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The infinite anomalous threshold singularities in the amplitude for a production reaction may, in certain
circumstances, lie close to the physical region. The possibility then arises that they can be “detected” through
characteristic peaking effects which they produce, as sometimes happens for the more familiar pole-type
singularities. Examples based on triangle graphs are discussed.

I. INTRODUCTION

NE knows, on the evidence of perturbation theory,
that the transition amplitudes for production re-
actions are in general characterized by the occurrence
of various anomalous threshold singularities, both real
and complex.l2 The recent work of Polkinghorne and of
Stapp?® suggests that this should obtain more generally
for any unitary theory. It is our object here to consider
whether these singularities can ever be “noticed” ex-
perimentally. The hope, of course, is that, under favor-
able kinematic circumstances, they may appreciably
influence the shape of a cross-section curve in some
characteristic manner, in much the same sense as the
familiar pole-type singularities sometimes do. In fact
our singularities are not poles, but provided that they
are infinities rather than simple branch points, they may
be expected to produce noticeable effects when they
approach close to the physical region. According to the
rules given by Landau and by Polkinghorne and
Screaton,? only the simplest graphs produce singularities
that are infinite. We shall confine ourselves here to a
discussion of simple triangle graphs, which in fact are
the only graphs with three external vertices that do
produce infinities.

Even with this restriction the general situation is still
very complicated and not very easily surveyed. For a
reaction involving # particles (#2>5) there are many
ways of disposing the # external momenta at the three
vertices, and there are N=3rz—10235 independent
variables to be considered, aside from spins. The
singularities for a given triangle graph lie on a part of a
(2N —2) manifold in the 2N-dimensional space of N
complex variables. One might expect a singularity effect
to manifest itself most directly in the physical ampli-
tude for those points in the physical region which lie
closest to the singular part of the manifold. For example,
a plot of the amplitude as a function of physical vari-

* Supported in part by the U. S. Air Force Office of Scientific
Research, Air Research and Development Command.

1 On leave of absence from St. John’s College, Cambridge,
England.
(11(1))1')\7' Landshoff and S. B. Treiman, Nuovo cimento 19,1249

961).

2 L. F. Cook and J. Tarski, J. Math. Phys. 3, 1 (1962).

3J. C. Polkinghorne (to be published); H. P. Stapp (to be
published).

4 L. D. Landau, Nuclear Phys. 13, 181 (1959); J. C. Polking-
horne and G. R. Screaton, Nuovo cimento 15, 925 (1960).

bles lying on a one-parameter curve which passes
through a ‘“close’ point might be expected to show a
peak in the neighborhood of this point. As in correspond-
ing discussions of pole-type singularities, however, we
of course cannot know in advance how close is close
enough.

II. TRIANGLE SINGULARITIES

Rather than cope with the complicated generalities of
the structure of the physical manifold and of the various
singularity manifolds for different kinds of graphs, let
us turn directly to what is a particularly simple class of
graphs. Consider the production reaction

kitky—og+ (K1t Kot ),

where each letter represents a particle and also its
4-momentum. In particular we shall denote by m the
mass of the particle ¢: ¢>=m? We now restrict ourselves
to triangle graphs (see Fig. 1) in which the colliding
particles %; and &, join at one vertex, the single particle
g emerges from a second vertex, and the remaining
particles Ky, Ko, - -+ all join at the third vertex. Aside
from spins, the amplitude for such a graph depends on
only two independent variables, which we take to be

W= (k1-+k2)?; s=(Ki+Ko+-- )2

We study the dependence of the amplitude on the
variable s, for fixed W2
Let M denote the sum of the masses of the particles

Ky, Ks, ---. The physical range of the variable s, for
fixed W, is given by
M2<s<(W—m)*=s;. (1)
K,
K

F1c. 1. The basic tri-
angle graph under con-
sideration.
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(f) S-5=0.34u?

(e) -5~ 1.5u°

F16. 2. Examples of graphs for which the anomalous threshold
singularity at § lies close to the upper end s; of the physical region,
when the center-of-mass energy is W=m,;-+m;. The separation
§—s1 is listed for each example; u denotes the pion mass.

Now the triangle graph in question produces a normal
threshold singularity at

Sa= (m1+ms,)2. (2)

If W is large enough, and if the internal particles are
stable, as we assume, then the graph also produces an
anomalous singularity.! For W>m;~+m3 this occurs at
the complex point § given by

S=m+mo?—2mmsZ, 3)
where
Z=zz'+i[ (2—1)(1—23") ]}, )
2= (m’+ms>— W)/ 2myms, ©)
3'= (m+ms—m?) / 2myms. (6)

For W=m+ms, §is real and we have
§—s1=[1+4 (m1/m3) ['ms’— (ms—m)*], (7
Sn—§= (m1/ms)[m*— (my—ms)*]. ®

As W decreases below m;+4ms3, § moves away from the
physical region, toward the normal threshold. This is
of course just what we do not want to happen, so we
shall not consider the case W <m;~+ms any further.
However, we also note that the physical amplitude
is obtained by allowing the variable s to approach the
real axis from above, whereas for W>m;+m; the
singularity § lies in the lower half s plane. Thus the
case where Re §>s, is also uninteresting, since here a
normal cut intervenes between s and § even when they
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are “close” to one another. Inspection of Egs. (3) to
(7) shows that for W>>m;+m; the singularity § moves
far away from the physical region, except when z'~1;
but in the latter case Re §$>s,. All of these considera-
tions therefore suggest that the most hopeful prospects
for “‘detecting’’ the influence of the anomalous singu-
larity corresponds to choosing W in a more or less nar-
row region near m;-+ms.

We can therefore most easily survey the possibilities
by taking the simple case W =m;+m; and looking for
diagrams for which §—s; is small enough to be in-
teresting, e.g., §— 51X (pion mass)2

Some examples are shown in Fig. 2 and it is easy
enough, by inspection of the equations, to generate
others. All are somewhat impracticable in that they
involve emission of photons or require very high (and
narrowly defined) incident-particle energies or are
concerned with processes that are as yet not very
common. The sixth, a hyperfragment decay, involves a
weak interaction. Notice that, in the notation of Fig. 1,
the number and nature of the particles emitted at the
(m1,ms) vertex is irrelevant in determining the location
of s; and §, provided the choice is consistent with selec-
tion rules and, for given W, with energy-momentum
conservation. Thus in Fig. 2(a) the particles emitted at
the (n,7) vertex could consist of any number of pions
and, say, KK pairs, up to the limit set by available
energy. Similarly, the nature of the incident particles
in each graph has no effect on the location of the
singularity. Thus, again in Fig. 2(a), the incident (7#)
could be replaced by (7d). This might seem ideal for our
purpose, since with our chosen value for W the anti-
nucleon would be at rest, as is very convenient for
experimental study. However, our triangle singularity
§ then coincides with the nucleon-exchange pole in the
diagram obtained by “dissolving” the (7id) interaction,
so that our effect, although expected to be there, would
be swamped by another.® The same remark applies to
the hypertriton-decay diagram of Fig. 2(f) if it is valid
to regard the hypernucleus as a (Ad) scattering state.
One might, however, say that this model should be
modified by inclusion of the wave function for the A in
the hypernucleus and that this could have the effect of
changing the pole singularity precisely into one of the
triangle type.

III. AN EXAMPLE

We illustrate the way in which the anomalous singu-
larity influences the transition amplitude by considering
in detail one example, that of Fig. 2(a). We compute the
Feynman amplitude for this graph with neglect of
structure effects at the vertices, since we are only con-
cerned with the variation of the amplitude over a nar-
row range near the singularity. For the same reason we
also neglect spin effects, treating all particles as spinless.
A closed form for the Feynman integral has been ob-

5 This has been called to our attention by Professor R. Blanken-
becler.
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F1c. 3. Amplitude (on arbitrary scale) for the graph correspond-
ing to F16. 2(a), as a function of center-of-mass kinetic energy of
outgoing nucleon. The total center-of-mass energy is fixed at a
value corresponding to the sum of masses of nucleon and deuteron.

tained by Wu.® This contains a large number of Spence
functions, however, and is unattractive for computation
purposes. We prefer instead to write down a dispersion
relation in the variable s. The weight function is easily
obtained in explicit form, and the dispersion integral
can readily be evaluated numerically. Details are set
out in the Appendix.

The results are most conveniently expressed, not in
terms of s, but rather in terms of a variable 7° which
denotes the kinetic energy, in the over-all center-of-
mass system, of the outgoing nucleon. This is related to
the variables W and s by

T=[(W—m)2—s]/2W=(s1—s)/2W. 9)

For our simple choice W=#=-+d (=3 BeV) the transi-
tion amplitude is real and its dependence on 7" is shown
in Fig. 3. The sharp increase in the amplitude towards
small T will be noted : the amplitude is roughly doubled
in a width AT =3 MeV. In the region of rapid variation
the squared amplitude varies as 7%, an effect which
should outweigh the phase-volume effect, which goes as
T% dT. That is to say, insofar as the graph in question
dominates all others at small 7, the experimental
nucleon-recoil spectrum should show a noticeable,
narrow bump at small 7. We may also remark here that,
for fixed-recoil nucleon energy 7, our amplitude is
independent of the angle of emission of the nucleon.
This could be tested if one had reason to suspect that

8 A. C. T. Wu (private communication).
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the graph in question were in fact dominating the
reaction. Similar remarks hold for all the graphs under
discussion.

The sharp effect indicated in Fig. 3 corresponds to the
precise choice W=n4d. As W is increased, § becomes
complex, but since z’ is very nearly unity, (3’=1—¢,
€~1/800), Im § remains small for a long while. However,
Re 5 very quickly moves past the normal threshold at
4n?. By the t me that W has increased by 50 MeV
above the value n-d, all noticeable peak effects have
disappeared, even though Re § and s, are very close to
one another. As we have already said earlier, when the
cut intervenes between § and a point s ‘“near” to §, the
distance between the points must really be measured
along a path that goes around the normal threshold,
without crossing any cuts; and this distance increases
rapidly here with increasing .

We also learn in this example that there is no reason
to suppose that only singularities that occur on what is
usually taken to be the physical sheet should be effec-
tive. Singularities which are uncovered when the normal
cuts are distorted may well be important if they lie
near the physical region (‘“‘nearness’” again being some-
how defined in terms of a distance along a path that
crosses no cuts). In fact this observation is relevant for
the results of Fig. 3. The singularity at § is only log-
arithmic, so that one might have expected that no
noticeable effect persist at s;. What comes into play
here, however, is another singularity at s;. This one lies
on the ‘“unphysical” sheet reached through the cut
attached to 8. This singularity, first noticed in triangle
graphs by Cutkosky,” is an example of a second-type
singularity,® whose position depends only on the masses
of external particles in the graph. Here it behaves as
1/(s1—s)? near s; and it combines with the logarithmic
singularity at § in a subtle way to produce the sharp
peaking effects noted here. How this comes about can be
seen in more detail from the discussion given in the
Appendix.

We note finally that the general character of the
effects discussed above for the graph of Fig. 2(a) holds
also for the other graphs under consideration: a sharp
peaking in the spectrum of the recoil particle at low
energies, for incident energy W in a narrow interval
near mi-+ms. The effect rapidly disappears with increas-
ing energy W.

The present investigation was prompted in part by
urgings of Professor M. L. Goldberger, who has long
regarded the actuality of anomalous singularities as a
critical test of present-day notions. He bears no re-
sponsibility for the results discussed here, however.
We also call attention to a discussion of other aspects of
these singularities in production reactions, given by
R. F. Sawyer.®

7R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

8 D. B. Fairlie, J. Nuttall, P. V. Landshoff, and J. C. Polking-
horne (to be published).

9 R. F. Sawyer, Phys. Rev. Letters 7, 213 (1961).
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APPENDIX

The weight functions in the representation for the
triangle graph may be evaluated by the standard
method of Cutkosky.” The result, when the singularity
at § appears on the physical sheet, is proportional to

Sno 2w ds n S22
/5 (KGN s'—s Js. [K()]
[K(s)L(s) ]} ds’ 0 1
X tan‘1< > + -
a(s’) s [—K(G)T

T
s'—s—1e

« hl(a(s YH[—K(s')L(s ):],—\ ds o
a(s")=[—K()L(s) s —s
where
so= (W-+m)?,
K(s")= (s2—")(s'—s1),
L(s") =[s"— (my+ms)* 1Ls"— (mi—ms)*],
a(s)=s"2+s'2mP—mP—mP—W?2—m?)
+ (W2—m?) (m2—ms?), (A2)

and sy, 5, § are defined, respectively, in (1), (2), (3).

We have written (A1) in the form directly applicable
to our computation discussed in Sec. ITI, where we took
W =my-+ms3 so that § was real and s;<s,. In this case
the square roots in (A1) are to be taken to have posi-
tive values and the logarithm is real. The arctangent
takes the value 7 at s’=s, and 0 at s’=s,, there being a
zero of a(s’) in between these points. The first integral
in (A1) may be evaluated in closed form and the result
is

_t([z_{%}:—ﬂ)} (A9
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where again the radicals are positive and the arctangents
lie between 0 and . The remaining two integrals in
(A1) must be estimated numerically.

When s;>s, and when § is complex the equations
(A1) and (A3) are still formally correct. The sheets of
the logarithm and arctangents must be determined by
continuation from the previous case.

We may notice some qualitative features of our func-
tion for the case discussed in Sec. III. The value of
(A3) at s=s; is

4 |’(s2—§>% <32—8n>; 0
sa—le §—s Sn—S1 :l
When, as in our case, § and s are close together this is
large. The second integral in (A1) produces a contribu-
tion of the same order of magnitude.

As s is taken below s; the contribution (A3) falls off
rapidly, both because — K (s) increases and because the
arctangents become nearly equal. The second integral,
however, falls off more slowly. a(s’) has a zero at a
point s* close to s, and a substantial part of the con-
tribution from the second integral arises from the range
s* to about 2s*. A crude idea of the behaviour may be
obtained by approximating the arctangent as =/2 in
this range and then the result of the integration is as in
(A3), with s, replaced by 2s* and § by s,. As s varies
over a small range below sy, the arctangents are sensibly
constant and so we see that the behaviour is as 1/(s;—s)%.
This is in accord with our assertions in Sec. III con-
cerning the interplay of the singularity at § with the
second-type singularity at s;. The effect of the nearness
of the § singularity is mainly felt indirectly in that it
causes the zero s* of a(s) to be close to sy.

(A4)



