Khalatnikov, J. Exptl. Theoret. Phys. (U.S.S.R.) 20,
243 (1950);23, 8, 21 (1952).

are drawn in the third section, and the demonstration
as a whole is criticized and its significance appraised in
Sec. IV.

e(p)=esp, 0&p&Pi,

e(p) =6+ (p Pp)'/2JtrI P,&p—
(2)

with A/K=9. 6' (E is Boltzmann's constant), cp=240
m sec ', Pp/I'i=2. 3 A ', and 3II„=0.40(atomic mass of
helium). Pi is the value of p for which

cpp =6+ (p —Pp)'/2M„.

The excitations with p& Pi are phonons, quanta of den-
sity Ructuation waves. The excitations with p&Pi are
called rotons. For the temperatures of interest in this
paper (T&0.5'K), roton energies are much greater than
ET; hence, so few are excited that they have no meas-
urable effect on the sound absorption, and we need
consider only the phonon branch of the excitation
spectrum. This branch is more completely described by

e(Ii p)=cp,

c=«L1+ (vip/pp) j, (3)

where c is the velocity of first sound in the liquid at
rest at T=0'K under a pressure such that the density
p= pp+Ap. The measurements of Atkins and Stasior'"

'0 K. R. Atkins and R. A. Stasior, Can. J. Phys. 31, 1156 (1953).

II. PRINCIPLES OF THE EXCITATION THEORY OF A
BOSE LIQUID AND ADDITIONAL POSTULATES

USED IN THE DEMONSTRATION

The derivation of Eq. (1) is based on four of the
fundamental principles of the excitation theory of a
Bose liquid, each of which is now described.

(1) Every excitation of the liquid is characterized
by a linear momentum y. The energy e required to
produce an excitation of momentum p in the liquid at
rest is a well-defined function e(p), which is a property
of the liquid. For superQuid helium at zero temperature
and pressure it can be represented with sufficient
accuracy' by
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lead to the estimate p—(p/c) (ac/ap) —3.0 for the
Griineisen constant y.

Landau' showed that the energy required to produce
an excitation of momentum y in the superQuid when
it is moving with velocity v, is given by

H(y; p)=e(p' p)+y'v' (4)

(2) Any motion of the superfluid liquid can be
analyzed into a motion of the ground state with velocity
v, and a drifting motion of the gas of excitations with
velocity v . It is possible in a consistent way to asso-
ciate a part p, of the density of the superAuid at any
point with the motion of the ground state, and a part
p with the drift of the excitations, so that

on r of E or H, but there is a nonequilibrium distri-
bution 1V(p; t=0). For this situation Eq. (8) becomes

aIv/at=IP (p)].

Experience suggests that for a complex system such as
a macroscopic container full of superAuid helium,
1V(p, t) +1Vot e(p)] in a relatively smooth way. The
simplest imaginable smooth approach is obtained if
I/1V(y)] is replaced by Pr(p)] '(1V(p;t) —1VoLe(p)]).
In the demonstration, it will be assumed that under the
perturbation caused by a sound wave, the approach of
the function 1V(y; t) to 1VoLe(p)] is not significantly
different from this simplest kind of approach function.
That is, the relation

P =Ps+Pn& (5) IP'(y)]= —(1V(y) —1Vo[e(y)])/r(y) (9)

ap/at= —div(p, v,+p„v„). (6)

BE BS BH BA BH
+ — =IL1V],

Bt Bf Bp Bp
(8)

where r is the position vector and I$1V] is the collision
integral, ' provided X))h/p for all or nearly all of the
modes y which are excited. This condition leads to the
restriction Q«KT/tt on the validity of the
demonstration.

The four additional postulates needed for the
demonstration are quite diferent in character from
the preceding principles. Equations (5) and (7) are
reasonable approximations to be made in order to
simplify the analysis. Equation (6) states a special
property of pure superRuid helium for T(0.5'K which
determines the whole character of the analysis. The
eighth postulate is Blount's formula for the rate of
energy dissipation in a sound wave. "

(5) The collision integral IL1V] in Eq. (8) is in general
a function of the occupations 1V(y) of all modes p and
of all the couplings between these modes. The couplings
are both intrinsic (arising from the nonlinearities in
the equations used to define the modes) and determined
by boundary and impurity conditions. A better feeling
for the meaning of I/1V] is obtained by imagining a
situation in which at time t=0 there is no dependence

"E. I. 81ount, Phys. Rev. 114, 418 (j.959).

Equation (6) is equivalent to the statement that in
the composite motion of the liquid, mass is conserved.

(3) In a steady motion of the system with velocities
v, and v„, the distribution of excitations is given by

1VO)e(y)]= fexpt (e—p v„+p v,)/KT] 1)—', (7)—

where 1VOLe(p)] is the total number of Bose excitations
of momentum y.

(4) The kinetic effects of a disturbance of wave-
length X on the excitations in the liquid are adequately
described by that distribution function 1V(p) which
satisfies the Boltzmann equation,

/aH)*
0=-' «E(1V(y) —1VoLe(y)]) I

k at i (10)

where H is given by Eqs. (3) and (4), and the in-
stantaneous occupation 1V(p) and the instantaneous
equilibrium occupation NOLe(p)] both have parts
which follow the sinusoidal oscillations of the sound

"H. A. Fairbank and J. Wilks, Proc. Roy. Soc. (London)
A231, 545 (1955).

will be assumed, and usually r(p) will be replaced by a
constant 7-. Thus a possible explicit dependence of
IL1V(p)] on r, such as might come from boundary
effects, is not admitted.

(6) The ratio of the relaxation time r introduced
under (5) to the period of the sound wave plays an
important role in the analysis. The frequency of the
sound wave multiplied by 2x will be symbolized by Q.
For the experiments under discussion (Q 10'
T(0.5'K) it is assumed that Qr))1. Evidence for the
appropriateness of this assumption is provided by the
thermal conductivity experiments of Fairbank and
Wilks" and the calculations of various collision proba-
bilities by Khalatnikov. '

(2) As already indicated under (5), all boundary
effects will be neglected. Attention will be focused on
a point or small region in the medium far removed from
the walls or impurities, and the rate at which energy
is removed from the sound wave and transferred to the
surroundings in this region will be taken as equal to
the average rate of energy removal for the whole
medium. The possibility that the sound wave may
induce motions of the liquid such that v„ is very
different from v, will be exploited, but the problems
associated with determining a complete set of equations
of motion for the case Ov&&1 and solutions of them
which satisfy the boundary conditions are beyond the
scope of this paper.

(8) It will be assumed that the rate of energy
dissipation in a sound wave u=uo expLi(aa —Qt)] is
described by
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wave. This formula was derived by Blount" and was
applied by Woodruff and Khrenreich" to the absorption
by insulating crystals.

III. DEMONSTRATION OF FORMULA FOR SOUND
ABSORPTION IN LIQUID HELIUM II

very good approximation,

hp/p = (v,/cp) expt i(o.s —Qt)] = —io.zz, expt i(o.s—Qt)].

Inserting this relation in Eqs. (3) and (4) gives

H= op+ pg,

The passage of the sound wave through the medium
is described by the displacements u, and u„of the
superfIuid and normal components at each point:

with
&o=—coP,

p~= I 1+(p/V)] pz,

(16)

(17)

u, = (0,0,u„), u„= (0,0,Q„,),
(11)

N„=N, expLz(os —Qt)], I„,= z„ze xpLi( os—Qt)].

The velocities associated with this motion are given

by the time derivatives

v, = (0,0,v„),
&sz= sz

=v, exp Li(o.s—Qt)],

where
Va —=—ZQN g)

v„= (0,0,v„,),

= v„expLi(os —Qt)],

(12)

(13)

If I, is taken as real, then m, v„, and v, are complex
numbers. It is convenient to introduce the complex
velocity ratio Ii and the associated real numbers Ii&

and Ii2 as follows:

(v„/v, )—=F=F~+iFz. —

At this stage in the argument F is completely undeter-
mined and may depend on other quantities such as the
temperature and pressure. The velocity of the sound
wave may with sufhcient accuracy be taken as cp, so
that

0= cpo.

Postulate (2) as expressed in Eq. (6) and the ex-
pressions for v, and v„ introduced in Eqs. (12) and
(13) lead to

Bp/Bt= —io (p,v,+p„v„) expLi(os —Qt)],

or integrating once with respect to time,

hp=cp '(p, v,+p„v„) expLi(os —Qt)].
Thus

where p is the angle between p and the s axis and

p,
—=apo expLi(~s —Qt)],

8= —Zygl, .

(18)

(»)
Attention will be restricted to the case in which u, is a
small quantity, and terms of higher order in this
quantity will be neglected throughout.

The distribution function 1V(p) can be written as the
sum of a time-independent part, Eoo(p), and a small
part proportional to expLi(os —Qt)], X~(p):

&(Iz) = tVoo(»+&i(V),

Xpo(» SoEpo(»]=Lexp(po/ET) —1]
(2o)

P'(»]=&~—&oo'Cp~ —( /v)F pi].

The solution of the linearized form of the Boltzmann
equation, Eq. (8), is now easily found to be

Sz(» = 1+ +00 &1

1—zQr (1—tz)

( /v)F
tVpo'pz. (21)

1—iQr(1 —tz)

It should be noted that with these definitions, the
quantity X(»—XpL p(p)] = —

rILcV (»], which appears
in Eqs. (9) and (10), is given by

1V—A"o= )VS—(JVp JV po), —
Sp —Epp ——1Vpp'pgt 1+(tz/y) (1—F)]

=Xpp'[pz —(p/y)F pg],
where

Pop = I9Xpp/8 op
'

+P (PsVs+PnVss)

P cp(P.+P )
expt i(o.s—Qt)]. Substituting this expression and

For T(0.5'K it can be shown that p,))p„, so that to a in Eq. (10) yields

Q=-', Re Q iQpz*Xoo'
P

zQr pz
—zQr pz (tz/y) (1—tz)F-

1—iQr (1—tz)

l:1+( /V)1' —(p/V)L1 —p]L1+(p/v)]t Fz—FzQr(1 —p)]=l Ill'Q'r Z s(y)
1+(Q )'(1—p)'

(22)

' T. O. Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553 (1961).
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The integrations over p, involved in the y summation
are straightforward. With these performed, the expres-
sion for Q in the limit as Qf ~ po becomes

Q= ,'(oN—)'IITC„)-',s (y+1)'+-',Fs].

The attenuation I' is obtained by dividing Q by
oppQ'u, s/2:

(23)

From simple calculations based on a model of low-

temperature liquid helium as a Debye solid with only
longitudinal vibrational modes, ' as well as from the
experimental work of Wiebes, Niels-Hakkenberg, and
Kramers, '4 it is known that

C„=0.0205T' J g 'deg '. (24)

Equations (21) and (22) yield the desired result, Eq.
(1), with

A =A„i,=0.205t4s. (y+1)'+s'Fs]X10P dyn cm ' deg '.

Since y=3.0, as noted after Eq. (3), agreement between
A. , and A„i, is obtained with F2——28.

IV. DISCUSSION

The main point of the preceding is to show that the
experimentally observed dependence of sound attenu-
ation for T &0.5'K on the first power of frequency and
the fourth power of temperature, as given in Eq. (1),
can be understood within the framework of the ex-
citation theory of a Bose liquid if P is independent of
temperature and frequency.

A second point of considerable interest is that the
magnitude of the constant 2 can be understood if
~Fs~ is large, i.e., if the sound wave excites a large
relative motion of normal Quid and superQuid at the
low temperatures under consideration here. With

'4 J. Wiebes, C. G. Niels-Hakkenberg, and H. C. Kramers,
Physica 25, 625 (1957).

where S(p), defined by

S(p)=——2' 'App'ep',

is the specific heat associated with the mode q, so that
the total specific heat C„of the undisturbed liquid is
given by

respect to this relative motion the demonstration is
admittedly incomplete in that no eGort has been made
to determine, much less to solve, a full set of equations
of motion for the normal and superQuid components
in a sound wave with Qv&)1. It has not been shown how
to set up a system of equations of motion and boundary
conditions for this case and how to find a solution of
them in which F depends little or not at all on tem-
perature and frequency and differs from unity. The
author has merely shown how such a motion, if it
existed, would lead to an understanding based on the
excitation theory of a Bose liquid and simple principles
of kinetics of the magnitude of the low-temperature
sound absorption in liquid helium, which is otherwise
quite puzzling.

In the absence of a complete set of equations of
motion it is difficult to show that the ratio P of the
velocities of the normal and superQuid components is
relatively insensitive to temperature, in contrast to the
ratio of the densities of the two components. Further-
more, the relative motion of the two components in
the sound wave might be expected to lead to something
like temperature or entropy oscillations accompanying
the first sound wave, and without a complete set of
equations of motion it has not been possible to demon-
strate that the coupling of these oscillations does not
appreciably alter the velocity of the sound waves.
These are among the most serious difhculties associated
with the present e6ort to base a discussion of sound
absorption with Qv)1 on the excitation theory of a
Bose liquid and the use of the Boltzmann equation with
a relaxation time.

It is interesting to note that when the possibility of
relative motion of normal and superQuid components
is not considered, F becomes unity, and Eq. (23) of
this paper agrees with the formula obtained by
Dransfeld" from very different considerations.
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