NEGATIVE MESON ABSORPTION

that is,
n—m—1

U, 1,m(r,0,0)= 2 (ll”1>”n1,nz,7n(£;"h¢)-

n1=0

(A1)

The spherical and parabolic coordinate systems are
related by
£=r(14cosh),
n=r(1—cosb), (A2)
o= 0.
By inserting the explicit forms of the wave functions
in terms of Laguerre polynomials and Legendre func-
tions? in (A1), substituting (A2) in the right-hand side,
taking cosf=1, and equating powers of 7, we get the

2% H. A. Bethe and E. E. Salpeter, reference 12, Sec. 3 and 6.

PHYSICAL REVIEW

VOLUME 127,

IN LIQUID HYDROGEN 647

following relation:

(U=m)l(n—1—1)] ;
(_)+[ (14-m) (n4-1)! (ZH"D]

2ms) ( n+1 )d”’Pl(l)
X—__._
[s— (@—m)I\i4+m+-14s/  dzm

"—£—1 [ 71!m9! :r
B n=s (n1+m)!(n2-|—m)!

Yo

That the left-hand side is zero for s<I—m, is to be
understood. Equation (A3) is used as a recursion rela-
tion to derive all of the coefficients (¢|#:).
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A proof is given for the meromorphic nature of the S matrix in the entire complex plane of the angular
momentum, under quite general assumptions for the potential. Some properties for the S matrix in the

complex angular momentum plane are discussed.

HE S matrix for the Schriédinger equation has
been shown by Regge! to be meromorphic in the
complex plane of the angular momentum » to the right
of the line Rev=max(—3/2, —1/2—¢), if the potential
V(x) = Vox?2 as x— 0. We here propose a method
to enable us to establish the meromorphic property of
the .S matrix for the Schrédinger equation in the whole
v plane.
The Schrodinger equation is

L(@/dx®)—v(r+1)/2* ] (k%)= U ()¢ (k,v,x), (1)
where
U(x)=V(x)—k?,
with the boundary condition

Y(ky,x) — ot x— 0.

Regge transformed this differential equation into an
integral equation, with its solution obtained from

iteration oy )
z (g 1 v 1 b
¢(k,y,x) :xV+1_}_/ ;y___
0 (2V+ 1)

1'T. Regge, Nuovo cimento 14, 951 (1959), also Nuovo cimento
18, 947 (1960).

Uy (k,v,y)dy.

The iteration process fails if the integrals in the iteration

diverge (Ji*y*dy diverges if Rea< —1) and some

integrals in every order of the iteration were indeed

found to diverge for Rev<max(—3/2, —1/2—¢).
Instead, we define a linear operator K,

K, (ar)=27"/ (p+v+2) (p—v+1); @)
we are guided by the fact that

z xv+1/yu__yv+1/xv
/ yrdy= ,
0 2v+1 (p424v) (p—v+1)

if the integral does not blow up at the lower limit of
integration. Now, K,(f(x)) is defined if f(x) is a sum
of terms 7, or an infinite, absolutely convergent series
of terms x?. The power p does not have to be an integer;
in fact, it does not even have to be real. As

d?

—K, (x?) =xr4+v(v+1) /22K, (x?) ; 3)
dx?

X p+2

we have, in general, if K,(f(x)) exists,

d2
%Ky(f(x))=f(x)+V(v+1)/x2K»(f(x))-
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One then readily proves that the solution of Eq. (1)
can be expressed as

¥ (kp,a) = 2P+ K, (U ()¢ (k,v,2)). 4)

Now Eq. (4) can be iterated, without any divergence
difficulty.

As an example, we first choose U(x)=Vx? where?
Rep>—2. Then we have

© VD p+2 2T~
)=t 32 LD

"l TI [m(p2)+20+1]

m=1

The terms in the infinite sum are meromorphic in » with
simple poles at v=—1/2[14m(p+2)], m=1,2,3, - - -.
If we keep away from these poles we see that the series
is uniformly convergent. Therefore, ¥ (k,»,x) is mero-
morphic in the whole » plane, with only simple poles
at the locations mentioned above. For p=0(2c—2),
the pole nearest to the origin is »=—23/2(—1/2—¢),
and that is why the old method fails in the portion of
the plane left to these points. If U(x)=Vyx?1+4Voxr2,
the poles would occur at »=—1/2[14m;(p:1+2)
+mo(pe+2)7], with my, ms positive integers, and
mitme=1, 2, 3, ---. If U(x) is an absolutely con-
vergent series

0
> axPi
i=0

the poles would occur at

v=—1/2[1+5 mip42)],

with all the m; positive integers, and

2 1f Rep<—2, then the behavior of the wave function near the
origin will be dominated by the potential instead of by the cen-
trifugal force. We do not consider such cases.
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The iteration series still converge uniformly for all
finite . In particular, for the Yukawa potential, the
poles would be at y=-—1, —3/2—2—5/2-.-. The
poles in ¢/(k,v,x) are determined by the potential alone,
independent of the energy. Now

lll(k,V,x): [f(k,V)f(—k, v, x)
— f(=k, v) f(k,v,%)]/ (2ik), (6)

where f(Z=k, », x) are solutions of Eq. (1) with the
boundary condition f(==k, », x) — €T % as x — o, and
are known to be entire in ». The Jost functions,

d af(Fky,x)
f(:tkrv) =f(ik,v,x);c¢(k,u,x)——————5&(k,u,x),

X

in general, would both have a pole when ¢ (k,»,x) has a
pole. Therefore, the scattering matrix S(k,»)=[f(k,»)/
f(—Fkv)Je™, in general, has no pole when ¥ (k,»,x) has
a pole. We see that the Regge poles do not come from
the poles of ¢(k,»,x). The S matrix is, therefore,
meromorphic in », with poles arising from the zeroes
of f(—k,»).

For a Yukawa potential, V(x)=Vee**/x, Eq. (1)
can be written as

a v(r+1) Voe rvlk
[EyT ; |- . ~1 e, @

with
y=kx.

Since ¢~®¥/® — 1 as k—> «, the Yukawa potential
approaches the Coulomb potential in the high-energy
limit, positive or negative, and we see that for any
point in the » plane the scattering matrix S(&,v) for the
Yukawa potential in the high-energy limit approaches
T'(v+1+3Vo/A/E)/T (v-+1—iV/A/E), the scattering
matrix for the Coulomb potential. In particular there
are Regge poles approaching the negative integer points
of the » plane, with their residues approaching zero.
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