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Weak Pion Production*
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The matrix element for the interaction W+S —+ m+E is studied, where g is a virtual intermediate boson
for the weak interactions {or just the weak current) ~ Weak pion production —production of a pion by high-
energy neutrino collisions with nucleons —is governed by this matrix element. The main case of interest is
in the energy region where the pion-nucleon 3-3 resonance is dominant. Formulas are derived for solving
the problem in this region.

I. INTRODUCTION
' 'T is theoretically possible to study weak interactions
~ - at high energies by means of reactions induced by a
neutrino beam obtained from the decay of pions and
kaons in Right. The practical possibilities of such
neutrino beams are now being investigated; theoretical
work on neutrino interactions has already been done by
various authors. ' The most feasible experiment is
the charge-exchange scattering of neutrinos (or anti-
neutrinos) and nucleons. ' As the neutrino energy under
consideration for experiment at present and in the near
future is in the high-energy region ((5 BeV, say), it is
of interest also to consider collisions in which a pion is
produced. Here such a process is called weak pion
production.

This process is very similar to the electroproduction
of pions oG nucleons. This paper is written in the same
spirit as the electroproduction calculations given else-
where. ' In particular, in the region of the pion-nucleon
Anal state in which the 3-3 isobar is expected to domi-
nate, formulas are obtained to solve the problem.

II. WEAK INTERACTION THEORY

The interaction Lagrangian for the simplest possible
weak interaction, muon decay, is

~'-~= (G/~2)Lo'7-(1+Vs)t jLoY-(1+vs)eh'+H c (1)

(p is written for the neutrino associated with that of the
electron; v' that associated with the muon. ) If we con-
sider weak interactions in which strongly interacting
particles are involved, but only allow strangeness pre-
serving processes we can write, assuming a "universal"
weak interaction

where V and P are the vector and axial vector weak
currents of the strongly interacting particles. From
beta-decay experiments we expect that G(V +F ) is
like its analog in the leptonic case. In the limit of zero
momentum transfer,

G(pl v. l.)-G.~.v:+~-,
G(plF. I )-—G.4.v.~."~-

(3a)

(3b)

where F-i~, Ii~~ are the isovector form factors of the
nucleon discussed in Appendix I, and p,"=3.69.

(—G~)/Gv= 1.25, so similar arguments cannot apply
in the axial vector case. A theory which is interesting
here is that discussed elsewhere. 4 '" For low frequencies,
at least, we write

B,P = (ia/V2)s. —,

where a is a real number. By taking the matrix element
of Eq. (5) between neutron and proton states at low
momentum transfer we obtain

Gy and Gg are the usual Fermi and Gamow-Teller
coupling constants of nuclear theory.

Experimentally it turns out that G&=G to within
about one percent. The theoretical reason for this lack of
renormalization consists of assuming that V is pro-
portional to the (+) component of the total isotopic spin
current ~~ . Then 8 V =0 and remembering that the
(isovector) electric current is proportional to the (s)
component of 3 we can write

G(Pl V. lrt)=Gvg„y. +P.F v(k')

tsv(Gv/2M—)kpf„o pr+Q. Fsv(k'), (4)

a = —(2M/gr) nt. '(—Gg/G), (6)2;.t ——(G/%2)l V +F.]
X p~~ 1+ps p+o'y 1+ps tt t+H.c., 2

where gi is the pion-nucleon coupling constant. With' Work based on a thesis submitted in partial fu1611ment of the this value of a the decay rate of the charged pion can be
requirements for the degree of Doctor of Philosophy to California ~ ~

calculated, resulting sn the formula first obtained by
~ B.Pontecorvo, J.Exptl. Theoret. Phys. Bi, 1751(1959);T. D. Goldberger and Treiman that agrees very well with

Lee and C. N. Yang, Phys. Rev. Letters 4, 307 (1960); Y.
Yamaguchi, Progr. Theoret Phys. (Kyoto) 23, 1117 (1960); N.
Cabibbo and R. Gatto, Nuovo cimento 15, l 59 (1960). S

'
M New form factors can be introduced as in reference 5

Berman, International Conference on Theoreticu/ Aspects of Uery
High Energy Phen-ornena, CLRIII, 1961 (CERN, Geneva, 1961); ' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
N. Dombey, High Energy Physics Study report, Lawrence Radi- M. Gell-Mann and M. Levy, Nuovo cimento 16, 705 (1960).
ation Laboratory, Berkeley, 1961 (unpublished). J. Bernstein, S. Fubini, M. Cell-Mann, and W. Thirring,

2 S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329 Nuovo cimento 17, 757 (1960).
(1958), Paper A; R. Blankenbecler, S. Gartenhaus, R. Huft, and M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
V. Nambu, Nuovo cimento 17, 775 (1960), Paper B. (1958).
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III. INTERMEDIATE BOSON HYPOTHESIS

It is possible that the weak interaction is mediated by
a charged spin-one boson H/. ' In such a case one would
write

2;"z=gv2J~& t+H.c.,

where I is the total weak interaction current, p is the
Geld operator corresponding to 5' and g is a coupling
constant.

Then, comparing the expression for the amplitude for
neutron P decay obtained using Eq. (8) with that ob-
tained from Eq. (2), we obtain

2g'/4~ =GMg '/kr V2. (9)

The effects of the existence of such a particle are ex-
haustively studied by Lee and Yang. ' %e will tacitly
assume that W exists; by using Eq. (9) and then letting
M~ —& ao the results in the current-current theory are

for the axial vector current

&(plP-I "&=(—G )p V-V +1- (&')

+'~.'p:",'p.t (~ ). (n
P (k') is the induced pseudoscalar term' corresponding to
Fig. 1 (see Appendix I).

Vy

(b) (c)

FIG. 2. One-particle intermediate-state diagrams, vector part.

is the matrix element we want to evaluate. For con-
venience we will write

DR=V e=5Rv+BRg, (13)

where e„ is an arbitrary four-vector, and 5K&, 5R& are
the parts of the matrix element coming from the vector
and axial vector currents.

In the case of the Gnal lepton being an electron, and
neglecting the mass of the electron as an "electrical
mass difference" between the mass of it and that of the
neutrino, similar to the mass difference between the
proton and neutron (which we also neglect), we have

k 8=0. (14)
Thus, in this case

Fia. 1. Induced pseudoscalar
term P(k') and

T= —g'%2H 8/(k'+My ')

Sp ——k a/kp,

obtained. 8"+ transforms in isotopic spin space just a relation which is useful in calculations. The amPlitude
1~1
like 7l

T is a function of the scalars

IV. THE SCATTERING AMPLITUDE

%e now consider the interaction

v+N ~ t+N+m,

where I denotes either an electron or muon and we do
not distinguish between v and v'.

The scattering amplitude for this process is given by
0, s=8 p0,++,'Pr, rp)0, -

In terms of total isotopic spin

(18)

v= Pk/M, vg—qk/2M, X——'=k'
P= :(p.+p )-

The isotopic dependence of 3f is just like it is in pion-
nucleon scattering; that is, let P be the isotopic state of
the W and n that of the pion (n, P =1, 2, 3).

Then

T=[ zg'K2/(k'+Mw—')](Psq I t " I Pz&(&v +k"k./Mw')

X (t,)~,(1+&,) (t), (10)
0.+= z(0.o/z)+20. (P/z))

0.—= &(0 o/z) —0.(P/s))
(19)

~here pz and t, are the four-momenta of the initial
nucleon and neutrino; ps, tz, and q those of the Anal

nucleon, lepton, and pion; j„is the total weak current,
and k = t2—t~ is the four-momentum transferred to the
pion-nucleon system (or the momentum of the vir-
tual W).

Let us write

where we have put

q

m=™

and
8„=zN(ts)y„(1+ps)m(tz)

&,=(psq I i, I pz&

7 M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(&958).' T. D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960). FIG. 3.One-particle intermediate-state diagrams, axial vector part.
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M; are expressions involving gamma-matrices and 0,
are invariant scalar amplitudes.

We can first see what general results can be obtained
from the theories of the weak currents. First consider

~v =&p2q I ~p I p~&e. =II'e,
together with B„V„=O.

FIG. 4. co exchange.

$ 1T

g

ol
(p2qI~pl'pI pi&=o= ikp(—p~qI ~pI pi&,

k H~=O.
(2o)

This is analogous to gauge invariance in electromag-
netism. Stated formally, gauge invariance asserts here
that whenever the vector e„ is replaced by the mo-
mentum k„ in the amplitude, the amplitude vanishes.
We have

9Rg=H~ e, H~ k=0.

Also, even if k. 8/0, the vector part of T is given by

Tv g'V2H——r —8/(k'+MsP) (21)

Now consider

~~=&p2qIF. I
pi&ep=II" e,

together with BpP, =i@~.From Eq. (6),

a = (—2M/gg) nz.'(—G~/G).
So

F ()P) is the electromagnetic form factor of the pion
(Appendix I) and m, is taken as unity. Equation (24) is
not gauge invariant as it stands. It would be very con-
venient if it could be made formally gauge invariant as
the following calculations essentially use the Born terms
as a first approximation; if gauge invariance is not
present initially, it would be dificult to impose it on the
complete amplitude.

In the case of an electron being produced, k 8=0 and
T~ only involves H~ 8. So replacing e„by 8„ in Kq.
(24) and adding

F.(X') —F,v(X')
ggfr, rp7iy5 k h (25)

to it, we have not changed the value of (24) but now it
is gauge invariant (cf. A).

If the lepton produced is a muon we cannot do this.
Henceforth for simplicity in considering the vector
amplitude, we will only treat the electron case.

The Born approximation for Mg (Fig. 3) is

or

where (p2qIp&k& is the scattering amplitude for pion-
nucleon scattering; the incoming pion having mo-
mentum k where k' is not necessarily (—m '). This
relation connects the matrix element for weak pion
production with that for pion-nucleon scattering off the
mass shell (see Appendix I).

Also we have two-pion (p) exchange (Fig. 5) and
three-pion (&v) exchange (Fig. 4). We leave out terms
involving Vpm, I'cow vertices by assuming the GI' in-
variance of the weak current.

For Fig. 4 there is an amplitude

&p2ql ~.F.I p &= —ik.&p2q IF.I p & g Lv iv q/(2p .
q
—1)7

=i~&P~qI~IP~&=~&P2qIP»&/(k'+~-'), (23) &&r.rpL~„7, ( G /G)~(g~)+ik ~ P(g~)7,

+g~h.v5( G~/G)~—P ')+ikp»P( ')7
Xrpr e„iy ques/(2p& q+1). (26)

V. DISPERSION RELATIONS

As in A and 8 we use one-dimensional dispersion rela-
tions to calculate the relevant amplitudes, leaving for
another time an examination of the problem from the
point of view of double dispersion relations. Information
about the form of the relations can be obtained from
diagrams with one-particle intermediate states (Figs. 2
and 3). Strong two-pion and three-pion interactions can
also be similarly considered (Figs. 4 and 5).

The expression for the Born approximation corre-
sponding to Fig. 2 (vector) is

fv&owFvcaw(~ )
eppppkpqpepvarNiv (7pF1 I (q k) 7

(q
—k)'+m '

+ (ye/2M)o, ),(q
—k)) F2"

I (q—k)'7) 5,p, (27)

where fv„, and y„~~ are the renormalized coupling
constants for the V&um and ~XX vertices, Fv„()P) is the
form factor for the VMm vertex, and F~,~" are the
"charge" and "magnetic moment" form factors for the
~~VS vertex. g is just the scalar anomalous magnetic
moment of the nucleon (see, however, Appendix I).

g,b,i7 q/(2p, q
—1)7r.rpb pF, '(X')

(„v/2M) op„k„F—,r P, )7e„

+g Ly F (X')—(p, /2M)o„„kpFg P.')7
Xrpr, epics qyt/(2p, q+1)
—g,Lr.,rp7i75F.()P)(2q —k) e/(2q —k) - k. (24)

FxG. 5. p exchange. p
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The expression (27) can alternatively be written

fveen'yur¹vF vcuw ()i )
2 [{~,»+l M{,»jP "[(q—k)'~

(q —k)'+m„'

where {a,b}= a eb k —a.kb. e is automatically gauge
invariant and

Kv =AMg+BMii+ j.FMv . (31)

2Mvg —g—(lis/2M)its —',(X'—4M vii —1){y,y}+
Mv~

where

Approximately, we can put Pv„(X')= 1. Also, ( 1 1
=C,+(v, vii, )I,')+R,+(X')

~

(vii v v +iilvfv~~/g = 2 '~~/&,

The signs in parentheses in (30) refer to the crossing
symmetry of the invariants.

From the isotopic spin decomposition (19) we see
that (+) amplitudes are even and (—) are odd under
crossin .

The one-dimensional dispersion relations for the
energy variable v, keeping the momentum transfer

{a,b)=a eb k akb—e. variable v~ constant, are

A;+(v vii)')

and f„„canbe determined from the rate of 7r" decay. '
In order to compute the matrix element for Fig. 5 we

need to know the amplitude (x,p ~
P„~O). This would be

a useful quantity if it were known, as it is connected to
the amplitude for x —p scattering, and also to the axial
vector form factors n(X'), P(X'). All we know is its pion
pole term at present; this gives

—iak e p,F,[(q—k)'j
y, iviv(q+k) „{y„Pi&[(q—k)'j

X'+1 (q—k)'+nap'

+(p, /2M) „i,(q—k)i,F '[(q—k)'j}[, pg. (29)

All the quantities appearing in (29) are reasonably
well known' (Appendix I).

We can write
Vector Part

DR=+ M;0, ,

M =l v h,v), (+)
M ii =2iys{P,q), (+)
Mo=vs{7 q) (—)
M~=2vs[{7 P) —siM{v,v) j (+)
Mg=iys{k, q), (—)
M v=ys{k,y}, (—)

(30)

9 M. Gell-Mann, California institute of Technology Synchrotron
Report CTSL-20, 1961 (unpublished). See also: J.J.Sakurai, Ann.
Phys. (New York) ll, 1 (1960); M. Gell-Mann, Phys. Rev. 125,
1067 (1962).

where M; are relativistic invariant forms involving
gamma matrices and scalars formed from 0, q, e, I'; each
M; is linear in e (as we take weak interaction only to
first order). There are eight independent M, allowed,
allowing for the Dirac equation for the initial and final
nucleon spinors and energy-momentum conservation. 0;
are functions of v, vz, X' only and are taken to obey
dispersion relations. In the case of BRy we have the
further requirement of gauge invariance which reduces
the number of 3f; to six.

As in A take as fundamental forms for 5Ry

1 1
dv' Imd, +(v', vii, X')

~

&v' —v v'yv&'

1
vo= vii+1+, i=1, , 6, (32)

2M

and

R[A+$ = —fFiv(X'),

R[B+j=fFi"(X')/2Mvs,

R[C+j=R[D+]=[fF (P')/2M jli,
R[E+j=R[F+j=0,

C~ =Ca= Cc =CD =Ca =o,

C~+=0,

4Mf( 2F.(h') Fiv—(X'))C~-= —
/

+
),' (2q k —),' q. k J

(33)

(34)

Cg+, Cg+, CD+, and Cg+ have contributions from the
three-pion intermediate state; these can be read off from
Eq. (28).

It has been shown recently that corrections to the
original work on the low-energy pion-nucleon problem
treated by one-dimensional dispersion relations consist
mainly of including pion-pion ef'fects. These effects are
useful to an understanding of nonresonant phase shifts;
they are not important for the 3—3 resonance. The non-
resonant phase shifts were very difficult to observe in
pion-nucleon scattering —here we are dealing with a
process with a vastly smaller cross section —so it seems
reasonable to neglect these p- and co-exchange terms in
what follows.

Ke use the method of Blankenbecler and Gartenhaus"
to solve the dispersion relations where the 3—3 resonance

' R. Blankenbecler and S, Gartenhaus, Phys. Rev. 116, 1297
(1959).

and the ~ sign depends on the crossing symmetry. We
are guided to the values of C, and R; by the Born ap-
proximation (24) together with the additional term (25).

Then we have [compare Eq. (8) of A$
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is dominant. This is the approach used in B in the
treatment of pion electroproduction and it applies with
minor changes for the vector amplitude here. This
method treats crossing and recoil exactly, and does not
expand in either partial waves or in powers of 1/M. It
is worse to make expansions in 1/M in weak production
(and electroproduction) than in photoproduction be-
cause no longer are there only two terms of order 1/M
to consider, namely 1/M and &u/M (~= W—M, W = total
c.m. energy) which are small. Terms like X'/M&o also
appear in our case and for wide-angle scattering, which
is of importance for the measurement of form factors,
this term is not small. It is possible for X= 1. BeV and
still produce a resonant pion-nucleon final state.

The method assumes the phases of the amplitudes in
the dispersion relation known. Then the dispersion
relations can be solved formally, and a first approxima-
tion which could be iterated if necessary to obtain a
better approximation is given by

A, (x,ve, X')

Now the first term gives the right phase as demanded
by unitarity to the result; when put with the 3—3 part
of A ~~ one gets

e"»(*'a;(x) sinbg3(x) cos53g(x)

which vanishes at resonance. Also the crossed term
under the integral is small in this region and so around
resonance we have

A '(x vB g2) —A,B.A. (x vB g2)

g i533(z)

+ p
+1(2M

a, (y) sin833(y)
(38)

The principal value integral evidently gives the en-
hancement to the 3—3 state, and in general will give the
enhancement for a resonance with width 1, say. But we
know that a Breit-Wigner expression satisfies the dis-
persion equations in the resonance region approxi-
mately; hence we must expect tha, t Eq. (38) simulates

dy sin833(y)=A s" (x ve X')+ a, (x,ve, X')
A, (x,ve V) =A s A (x,ve 0)+— (39)

1—(*/x„)—ir
+1(2M

where
ag(x, ve, X')x= v —vg ——(W' —M')/2M, A, (x,ve, X') =

1—(*/x„)—ir
538(x) is the 3—3 phase shift,

A(x', x, g) =p(x, ve) —p(x', v~), that is, just the Born approximation to go into the 3—3
state with an enhancement factor.

So all we have to do to use any of these expressions for
the complete amplitude is to calculate the functions
a, (x,ve, X').

We must project out the -', spin states of A P(x,vs, X').
This is done in B. We write the matrix element tv
=P AM~ in terms of two-component spinors

I

P 00

p(x, ») =— dy ~»(y)
1+1/2M (36)

s, (x,ve, X') is the 3—3 projection of A n." (x,vega),

and B.A. denotes Born approximation. We see that

Z~(u, , ~a) =eP(,~a)—I (e, ~a)
)

Ny~vl. = Xy~+vx
where

6

Sv= Q 8;Z,

( 1 1
Xa,(y, ve, P,')e~~v * ""i or even in the resonance region

ky x i—c —y+x+2ve

and for x in the resonance region, this function can be
expanded in the form

e~=1+a(y —x)+ .
,

where under the integral the second term in the ex-
pansion is small compared with the first, as the integral
is sharply peeked around y= x„.

So now our enhancement term is approximately

and Z; are defined by B.

Z1= iO" a)

Zg ——ie.kq. a/qk,

Z5 ——ie kk a/k'

&2=e ge (kXa)/qk,

Z4=ie qq a/q',

Zg ——ie qk a/qk,

(42)

where a is the gauge-invariant three-vector given by

g ~~33(&)

ie "»('a, (x) sin53g(x)+— a= e—(eo/ko)k (43)

X&
+1/2M

and q= ~q~, k= ~k~, etc. The 5, and A, 8, F are re-

dys,'ng„(y)a. (y) ~ (37) lated by a set of six linear equations LEq. (9) of Bj.
y —x,y+x+ 2 vga Now writing the isotopic 2 part of A,:n" (x,v~,X') in
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Fro. 6. Main contribution to
axial vector amplitude from terms
linear in P(P')

terms of F1 Fp [convenient multiples of f1, . Fp,'

see B Eq. (9)j.

where this time

MA=2(7 qV e—V eV q),
31gg=2I' e,

3lg=q e,

MD ——iMy e,

M~ ——iy k2I' e

3SII;=ip kq e,

Mg=k e,

&II——iy kk e.

(—)
(—)
(+)
(—)

(+)
(—)

(+)
(—)

2 1
P B.A. — ~ c()2)

qk cosg+a

(8'+M) (8 iV))—
(X M, —M, 1, 1, —,'''2'

2 (E1+M)
2

p B.A. — p V(l12)

qk cosg+ a

("'"'
W+11'

W+M W+11)
egg 2 2

2
p B.A. — p (y2)

qk coso —b

where we have split up the results into terms linear in

~'(l'), F."(l'), P.(l-')
Further

E$A+]= f( GA/G—)(2 (X'),

ELC+q= f(—G,/G)~(~2)

ELH+] = —fP (X2).

(4g)

All other R's are zero, and there are no subtraction
terms Ci. If the two-pion intermediate state had been
included, we see from Eq. (29) that a subtraction in at
least H would have been necessary.

In the case of k. b being zero, amplitudes G and JI do
not contribute. We will project out the 3—3 states as
before.

In terms of two-component spinors,

Q f5RQNi —zX f Fgx ')

where
8

(49)

From the Born approximation (26) we 6nd the resi-
dues for the dispersion relations for the 3, - H as
follows:

q k=qk cos8,

pv'P')=p, F2 (X')+F, (l1'),

a= (2kpE2+l(2)/2qk, b= (2qpkp+X2)/2qk,

(45)

Z, =42 q42 e/q,

28= q e42 q42 k/q'k,

Zp=e eo k/k,

Zz ——k e/k,

Z2 ——k e(r. q(r k/qk'

Z4 ——(42 q42 k/qk)ep,

Zp ——q e/q,

Z8= ep.

(50)

where E~, B2 are the initial and final nucleon energies,
qo is the pion energy, and ko is the energy of the
virtual 8 .

Now the spin ~ states can be projected out of Eq.
(44), leading to expressions of F„', F,', F„' (z=1 6).
These quantities are given by Eqs. (12)—(15) of B pro-
vided that we replace zzz, ev, e in B by pz'(X2)/M,
2pzvPP), 2F (X2), respectively.

So the 3-3 projections a, (x, 1 B,l(2) are found by taking
these equations, substituting them on the left-hand side
of B Eq. (9) and solving for A, . F. Finally a+;=2a, ,
a; =—pa; in the expression (35).

zKA=AMA+ .+HMzz, — (46)

The Axial Vector Part

We repeat the procedure for BR~. Q'e no longer have
gauge invariance, so this time there are eight invariant
amplitudes

Then the relations for the 5's in terms of A, H are

F1 (2M/q02) P1 ——(——W+ M) A —MD,
F2= (2M01/qk2)F2=8+(W+M)E —G—(W+M)H,
Fp= (2MO1/qpk) 78=A+B C-

+(W+M)E (W+M)F, —
F4 (2MO1/qk) F4 (——E2+M)A+ (E1——+E2)B

+qpC —MD+kpG+ (W+M)
XP(E,+E2)E+qop+koH j, (51)

F8 (2M02/k) Sp = —(o——A —MD,
F8 = (2M/q01) Fp = A B+C+op(E F)—, — —
F2 (2M/k01) Fz = B——+(dE+ G a&H, — —
F8 (2M/Ol) +8 (E2 M)A (EljE2)B

—qoC —iVD —koG

+cpL(E1+E2)E+qpp+kpHj,
O1:$(F1+M) (E2+M) $*) O2 L(E1+M)/ (Ep+M) $'.
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where k. h =0, as in weak pion production with electron.
But if a muon is produced they are, and could be ap-
preciable for high momentum transfer. We could com-
pute them by the same methods that have been used up
to now, but there is a simple way to relate any term
involving P(X') to a similar term involving a pion which
can be used more generally than the other methods (the
dominance of a resonance is not required).

In our case, consider the diagram Fig. 6. For it, we
have

When k h =0, F8 becomes incorporated in Il 7 and P4 in
Ii2. We will project out the 3—3 part of only the terms
linear in n(X'); if k 8=0, these are the only terms of
interest, and if not, there is a simple way to relate the

P terms to pion-nucleon scattering which will be shown
later.

So the isotopic - part of the amplitudes are given by

&qpp IF. I P~}e=&qpz I~~I P~}&~p IF.I0)

&qP l~ IP )=[—z/(~'+m-')]&qP lkP ),
pp)

—2, 0) —(Ez qp M—)]. (52)

—2Mfn(X') (—G„/G)
P B.A. — [W+M, 0, 2, Ep+M qo,

—
qk (a+cos8)

Doing the spin 2 projections, we obtain

A

k(Ep+M)
GO u(a)

q (Eg+M)
W+M

+ (Ep+M) tt (a)+ —v(a)—,
2

F,' 2co(Ep+M) q Ep+M—u(a) ——a+ p (a),
A qk Eg —M

F„'=0,

F '/A =[(Ei+M)(Ep+M)/qk](Es qo M)a(a—)—
+-,' (E,+M—qo) y (a),

3 q Eg+M
+—— (W+M) y (a),

2 k Ep+M

F '/A, =—3P(a)+[2qk/(E&+M) (E&+M)]

X[1——,'aP (a)],

F 7/A cos8=[ 3qqo/k(Ez+M—))y(a)

+6[(E,—M)/(E, +M)]f(a),

F '/A cos8= 3(Ez M —
qp) n(a—)—

—-', [qk/(Eg+M) (E2+M)]y (a),

A = —(2Mf/qk)( —G„/G)a(Z&).

F '/A cos8= —3oou(a)+2(E, —M)[1——,'aP(a)] (53)

The last matrix element is just a phase factor which we
can take to equal to one. So

&e=&qPz I F.I f )ee.

But

Now

where

= —(ia/m ')k e&qpzlkp&)/PP+m '). (55)

P(X') = (agy/m ')/(9+m ')+

(qp, l kp, )=u, (—A+ip kB)u,

A =A(v, ve, Xz), B=B(v,ve, hz).

For I,'= —m, ', we know that there are no one-nucleon
poles in A and that the residue for these poles in 8 is
gP/2M. So we expect no poles here for our amplitude G,
and a pole of residue

—[iP (X')/g~]gP/2M = —iP (X')f for H

[Eq. (48)], thus showing our choice of phase factor is
correct. Let us put

z&pzqlzrplp~}=ut( —Ap+zy kBp)u;

where, as in Eq. (23), &qp& I
kp&) describes pion-nucleon

scattering with the initial pion o6 the mass shell.
Also, from the theory of the axial vector current, for

X' not too large,

&zrg, lF„I0)=( ik„/m —')&zrl 8„F„IO}
=a(k„/m. ')(or

I
zr(x)

I
0).

zzt( A+iy kB)u—
X'+m '

Here

(a) =1—la in[(a+ 1)/(a —1)],
P(a) = a——,

' (a' —1) ln[(a+1)/(a —1)],
y(a) =3a——,'(3a' —1) ln[(a+1)/(a —1)],
f(a) p+a' (a=) L1 laP—(a)]—

(54) We expect Ap Bp to be analytic in v, v&, and X'. Write
new variables,

s= —(P +k)' "= (P P )'
As before, Eqs. (51) must now be solved for A, B, H
in terms of F ', F,'. We now have to compute the instead of v, ve. Then for s&(M+1)', t(9; Ap(s, t,k')
terms linear in P(X'). These are not present in a situation and Bp(s,t,X') are real for (—X'}(9 and we expect the
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following dispersion equations to hold:

A(s, t, —m ')
A, (s,t,z-') =

1 "ImAo(s, t,X")dl(."
+—

X"+X'

&(( /A p cosO =3Mcoo.'(8),

P„'/A„= —,'qkP (a)+M(un(a),

r„'/A „=-,,'qkP(a).

To first order,

(62)

Explicitly the leading terms in powers of ar/M (and
1/M) are given by

B(s, t, —m. ')
B,(s,t l(, 2) =

X'+m ' So to zeroth order,

(o) = —4[p(o)j'.

1 " ImBo(s, t, l(,")dV'
+

9 X"+X' So

F„'/A „cos8= ——,'qkP (a),
5„'/A „= qk p—(a)

!

1 ) 4me "» sin833

E2—Ml q

3
+33- cos0—

Fg+M

VI. STATIG LIMIT

The simplest way to see what Eq. (9) of 8 and Eq.
(53) are about is to go to the static limit, expand in
~/M, and keep X' small.

We have three sets of terms P„, S„F for the vector
amplitude. The charge terms F, are well known to be
essentially recoil terms and can be neglected in the
static limit. For the terms 8„, F„4=0, 8„' and f„' are
small if A,

' is small. So we are left with 5'„', 5„', and F„'.

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 and 1345 (1957).

In the same way that we discuss the functions pp, 2),
K(l(.') (Appendix I) we expect for reasonably small l(,

' to
be able to neglect the integrals in these equations in
comparison with the pion pole terms.

Now let us continue analytically in s to the resonance
region; s= (M+2)'. The functions A, B immediately
become complex as s becomes greater than (M+ 1)', and
presumably so do the continuations of ImAO, ImBO. We
know that A and 8 contain a large imaginary part in the
resonance region, but there is no reason to expect either
the real or imaginary parts of ImAO, ImBO to became
appreciably larger for these values of s than they were
before. We have not continued very far. So the obvious
approximation is to write

Ao ——A (s, t, —m. ')/(l(, '+m -'),

B(( B(s, t) m——')/P, '+m ')—
So

Ile —[ip(X')/gg]——k cur[ —A (v, ve, —m.')
+iy kB(v, vs, —m.')]. (60)

Now from the study of the pion-nucleon problem by
CGLN, "we have

W+M (o ) 4vre "» sinb33
cosgy-

F.g+M F.2 M I q—
(61)

1+1/2M

a;(y) sinb, 3(y)
~3')

a)'+2M(u
(38)

2M

should contribute rather less to the pionic terms than to
the magnetic terms. Finally, and most important,

A „=—(2f/qk) pv'(X'), B.= (2f/qk) F.(X')

and so A „is about 4.7 times as large as 8 . In view of all

5:„/3A3„=[——,'io aq k—o qo (kXa)+-.,'io kq a]P(a).

If we talk about a weak pion production with electrons,
then

a= 6—(k E/k()')k
so

e„"/A„=—[2(qXk) S
+io aq k—i(r. kq g]P(a)/2. (63)

Notice that the longitudinal terms have dropped out.
It is clear that this term is the magnetic dipole term.
Indeed P(a) is a multiple of the function termed F~r
by CGLN.

Finally, then,

& "=[ft v'(~')/qk jP(o)
X[2(qXk) 8+io Gq k—ie kq. 8j

= [2fiuv'(&')/3M~ j
X[2(qXk) S+io aq k —io kq S]. (64)

Next there is 5 . These terms are dificult to deal with
convincingly. The treatment of photoproduction is
fairly satisfactory in its agreement with experiment
without including the pionic current terms at resonance.
Yet the P at erst glance appear as big as F„.Indeed
F„', for example, is of order 1/M, whereas F ' is of order
one. However 1—~3bP(b) is fairly small although it does
not involve M, and it turns out that F„' is greater than
F ' by about a factor of ~ for the region we are inter-
ested in. Also, because of the factor 1——,'bP(b), F„' and
even more so F ' is a decreasing function of co, whereas
W„' is roughly constant in ~. The same considerations
apply to S' and 5'. In view of this the enhancement
integral,
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Next is S~. We are considering the case where k h=o
so the terms in P(X') vanish. By inspection of Eq. (51)
and (53) we see that the largest terms are

r.'/A =qp(a)
and

S.'/A = —3qP(a),

to zeroth order in 1/M. So

F."/A. = —(3q 8—e qo" 8)P(a)
and

(66)

(67)

4f( G~/G—)e(l ')
cd~33 —cp 33— (3q 8—e qe F,). (68)

3'
F&83 looks appreciably larger than 5&88. This is not
surprising, as the direct vector weak interaction, the
charge term, does not contribute in the static limit to a
spin —', parity (+) state of the 6nal system; it is the
weak magnetism which contributes. On the other hand,
the axial vector term can go directly in the static limit.

The next task is to find the actual amplitudes to be
used in a calculation. If we are interested only in the
resonance region we can drop both the Born terms and
the crossed term in the complete expressions for the
amplitudes, and we can write the resonant term in the
form

aj($)ve)li )
A;(x, vii, X') =

1—(x/*,)—ir

where F refers to the width of the resonance. Now in the
static limit x=co, and we recall the Chew-l, ow formula
for the enhancement factor for the pion-nucleon system
in the static limit"

s(f'/4 )q'/~
e "83 Sin588=

1-(-/-,)-'-:(f/4-Iq/-
So we can write

a, ((a,vs, X')
A, (&o,ve, V) = e's» sinless,

4s (f'/4n) qs/(u—

(69)

(70)

Now the A, are linear in the Ii; and so our final expres-
sions will be

2ftiv'(l~') 1
L2(qXk). a+ie Sq k

3M'~ —s'(f'/4m) q'/nr

—ie kq 8je "» sinless. (71)
"G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

this, it should be no worse to neglect the pionic terms
than to neglect terms of order 1/M.

So the simplest approximation to 7&" is just the
magnetic dipole term.

2fthm v'(), ')
88 —cp 38—

3M'

XL2(qXk) 8+ie Gq k —ie kq 8j. (65)

This expression is given ig. A. Also,

4f(—G,/G)~P. s)
+A

s (f'/4 )q'/~

X(3q 8—e qe 8)e"»sinless. (72)
I.et us write

M+=27rpv'(X')/fMq', M =4+( Gg—/G)e(X')/fq' (73.)

VII. CROSS SECTION CALCULATIONS

In general, for weak pion production with electron

&v=Qv &,
where

Qv ——P+seQ+i(e uiq+e usk),

gg ——X+i(e v,q+e v,k)+e Ye. (74)

We can find P, Q, etc. from the definitions of Pv and F~
in Eqs. (42) and (50).

We write (averaging over initial and summing over
final nucleon spin)

T.v
', SpL(&v———*—iS~ *)(rve+ir~, )] (75)

It is now easy to find T e by substituting in Eq. (75) the
expressions for gv and gg of Eq. (74).

T p must be contracted with the leptonic contribution,

.=SpL y„( +y ) y ( +y )$
=8/2(i„tie ti~ke k~tie+—,'X'Le—+e~„e,kv-ti, ]. (76)

t~ and t2 are the four-momenta of the neutrino and elec-
tron, respectively, ty=p'fy k=3] 32 6 @pe is the 4-index
completely antisymmetric permutation symbol. n, p
=1, 2, 3; p, q=1, 2, 3, 4. Write

fort['= T„ee.e.

2g4M'

8EiEsqstits (X'+My')'
d'psd'qd'ts

X (2~)'~'(p. +qs+ts —ti —pi) (78)
(2~)'(2~)'(2w)'

We will be concerned with an experiment in which the
initial nucleon is at rest; that is E»= M and e= 1. How-
ever, ~OR~' must be evaluated in the center of mass
system of the final nucleon and pion. So let us use lower
case letters as before for c.m. quantities, and capital
letters for the quantities evaluated in the laboratory
frame; i.e., Ti, Ts, E, Es, I' s, Q, Qs(Ei" ——M and Es"
never appear).

Then the differential cross section for production of a
pion in solid angle dQ, and electron in solid angle dQ&, is

g'M [mz('

128vrsQsTi (X'+Ms ')'
Q'TssdQ, dQ„dQ

(79)
Ts(Ti+M —

Qo)
—Ts (Ti—0)
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It is possible, following Dalitz and Yennie, " to obtain
the cross section for inelastic lepton scattering in a
simple form. (Inelastic lepton scattering implies that
only the final lepton is observed. )

First notice that

I
alt I'(d'Ps/~s) (d'q/qo)5'(Ps+ q

—k —Pi) (8o)

is a I orentz scalar and hence can be evaluated in any
frame; in particular in the center™of-mass frame of the
final pion and nucleon. So it is just

I5ibI'(d'ps/~s) (d'q/qo)~(Ps+q)~%2+qo —ko ~i) ~ (81)

This can be integrated to

(q/W) I5ft'I'did, = (4~q/W) I5Tt I'd(t„(82)
where dQ, implies that we are going to average over the
directions of the final pion.

Write

provided that the relevant form factors are known. If
X' is also small, the static limit should be reasonable to
use and the resulting formulae are simple.

At higher incident neutrino energies the pion-ex-
change "peripheral" term LFig. 2(c) and Eq. (34)j
should be included in the amplitude. It becomes more
important as the neutrino energy increases and the im-
portance of the 3—3 isobar decreases.

A measurement of the energy spectrum of the Anal

electron at an appropriate fixed angle would show the
resonance peak due to the 3—3 isobar. The height of the
peak is determined by the form factors Lmainly
byn()')j.

The matrix element 9K LEq. (13)]describes also the
process z+1V —+ W+lV. Thus the cross section for this
reaction can be found using the preceding analysis
(Appendix II).

Then

4xq
ImI'd6, .

8'

do gM Tq

dQdTs 128z-s Ti ()~'+Ms ')'

ACKNOWLEDGMENTS
(83) I should like to thank M. Gell-Mann, F. Zachariasen,

and S. Herman for discussing this problem with me, and
J. S. Bell for correcting an error in the original draft.

(84)

APPENDIX I. THE FORM FACTORS
If we are not interested in looking for intermediate
boson effects, we remember that

go=cM ~s/2',

%e expect all form factors to satisfy dispersion rela-
tions (possibly with subtractions). For example, the

(9) nuclear electromagnetic form factors:
so

g4/(X'+M ')'=G'/8 (85)

Now we have to find the form of (XP) in the static limit.
Here

P=2(q&&k)M+e "» sin8„,

Q=q kM+e
"» sinless,

ui ———kM~e"» sin5oo,

X=3qM e""silos,
Y= —qM e""sin5„,

VI —V2= 0.

These are pure I=s amplitudes (i.e., they apply di-
rectly to i+p ~ e +p+or+).

Averaging over angles, we have

(BR')= (4z q/W) L16q'k'M '(2t is sin'tP+ X')

+8q'M '(4tis+3)' —4tik cos1b)

+64q'kt, M+M (k ko cos1b)] sin'5„, —(87)

where 1b is the angle between ti and k.

VIII. CONCLUSIONS

Using the methods of this paper the amplitude for
v+E~ e+z-+E can be calculated as accurately as
desired when the c.m. energy of the pion-nucleon state
is such that the 3—3 isobar dominates the situation,

"R.H. Dahtz and D. R. Yennie, Phys. Rev. 105, 1598 (1957).

1 "
g
' (s')ds'"'()=-

x' g s —s

1 "g,v(s') ds'
F,v(s) =—

4 s —s

(A1)

(A2)

i=1 or 2, s= —X', and we have put nz =1. Also, the
electromagnetic form factor of the pion:

1
J'-(s) =- "g (s')

ds .
s —s

(A3)

Experimentally strong two-pion and three-pion inter-
actions are observed. We hope that these dominate the
dispersion integrals (A1, 2, 3).

I.et us deal first with Ii (s). Here the I= 1, J= 1 pion-
pion resonance at 750 MeV with a width oP4 about 100
MeV is expected to play the important role.

Using the language of vector meson theory, "we call
this unstable particle p, with a decay rate into two pions

'4 A. R. Erwin, R. March, W. D. Walker, and E. West, Phys.
Rev. Letters 6, 628 (1961);D. Stonehill, C. Baltay, H. Courant,
W. Fickinger, E. C. Fowler, H. Kraybill, J. Sandweiss, J. Sanford,
and H. Taft, ibid 6, 624 (1961);.E. Pickup, D. K. Robinson, and
E. O. Salant, Aid. 7, 192 (1961); Bologna, Orsay, and Saclay
groups, presented by G. Puppi, Report at the International Con-
ference on Elementary Particles, Aix-en-Provence, 1961 (un-
published).

"M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).
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given by
1y,. ' (nz, '—4):r=- ""

P
3 4x mp 2

Near s=m, ', the form factor of the pxz vertex is

1 "
g (s')ds'

Q $
I

g $ —$
(A11)

The axial vector form factors n(s), P(s) are discussed
in reference 5.

(A4)

—m ' F,(s)F,v(s) =
s-m 'F (0)

(A6)

F, (s) = (s m—„')/( s m—,'+im, l', ) . (A5)

In general, "the electromagnetic form factors are related
to the p form factors by

—ag, 1 "gs(s') ds'
~()= +-

5 1 Ã g s —s
(A12)

LIf n(s) has a similar dependence on s as the other form
factors considered here one would require a strong low-

energy interaction of three pions in an I= j., J=i+
state. ]As in that paper, define K(s) by

where F„v(s) is any isotopic vector electromagnetic
form factor and F,(s) is the corresponding p form
factor. According to Sakurai' the p meson is coupled to a
conserved current (the isotopic spin current). So at zero
momentum transfer it should have a universal inter-
action with the isotopic spin current. This can be ex-
pressed by

where

Then

(p~X ~ri)=i /2&„p, r~&„K(s),

X
—= —(iv2/a)B P

t'
aK(s) =m~ — ~u(s) —sP(s).

Gi
(A14)

Hence
yp —yps 1IFpwll (0)—yp+ivFpivN(0) (A7)

—m2
PVp

F (s)= (s near m ') (A8)
'7p~~ s mp +ztÃpI p

For s(0, F (s) is real and the small imaginary term in
the denominator of (A8) can be neglected. Then, re-
membering F (0) =1, we have

pp —mp
F (s)= +1—

2
p~7r $—mp p p7C

(A9)

where the constant (1—y,/y„) can be looked upon as
a contribution from higher mass states and hence is
slowly varying in s.

Similarly
Itp mp

Ftv(s) = +1-
pp++ $ mp +PAN

"J.J. Sakurai, Phys. Rev. Letters 7, 355 (1961).

Clearly the same sort of analysis can be applied to
Fis(s). Here, however, there may well be complications
as there are quite possibly two I=O, J= 1 mesons to be
considered. "Of course, if this turns out to be the case
the second meson has to be included in Fig. 4 and
Eq. (27).

To the extent that X approximates the pion field, K(s)
is the pionic form factor. This quantity has become
interesting recently in the study of peripheral nucleon-
nucleon collisions. "From (A14) and (A12) one can see
that a knowledge of K(s) implies a knowledge of n(s)
and vice versa for small s. Related to this we have that
X =m= also allows a determination of scattering ampli-
tudes involving a pion off the mass shell provided that
the corresponding physical scattering amplitude in-
volving P is known (cf. reference 18).

APPENDIX II

The reaction m+X —+ W+X is described by the
matrix element 5R. The Born approximation to 5K can
be read off from Eqs. (33), (34), and (48) and thus a
rough calculation for the process can be made. The
approach of this paper is different to that of reference 19
where the isotopic spin dependence was treated less
reliably. The result of reference 19 holds; namely that
if the 8' mass is close to that of the p the expected cross
section is enhanced appreciably. Numerical calculations
using recent experimental values for m, and I'p have
been done by Bernstein and Feinberg. "

'7 E. Ferrari and F. Selleri, Phys. Rev. Letters 7, 387 (1961).' E. Ferrari and F. Selleri, Nuovo cimento (to be published).
"N. Dombey, Phys. Rev. Letters 6, 66 (1961).' J. Bernstein and G. Feinberg, Phys. Rev. 125, 1743 (1962).


