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Theory of Magnetic Resonance in the Heavy Rare-Earth Metals
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The spin-wave spectrum has been calculated from a Hamiltonian including anisotropic exchange, axial
and hexagonal anisotropy, and magnetic fields for the various types of magnetic order which are known
to occur in the heavy rare-earth metals Tb-Tm. Particular attention is paid to those spin waves which can
be excited by radiation. Because of the high anisotropy, most resonances will occur in the infrared where
they will be diRicult to observe. However, those phases which show" either ferromagnetic ordering with
moments in the hexagonal planes, or spiral configurations of the moments in those planes, should display
a microwave resonance when a suitably chosen magnetic Geld is applied in that plane. In the spiral phases
an additional resonance with u oc H' may also be observable.

1. INTRODUCTION

' NEUTRON diGraction experiments have now made
clear the nature of the magnetic order in several

of the heavy rare-earth metals Gd-Tm. All these ele-
ments have the same crystal structure (hcp) but the
details of the magnetic ordering vary widely from ele-
ment to element and there are usually several magnetic
phases in each case. Much of the experimental evidence
is summarized by Elliott. ' He was able to show that
many of the variations were the natural consequence of a
single Hamiltonian. The essential feature of the theory is
a large axial and smaller hexagonal anisotropy arising
from the crystalline electric field. The magnetic eGects
of this same field vary with the electronic configuration
in a way which accounts for many of the observed
ordering s.

It is also of considerable interest to study the excited
energy levels of the magnetic system. In most phases
these can be described as spin waves by I'ourier
analyzing the deviations from the ordered state even
when that state is not the ground state of the system, as
is the case in some phases which do not persist down to
O'K. Some high-T phases, however, like the longitudinal
spin wave found in Er, are stable because they have low
free energy through a high entropy. ' ' Such phases will
be shown not to have spin-wave states.

Yosida and Miwa' and Kaplan' have already evalu-
ated spin-wave energies in connection with their investi-
gations of the ground state. They omitted, however, the
effects of magnetic 6elds and the hexagonal anisotropy
and used a simplified form of the axial anisotropy. By
means of magnetic resonance it is possible to study the
energy of certain particular spin waves in detail, and in
a comprehensive theory of their behavior it is necessary
to include these terms. It is also likely that the general
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spin-wave spectrum will eventually be determined by
inelastic neutron scattering.

The stable magnetic orderings found in the metals are
in general characterized by a wavelike variation in some
component of S, of a certain wave vector kp. In such
cases magnetic resonance will occur with spin waves of
wave vector k= +ks and possibly k=0. In some metals
the wave variations in the order are seriously distorted,
especially by the hexagonal anisotropy, so that they
contain a number of harmonics rtkp. This harmonic con-
tent can be further enriched by the application of
appropriate dc magnetic fields. These distortions might
allow one to observe spin waves of several rtks by reso-
nance, so that by these means it would be possible to
deduce the general features of the spin-wave spectrum.

The high anisotropy encountered in these metals
often causes the resonances to occur in the infrared
where they will be diS,cult to observe in metallic
samples. The resonance never occurs at frequencies
which are simply proportional to the applied fmld H, as
in normal ferromagnets.

2.1. GENERAL HAMILTONIAN

The most general Hamiltonian employed will be

X= —g J"S"S—P E;,S;rS,r

yP ([Ps rs (S')yP4 I 4 (S')+Ps 7 (Ss~)

+Ps'(7's'(S;)+ I's-'(S;)]+MPH. S;l (1)

i.e., including anisotropic exchange, a crystal Geld of
hexagonal 'symmetry and a magnetic held of arbitrary
direction. S; is the total angular momentum of atom i
(including orbital and spin), X is the Lande factor and|is the direction of the hexagonal axis. The Yt (S) are
the operator equivalents of the appropriate spherical
harmonics' referred to this axis. Some discussion of the

4 R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London)
A218, 553 {1953),
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—Q E,,S,rSir+Q{E45;rP+KpS;rs

+J,PLI', P(s,)+ I;P(s,)g+) PH s,}. (2)

Since this is to be Fourier analyzed, we define

J(q)=g; J;;cosq (R,—R;),

E(q) =P, E',; cosq (R;—R;).

2.2. MAGNETIC ORDER

Experimentally it is found that in all the magnetic
structures the moments in each plane perpendicular to
the hexagonal axis (g axis) are aligned. However, this
alignment varies from plane to plane along the i axis.
There is usually a wave-like variation of the moment
along this direction of some wave vector kp. This
indicates that J(q) or J(q)+E(q) must be a maximum
at q= ko depending on whether the wave-like variation
is in the planar or the axial component of S.The moment
direction relative to the i axis is varied by the anisot-
ropy terms in the Hamiltonian.

There are essentially three cases.

(case A) 5;r——5 cosH, 5;f——5 sin8 cos(kp R,),
5;p

=5 sill 8 sin (kp ' Ri) .
(4)

where $ and g are mutually perpendicular directions in
the hexagonal plane.

magnitudes of the parameters J, I', etc. , is given in
reference 1. It was conjectured there that there should
also be included in (1) interatomic interaction terms
which contain more than two spin operators, arising,
for example, from quadrupole-quadrupole interactions.
These were thought to be responsible for continuous
changes in the magnetic order (e.g. , the pitch of the
spiral configurations) with temperature. In view of the
uncertain nature of these interactions and the algebraic
complexity of the theory, they are omitted here. How-
ever, their essential effect may be included by allowing
J,;, E;; to depend on T.

The rare-earth metals of interest have hcp structure.
For the Hamiltonian (I), the fact that the lattice is not
Bravais has no effect on that acoustic branch of the
spin-wave spectrum which is observed in ferromagnetic
resonance. The only effect would be the addition of an
optical branch, probably at much higher frequencies.
For this reason, we treat the lattice as though it were
Bravais.

For the algebraic manipulations of this paper it is
convenient to regroup the terms in (I) into sums over
the various powers of 5;~ present and to include 5;~'
with the anisotropic exchange by extending the sum to
include i= j, viz. ,

I. The moment directions lie on the surface of a cone
of angle 8. This is found' in Er at low T.

II. By applying a field along the $ direction greater
than a certain critical value ferromagnetic alignment
can be obtained in' Er at low T. (Putting kp ——0 in
Eq. (4). The moments are seen to make an angle 8 with
the f axis. )

III. In the special case 0=0 the system is simply
ferromagnetic along i. This probably occurs in' Tm at
low T.

IV. In the special case 8= s/2 the moments lie in the
plane and form a spiral. This is found in Dy, ' Ho, ' and
probably7 Tb at high T.

As mentioned in the introduction, the effect of the
hexagonal anisotropy or a magnetic field may destroy
the simple wave variations of the planar components.
The pattern will still repeat after R=2pr/kp, but higher
harmonics will appear in the description of 5;~, 5;„.Dy
shows such distortions at intermediate T and Ho, ' large
distortions at low T. These distorted spirals will be
treated by perturbation theory, but only for the special
case 8=pr/2.

V. In some cases the hexagonal anisotropy causes
ferromagnetic alignment of the planar components, e.g. ,

~

Tb and' Dy at low 2' (i.e., 8=pr/2, kp=0).

(case 8) Sir=5 cos(kp'R;), 5;p=S;p=0. (5)

This corresponds to the high-T phase of Er.' It will
be shown that spin waves do not describe the excited
states.
(case C) All three components have a wave-like varia-
tion, corresponding to the intermediate phase of Kr.' It
will be shown that spin waves do not describe the
excited states.

Thus the main results of this paper will be an evalua-
tion of the spin-wave spectra of the five-order types of
case A, and in particular of the details of magnetic
resonance absorption in these cases. It is first convenient
to find the various relations between the constants in (2)
which hold for the various orderings.

2.3. STABILITY OF CONFIGURATIONS

In order for a configuration described by one form of
A to be stable, the energy obtained by substituting (4)
into (2) must be a minimum for variation against kp

and 0.

' J. W. Cable, E. O. Wollan, W. C. Koehler, and M. K. Wilkin-
son, J. Appl. Phys. 82S, 49 (1961).' R. W. Green, S. Legvold, and F. H. Spedding, Phys. Rev. 122,
827 (1961).
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E/N= —J(ko)Ss sins8 —[J(0)+E(0)]S'cos'8 The stable configuration is type I if the further condi-

+K~' cos'8+KsS' cos'8+ gPHS cos8, (6) tion for the reality of cos'8 is satisfied.

since the eGects of the hexagonal anisotropy and II
perpendicular to { average out in the spiral structure.
(This is not true for cases AII and AV. The conditions
on the constants in these cases are described in Secs. 3.2
and 3.5, respectively. )

The pitch of the spiral is determined by J(ko) being
a maximum; evaluations of J;;which give the observed
results are given in terms of a crude model in reference 1.
The cone angle 8 is given by BE/88=0, i.e.,

K6)0,

K4&0,

(13a)

(13b)

2S-'{—K4'+3KsLJ (ko) —J(0)—K(0)]}cos'8
—E4LJ(ko) —J'(0)—E(0)](0, (13c)

E4' 3Esl J(ko) —J(0)—E(0)]&0. (12c)

(c). (12a) and (11b) hold. If, in addition, (12c) and
the following conditions hold:

6KsSs coss8+4E 4S' cos''8 where

+2L J(ko) —J(0)—K(0)]S' cos8+) PHS =0, (7) cos'8 =—(K4/3KsS') —(1/3KsS')
X{K4'—3Es[J(ko)—J(0)—E(0)]}S, (13d)or

type III. (8)sin8=0,

6EsS' cos'8+4K4S' cos'8

+2[J (ko) —J(0)—K(0)]S'=0,

then the configuration is of type I. If (12a) and (11b)
In the absence of H, Eq. (7) gives two types of solution, hold, but not the other conditions, then the configura-

tion is type IV.
(d). (11a) and (12b) hold. If, in addition, (12c) and

the following conditions hold
type I,

and
cos0=0, type IV. (10)

K6(0,

K4&0,

(14a)

(14b)
A small field B, in general, changes the cone angle from
that given by (9) to a solution of (7). It also pulls the
planar case given by (10) into a shallow cone of angle 8
given by a solution of (7) of the form 8=m/2 CH. The-
solution (8) is always of type III.

There are several domains of stability for the three
cases described here. These domains are determined by
the conditions that the second derivative of the energy
must be positive for the configuration to have a relative
minimum, that the energy must be an absolute mini-
mum if there are two relative minima in a given domain,
and the cos'8 must be real, and have value between 0
and 1. We consider the several possibilities:

2S'{—K4'+3KsLJ(ko) —J(0)—K(0)]}cos'8
—KsLJ(ko) —J(0)—E(0)]&9Es{EsS'+EsS'

+P(ko) —J(o)—K(o)]S'}, (14c)
where

cos'8 = —(Ks/3EsS') (1/3KsS')—
X {K4'—3KsLJ(ko) —J(0)—K(0)]}', (14d)

then the configuration is of type I. If (11a) and (12b)
hold but not the other conditions, then the configuration
is of type III.

3.1. THE CONE —CASE AI

The stable configuration is type III if

x,=L( cos(ko R;)+q sin(ko R,)]cos8—( sin8, (15a)

(a) 3K S4+2K+2+J(k ) J(0) K (0) (0 (iia) This is the case for Er at low T. The hexagonal ani-

sotropy is negligible. We consider the applied field to be

d along the { direction, the axis of the cone, so that the

J(k,)—J(0)—K(0) &0. symmetry about the cone axis is not distorted.
Following a procedure similar to those of references 2

and 3, we define new coordinates such that the equilib-
rium direction of the spin at each site determines the s
direction at that site.iic

and type IV if
ft, =—g sin(k, R,)+g cos(ko R,), (15b)
" =Lg cos(k .R,)+g sin(ko R;)] sin8+( cos8. (15c)

J(ko) —J(0)—K(0) (0,

(b) «sS4+2E4Ss+J(ko) —J(0)—K(0)&0, (12a) 9,, y.;, z;, (, q, and (are unit vectors in the appropriate
directions.

d BC can then be written in terms of the x, y, s coordi-
(12b) nates. Keeping terms only to the st;cond order in S,~
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and S;„,
—P J,,S,"S,= —P J,,{rq sin'0[S, +S,++5, S; ][1—cos(kp (R,—R;))]

i/7 jg7'

+-,'5; S,+[(1+cos'0) cos(kp (R,—R;))+sin'8 —2i cosg sin(kp (R,—R;))]
+5;,S;,[sin.'0 cos(kp (R,—R,))+cos'0]
+5~+5,, [sing cos8[cos(kp (R;—R,))—1]+ising sin(kp (R;—R;)) J

+S,—S,, [slug cosg[cos(kp (R,—R&))—1]—a, sin8sin(kp (R;—R,))]}; (16)
—P E;,5,&5,&

—P E——;,{-,' sin'0[5~+5, ++5,-5, ]+-',5; S,+ sin'8+5;, S,, cos'0 —[S; 5;,+5;+5,,]sing cosg}; (17)
s ~ 7 st 7

Eq g 5;r4=Eq +{5,,4 cos'0 —25,,'(5++5, ) cos'0 sing+-,'S. '[(5+)'+(5, )'+25; 5+]cos'0 sin'0}; (18)

Ep P 5;r'= Ep P{$.' cos'0 —35,,'(S;++5, ) cos'0 sing

+ (15/4)S;,'[(5+)'+ (5 )'+25, 5,+] cos40 sin'g} . (19)

XPH P S,r XPH P{———sing)(5;++5; )/2]+5;, cosg}; (20)

where
S;+=S;,&iS;„. (21)

B,=—-', sin'8[2J(q) —J(kp —q)
—J(kp+ q) +2E (q) —2L],

5,+= (25)'a, , 5, = (2S)'a,*, 5,,=5—a;*a,, (22)

» Eqs. (17), (1&), and (19) we have neglected terms
arising from commutators of S,+, S;, and S;,. These
terms will be of lower order in S and are neglected in
keeping with the spirit of the spin-wave harmonic-
oscillator approximation' which we now adopt. S (which
is the total angular momentum) is very large in the
cases of interest, so this approximation should be quite
good. These terms contribute to the zero-point energy
of the ground state in the spin-wave approximation, and
give a contribution to the linewidth in magnetic
resonance.

For the spin-wave treatment we make the usual
Holstein-Primakoff approximation. '

where
L=6EqS' cos'0+15Ep54 cos40. (28)

This reduction is strictly true only at T=O, since we
found the expression de6ning 0 by minimizing the
energy rather than the free energy.

To find the spin-wave spectrum, it is necessary to
diagonalize (26). Let o.q* and rr q denote the transformed
creation and destruction operators which diagonalize K.

If (7) is used, (27) reduces to

A, = —-', {(1—cosg)'J'(kp+q)

+(1+cosg)'J(kp —q) —4J(kp)
+2 sin'0[J(q)+E(q) —L]}. (29)

where

[a;,a,*]=8;;. (23)
Let

Gq=wqaq+gqa q

(3o)

(31)
The Fourier transforms of a, and a;* are

a,=N & P, a,e'q'"' a ~=N & P, a,*e 'q'a' (24)

then
[n„x]=E~,. (32)

[aqÃq' ]=~qq'

The Hamiltonian (2) becomes

X=Zpyg, [25A,a,*a,+SB,(a,*a,*+a,a,)], (26)

where Zp is given by (6), and

A, = (1/2$) {—sS[(1—cosg)'J(kp+q)
+ (1+cosg)'J(kp —q)+2 sin'0(J(q)+E(q))
—4 cos'0(J(0)+E (0))—4 sin'0J(kp)]
+EqS'[—4 cos40+ 6 sin'0 cos'0]
+EpSP[—6 cos'0+15 cos40 sin'0]

—XPH cosg}; (27)
' T. Holstein and H. PrimakoG, Phys. Rev. 58, l098 (1940).

(25)

The u,* and a, are the spin-wave creation and destruc-
tion operators.

This leads to the secular determinant

2',—Eq

2SBq

—2SB,
—2SA q

—E, i

=0 (33)

Use has been made of the relation B,=B,. Note that
A a&A q. (The asymmetry of A, arises from the 5;&,

„

term in the exchange energy. )
The secular determinant is solved for the spin-wave

energies.

Ra=5(Aq —A,)&5[(Aq+A q)' —4Ba']&. (34)

The spin-wave energy, Z„must be positive for stability.
If both a positive and negative energy are present for a
given q (say, qr), we attach physical meaning only to the
positive value. There must be at least one positive value
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of energy at every q for stability. Consider the case for
qg when

(A„—A „)&[(A„+A„)&—4B,,o]~.

There would be two positive values for 8„,but there
would be two negative values for E „.Hence for stable
spin waves

~
A,—A, ( ([(A,+A,)'—4B,']'*.

This means that the spin-wave frequencies are

Aio, =S(A,—A,)+S[(A,+A,)'—4B,']&. (35)

The frequencies are obtained from (35), (28), and (29).

A&a(&ko) =&S cos8[J(2ko) —J(0)]
+S{[2J(ko) —J(0)—J(2ko)]
X[cosq8(2J(ko) —J(0)—J(2ko) )—2 sin'8[K(ko)+L]) &. (45)

In (41) the term in S,, gives rise to nonresonant
absorption (s pumping). "
XPH f sin8 P, S,, cos(ko R,)

= ——',)PH, i sin8 Pq [(w,nq* —b,n, )
X (wq+ao&q+ao ~q+ao& q a, )——

+ (wq~q* bq~ q—) (wq -ao~q a.-bq -ao~—q+-ao*)]-(46)

R —6 =1.e a

The secular determinant and the value of 8, give

(36)

The values of b, and m, are needed to find the relative
intensities of the frequencies excited in a resonance
experiment. Equation (30) leads to the condition

If the rf field is applied along t,
Kr, i=hpH, i Q; S,r,

Kr,q='APH, i P;(—S;, sin8+S;, cos8).

The resonance arises from the term in S; .

(47)

(48)

A,+A, [(A,+A,)—' 4B,']'—
6@

{—[A +A —((A +A )' 4B ')*]'+—4B ')'

28q

XPH, i g; S;,sin8= oaXPH, q sin8(2SN) &

X [wo&o—bopo* —bo&o+wo&o*]. (49)

&o(0) is excited with relative intensity

8 (0) oq X'S1V sin'8[ —bo+wo]' (50)
Kg=

{—[A +A —((A +A )' 4B ')l]'+—4B ')'
so t .t

so that
(39)6q=5 q) 'Nq='N q.

Ao ——Bo——
o sin'8[J(ko) —J(0)—E(0)+L], (51)

(52)(o(0) =0.

The question of interest is what frequencies are
excited in a resonance experiment and with what
relative intensities.

Apply an rf field along the f direction.

~)rf=~PHrf Zi Si(j (40)

K~,i =XPH, i P, [S,, cos(ko R,) cos8
—S,„sin(ko R,)+S;,cos(ko R,) sin8]. (41)

The terms in S; and S,„giverise to resonance effects.
This part of BC~,& is obtained in terms of e* and n by
taking the Fourier transform and using the inverse
of (31).

Then
Q'q=wqGq+bqG (42)

The absorption in the ground state arises from the terms
in nao* and n a,*.The frequencies co (ko) and io(—ko) are
excited with relative intensities, 6,

&(&ko) ~ VSÃ[(ba o+wa ') (1+cos'8)
&2 cos8+2ba, wa, sin'8]. (44)

XPH f Q; [S; cos(ko R,) cos8—S,„sin(ko R,)]
=)PH, iX ao (2SN) r{[irao~+nao]

X[(—ba, +wa, ) cos8+ (wa, +ba,)]+[n-a,*+n-a,]
X[(—ba, +wa, ) cos8 (wa, +ba,)—]). (43)

When the frequency goes to zero, (50) has no meaning
since it is possible to create an infinite number of spin
waves of zero energy. If the hexagonal anisotropy were
included, io(0) would not be zero. This possibility is
discussed in Sec. 3.4 for the case 8=m./2.

S;=S(g sin8+( cos8). (53)

For erbium' this critical field is about 17 kOe at 4'K.
This value is obtained from Fig. 1 of reference 6 and is
the field necessary to pull the spins into ferromagnetic
alignment in the $—{ plane.

If H~~ is the applied field. along l and Ha that along $,
8 is given by

0=2S'X(0) cos8 sin8 —4EqS' cos'8 sin8
—6EoS' cos'8 sin8 —XPH~~ sin81 XPHa cos8.

The spin-wave spectrum may be found by the method
demonstrated in Sec. 3.1 using Eqs. (16—20) with ko ——0

"E.Schlomann, J.J.Green, and U. Milano, J.Appl. Phys. 318,
386 (1960).

3.2. FERROMAGNETIC ALIGNMENT CAUSED
BY APPLIED FIELD GREATER THAN

CRITICAL FIELD—CASE AII

For the cone configuration of case AI, if a magnetic
field greater than some critical value is applied in the $
direction, the spin configuration becomes simply ferro-
magnetic at an angle 8 to the f axis.



and, in addition,

XPH, P, S,p
XP——Hi P,(5, cos8+5, , sin8). (54)

The spin-wave frequencies are

ZPH, )
& (q)= (

—2&L&)q) —J(o)i-
sin8 i

a/Hi
X —2sjq —J0

sine Z, = g cosP,+g sing;, (8=90'). (60)

E4 and K6 do not appear with the present treatment of
the problem when 0=90'.

As already noted, the last two terms in (59) give rise
to harmonics in the sinusoidal spin order. To study this
a slightly more general form of the transformations
(15) is needed. The phases kp R, are replaced by un-
known p;, which are to be found by an interation
procedure. For instance,

—2S sin'8$E(q) —L]
~

. (55)
i

An rf field applied along either the $ or t direction
excites o) (0).

Ao)(0) = XPH i l).PH i—2S sin'8t E(0)—L] . (56)
sing sin8

The maximum intensity is obtained for the rf Geld

perpendicular to the magnetization in the $—t' plane.

3.4. SPIRAL IN THE PLANE —CASE AIV

This is the case for dysprosium at high temperatures
where the helix in the plane is undistorted. This means
that the hexagonal anisotropy has negligible effect in
this temperature range. The results can be obtained from
case AI by setting 8=pr/2.

An rf field along $ excited o)(+kp) and o)(—kp) which
are equal in this case.

Sop(&ko) = 25( E(ko)LJ(ko) p J(2ko) p J(0)])~ (58)

An rf field along f would excite oo(0), however,
o)(0) =0, so no resonance would be observed.

For this special case we wish also to study the in-
huence of the hexagonal anisotropy energy and of a
constant magnetic 6eld in the plane of the spins on the
spectrum and resonance absorptions. From Eq. (2) the
Hamiltonian will be

K= Q J,,S,"S,—Q E;,S,rS, r+XPH P 5;)
i&7. z7

+(P '/2)Q DS,p+iS,„)'+(5, ipS;„)']. (59)

3.3. AXIAL FERROMAGNETISM —CASE AIII

This is the case of ferromagnetic alignment with a
static field along |,where the Fourier transform of the
exchange energy may, however, have its maximum at
some ko different from zero.

An rf field along $ excites

Ao) (ko) =2SE(0)—4E45' —6EoS'—l)pH. (57)

o)(kp) rather than o)(0) is excited in this case because of
the peculiar definition of coordinates (15), for even with
0=0, x, and y, rotate from site to site with reciprocal
pitch given by ko.

The Holstein-Prima%of operators defined by (22) and
(23) in terms of the new local spin operators are again
substituted into (59). The resulting expansion in powers
of the operators u;, a;* is cut off at the quadratic terms,
giving

X iXp+BCi+Xpp (61)

where Ko, X~, K2 are the constant, linear, and quadratic
terms.

The phases P, are determined by setting NCp/8&, =0.
One has

NCp/BP;= —2 P J,, sin(P, —P;)
7+4

+(l),PH/5) sin))), +6Pp'5' sin6$, =0. (62)

Equation (62) turns out to be equivalent to setting K,
in (61) equal to zero. Equation (62) is solved by
iteration:

g, =

koan',

+8&,")+8&,")+ (63a)

where kp is again the wave vector which maximizes J(q).
Substituting p=kp|; into the last two terms of (62),

(i.e., the perturbing terms) and substituting )t, =kpt,
+8&,&') into the first term, one finds that

8P, &') =X sin(kpf';)+ 7' sin(6kpi;), (63b)

and

X= (liPH/5) t 2J(kp) —J(2kp) —J(0)]—', (64a)

F=12Po S $2J(ko) —J(7ko) —J(5ko)] ~ (64b)

The coeKcients X2, X~, X7, X~2 turn out to be rather
involved expressions of second order in H and I'6'. The
quantities X, I', which measure to first order the higher
harmonic content in the spin-structure are essentially
equal to the ratios of the perturbing energies to the
spin-interaction energies.

B)f),&') =Xp sin(2kot;)+Xp sin(5kpt', )
+Xi sin(7kot )+Xip sin(12koi;). (63c)

Here
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Xs in (61) is given by

Xo= —S Z J;,[ 2—G,*G,+ '(G—,*G,+G;G,* G—,*G,* G—,G,)]cos(y, —y;)

—-,'S Q (J,p+IC;;) (G;*G,+G,*G;+G,*Gp*+G;G,)
.U.

—2Ps S p [6G,~G;—(15/2) (G;*—G,)'] cos6$,—XpH p G;*G, cosp, . (65)

The running-wave transformations (24a) are again
substituted into Eq. (65). In addition the functions
cos(p,—g;), cos6&;, cosp, appearing in (65) are expanded
in Taylor series about cos[ko(f;—l';)], etc. , with the
help of (63b). In the resulting expression all terms with
vanishing momentum, (i.e., G,*G„G,G „etc.) are re-
tained up to the second order in H or I'6', and all off-
diagonal terms, (i.e., G,*G,+k, etc.) up to the first order.
The result is

that the antiferromagnetic case is a rather special limit
which gives qualitatively different results for some
frequencies.

In this section a modified perturbation procedure
due to Pryce" is used which is suitable for weakly
interacting systems in which only the system of interest
has very closely spaced energy levels. In view of (67) it
will be possible to use this scheme here to attempt to
find Mo. We define energy operators

Xs Q'q Xsq) (66a) X,o=2A, 'G,*Gq+Bq'(Gq*G q*+GqG q), (68a)

Xo=q2SAq Gq Gq+SBq (Gq G q +GqG q)

+HSq(Gq+ko Go+Go ko Gq+c. c—.)
+HTq(Gq*G q+kp*+Gq~G —q kp*+c.c.)—
+H q( Gq G qpkp +Gq—G q ko- —

+Gq kp Gq G—q+kp Gq+C. C.)
+ps Vq(Gq+skp Gq+Gq skp Gq+c.c.)
+I'ss~, (G,*G,+sk,*+Gq*G, sk,*+C C )-
+Ps fJq( Gq G qyskp +Gq G—q skp- —

+Qq skp Gq
—

Gq+skp Gq+c.c.). (66b)
Here,

A,'= A q+H'A qrr+ (Ps')'A, „, (66c)

B,' =B,+H'B,Ir+ (P )'sBs, . (66d)

A, and B, are given by (27) and (28) with 0=90'.

independent of H and I'6'. They are rather complicated
functions of J(q+qsko), ps=0, &1, 2, 5, or 7. Rq and Uq
are odd functions of q, while all the others are even.

The general expressions (35), (37), and (38) for the
frequencies and normal modes of the spin waves apply
here with 8=90 .

Apo(q) =2Sf[E(q)+J(q) —J(ko)]
X[srJ(ko+q)+-', J(ko—

q)
—J(ko)]):, (67)

and op(0) =0 as in (52).
Accordingly, when corrected for anisotropy and

applied magnetic field po(0) ought to lie in the microwave
region, and is, thus, of special interest. An attempt to
calculate the correction to po(0) from the Hamiltonian

(66) by means of conventional second-order perturba-
tion theory led to an infinite result. This is related to
the fact that the coeKcients bq and wq given in (37)
and (38) tend to infinity as po(q) goes to zero. A semi-

classical treatment which uses the equations of motion
is given in the Appendix. This is similar to the method
often used in antiferromagnetism, and it is shown there

X'=Xs—Qq Xqo, (68b)

where Xs is the Hamiltonian defined in Eqs. (66).
Pryce's scheme then prescribes an effective Hamil-
tonian, 3CO, for the q=0 spin wave as follows:

Xo=Xoo+(glX'lg) —E.(&glX'l~&(~IX'lr))(&) ' (6»

Here g and e denote the ground and. excited states of all

spin waves except the wave q=0. No integration over
the coordinates associated with this wave are taken
when finding the matrix elements appearing in (69).
Xoo and X' are defined in (68a) and. (68b).

When Eq. (69) is applied to the Hamiltonian (66),
one finds that

Xo=Xoo+2S[H'Jorr+ (&s')'A o,]Go*Go

+S[H BOK+ (+s ) Bop][GO Go +GOGO]) (70a)
with

~oe—&os
= (X/XPHS) (So—To+Sko—Tko+2~ko)', (70b)

~op —&0~
= (F/6Ps'S') (Vo—IVo+ Vsko —IVsko+2fJsko)', (70c)

where X and T are as defined in (64a) and (64b). Only
the differences of the A's and B's as in (70b) and (70c)
will be of interest. Since Ao Bo from (51), we——have

A„~o& 2s[2Ao]~[Ho(Aorr+AoH —BoH —BoH)

+(Ps')'(Ao, +Ao„—B „—B,„)]'* (71)

using (35), (68a), (70) and (66c,d).
However, it is found that both the expressions

(A OH+A OH BOH BOH) and (A op+A op Bop Bop)
vanish identically to first order in LI and I'6. The
second-order terms have proved too complicated to be
calculated explicitly. We can see no reason why they

"M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 25 (1950).
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cosqb;= P t„cos(e kos).
n=O

(74)

This expansion is substituted back into (73), the
a,*, a; are replaced by running-wave operators (24a),
and the summation over all atoms is taken. Transforma-
tions whose form corresponds to the inverse of (31) then
give for the interaction in (73)

XPH, &i (5/—2) :(Ã/2) :P„-&„(~„a-,+.b.„)
&& (&.i,*+a ;k,* ~ a, —a i„). —(75)

It follows that the resonance absorption intensities for
the various harmonics will be proportional to

(ai a,+b~i,) . (76)

From (63) one finds that to first order in H or P6'

cosp, =cos(ko{,)—-,'X+-,'X cos(2ko{,)
——,

' 7 cos(5ko{;)+-,'I' cos(7ko{;). (77)

To second order, t9
——t~o=t~2=0, whereas ti, t2 ~, t8, t~~,

t~3 assume rather involved forms, which in general de-
pend on both X and V. Since, when 0=90', A„given
in (27), is an even function, it follows from (37) and (38)
that

(~.+b.)'= (~.+&.)'(~. &.) '*-
= —25LK(q)+ J(q) —J(ko)]/h(v(q). (78)

When m=0, (78) becomes

t w(0)+b (0)]'=452 (0)/Ace(0), (79)

where ~(0) is presumed to be of the form (72). At a fixed
frequency this leads to an intensity of absorption for
this mode of the same order as that of the main reso-
nance at wave vector ko.

The intensity of the absorption of the second har-
monic will be roughly reduced by a factor X' relative
to that of the erst harmonic, and the absorptions of the
fifth and seventh harmonic by the factor P'-. The
relative intensities of the 3rd, 4th, 6th, 8th, 11th, and
13th harmonic are of fourth order in X and V, and it
appears unlikely that these can be observed.

should vanish and it would seem that „(o)will be quad-
ratic in H and P6'

0(H4+H'P6' '+Pg' 4)'*. (72)

A time-dependent magnetic held. in the plane of the
spins, H, g, gives to rise resonance excitation of spin waves
of wave vector eko, where e stands for one of certain
integers, as will now become apparent. If the magnetic
field points in the g direction, the component of the
interaction linear in spin-wave operators is, from Eqs.
(15) and (22),

7PH, i i—(5/2)l P;(a;*—a,) cosy, .

From Eqs. (63) one can expand cosP, as

3.5. FERROMAGNETIC ALIGNMENT IN THE PLANE
CAUSED BY HEXAGONAL ANISOTROPY-

CASE AV

This is the case for dysprosium and terbium at low
temperature where with no applied 6eld the spins are
ferromagnetically aligned along the & axis.

The Hamiltonian is

X=—g J;,S; S,—Q E,,S;rS,r
jgj i j

&&2{(P6'/2)Z L(5'i+aS'.)'+ (5'i iS—'.)"]

+7 PH «S,i+XPH &5;„}.(80)

We include an applied field with components along $
and p. Such a field affects the resonance frequency in a
most interesting manner, as will be shown below. If the
equilibrium position of the spin points along the +$ axis
with no applied field, then the net applied field must
point within +30' of the $ axis. Otherwise the spins will

merely change their equilibrium direction to the
hexagonal axis nearest H.

Hg ~Hl l tan30'. (81)

To allow the equilibrium position of the spins to lie
other than in the $ direction because of the applied
field, the coordinates used are

x;=—(, (82a)

g;= —g sinb+g cosh, (82b)

a, = g cosb+g sinb, (82c)

where, as previously, a; is the equilibrium direction of
the ith spin.

', PG' p; DS,i+—iS;„)'+(5;i—iS;„)']
=P66 P; I 5,,' cos68—65;,'5;„sin65

—155,,45;„'cos68], (83)

keeping only terms to second order in 5,„.
The Hamiltonian can be written in terms of creation

and destruction operators using the same technique as in
case AI. The exchange energies can be obtained by
setting ko ——0 and 8=ir/2 in the appropriate expressions
in case AI.

The equilibrium energy is

Eo/X= 5'J (0)+P6'5—' cos68

+MPH«5 cos0+XPH, S sinb. (84)

The conditions that this be a minimum are

0= —6P6'5' sin68 —liPH«5 sinb+XPHiS cosb (85)

and

—36P6'5' cos68—XPH, ~S cosb —XPH,S sinb) 0. (86)

The spin-wave frequencies are given by

A~(q) =25{L
—J(q)+J(0)—E(q) —3P66S' cos68

—(PPH~~/25) cosb —(XPH&/25) sinb]

XL
—J(q)+J(0)—18P6'S' cos68

—(XPH, ~/25) cos8—(XPH&/25) sinb] }'*. (87)
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where using the notation (82), 1V, is the demagnetization
factor of the sample along the magnetization direction
in the plane, X„along the perpendicular direction to
this in the plane, and A, along the direction of the
hexagonal axis.

For H=o:

App(0) = 25{[E(0)+3Pp'5'][18Pp'5']}~. (89)

4. PHASE WITH LONGITUDINAL SPIN
VARIATIONS —CASES B AND C

In all the variations so far treated there has been one
essential feature that allowed a discussion of the excited
states in terms of spin waves. This was the fact that each
site showed the same total-ordered magnetic moment,
although its direction varied. In the high-T phase of Er
the { component alone is ordered but this shows a
sinusoidal variation in magnitude along the {axis. In the
intermediate-T phase this component retains this
property, although the (, ti components are ordered and
vary only in direction.

It is rather dificult to define spin deviations and
transform the Hamiltonian in the usual way in this case.
Instead, we examine the equations of motion which give
an alternative method of approach in the usual case."
Since we shall only be concerned with the form of the
result, the algebra is simplified by putting H=O in
Eq. (2). Then

2
{Z[J',5'»'

g
(J ~+E,)5+S~t]e'P R;f 2E, Q S.tPS.+.

—3Ep Q S,tPS;+}, (90)

where as before terms of order 1/5 have been neglected
in taking the commutators.

Now substituting in the equilibrium value for Sg,

St=5 cos(kp R), (91)
"C. Kittel, Phys. Rev. 73, 155 (1948)."F.Knglert, Phys. Rev. Letters 5, 102 (1960);V. L. Ginzberg

and V. M. Fain, Soviet Phys. —JETP 12, 923 (1961).

An rf field along the { direction excites tp(0).
In this ferromagnetic phase there will be considerable

demagnetizing fields arising from the long-range dipole-
dipole interaction. The important effects of these on the
resonance frequency were first pointed out by KittelI2
and they may be easily seen to appear in the frequency
calculated here in a similar manner. Including these
effects, we have

A&p(0) = {p,pH~~ cos6+H& sin5)
+6Pp'S' cos65+2E(0)5—(cV, 1V,)3—I]
)( [36PpPS' cos68+ XP (H „cos5+Ht sin)

—(1V,—1V,)M]}&, (88)

5. DISCUSSION

In order to give a quantative discussion of the reso-
nant frequencies and intensities derived in Sec. 3, it is
necessary to consider some model of the exchange and
anisotropy constants in Eq. (2) along with some of the
experimental results. In particular, it is possible to
relate various combinations of J(q) to the critical field. ,
i.e., the field necessary to change the spiral moment
arrangement into a ferromagnetic one. Neglecting
anisotropy, this is given by

[J(kp) —J(0)]5sine=amPH, . (93)

It is more convenient to define II,'=II,/sino. In Eq.
(93), 5 is the temperature-dependent value correspond-
ing to the ordered moment, so that it goes to zero when
the spin ordering disappears.

gives

AtpS+(q)
=5[J (q+kp) —J(kp) —E(kp)

+-',E45'+ (15/8)E,54]5+(q+kp)

+5[J(q—kp) —J(kp) —IC(kp)

+$E45'+ (15/8)EpS']5+(q —kp)

+ (sE45 + i p EpS )[S+(q+3kp) +S+ (q—3kp)]
+—,',E 5'[5+(q+5k )+S+(q—5ko)]. (92)

In the limit ko —+ 0 this becomes equivalent to the spin-
wave frequency derived for axial ferromagnetism [cf.
Eq. (57)].

It is obvious from (92) that S+(q) is not a satisfactory
normal coordinate of the system. Unless eko is a
reciprocal lattice vector for some whole number n, (92)
gives rise to an infinite set of coupled equations. Thus all
the true normal coordinates obtained from their solution
will contain some admixture of 5+(0) and hence absorp-
tion of a resonance field will take place over the whole
frequency range. In this case spin waves do not form
a satisfactory description of the excited states and no
resonance will be observable.

In the intermediate phase with ordered f and ti

components an equation of motion considered in the
same approximation leads to a result similar in form to
(92) but more complicated. The general result that
S+(q) is not a satisfactory normal coordinate is repeated,
and again spin waves do not form a correct description
of the excited states and no resonance will be observable.
However, there is one temperature (about 30'K) in this
phase where the magnetic order repeats in an integral
number (8) of lattice layers. For this temperature, there
will be only five coupled equations which contain S+(0)
and hence only five frequencies at which a well-defined
resonance will be observed. In view of the uncertain
values of the parameters, these equations have not been
solved, but in general the frequencies will be of the
order of the exchange and anisotropy energies; i.e., in
the infrared.
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In the axial ferromagnetic case III,
Asp XP(Hg —H„). (101)

In the planar spiral case IV the main resonant frequency
is crudely like

Asp XP (H.'H~) l, (102)

with intensity like ferromagnetic resonance. Hexagonal
anisotropy and an applied magnetic field in the plane
have the effect of introducing harmonics in the sinus-
oidal spin order of the crystal, notably the zeroth,
second, fifth, and seventh harmonic.

In reference 1 it was shown that a simple model
which used exchange interactions only within one layer
(Jo) and between nearest (Ji) and next-nearest layers
(J2) gave a reasonable interpretation of the facts. Since
in this paper the anisotropy energy is included explicitly,
there is no need to make the further assumption of
anisotropic exchange here. The angle in the spiral was
given by

coskoc = cosn = —Ji/4 J2~ (94)

(c is the lattice constant along i), and

P PH, ' =2S$Ji (cosn —1)+J2 (cos2n —1)]
=4SJq(1—cosn)', (95)

using (94). It turns out that this relationship between
H, ' and o. is largely verified experimentally and gives
some conGdence in the model. Within it, various other
expressions found in (45), etc. , are:

J(2ko) —J(0)= 16SJ2(1—cosn)'(1+cosn) cosn, (96)

and

J(2k 0)+J(0)—2J(ko)

=4SJ2(1—cosn)'(2 cos'n+2 cosn+1). (97)

Within this model these expressions will show roughly
the same variation with T as H, ', since the term
(1—cosn)' shows the main variation.

The anisotropy terms appearing in (45), (56), (57),
(67), and (88) determine an anisotropy field, say Hz.
The actual field varies from metal to metal and can be
related to the I'~ which were calculated on a crystal-
field model in reference 1.In the absence of experimental
results, it does not seem worth pursuing the detailed
calculations in each case. It is also convenient to define a
hexagonal anisotropy Geld.

XPH p.
——P6'S'. (98)

With these definitions, the possible resonance fre-
quencies can be crudely written as follows.

For case I, from (45),

Asp~kP(H, ' cosg+fH, '(H, ' cos'0+H~ sin'8)]') (99)

The intensity is proportional to (44), i.e., of normal
intensity for ferromagnetic resonance. For case II,
from (56),

Asp XP/H, (H,+Hg)]i. (100)

since it was found analytically that the coefficient of
lower order terms H&' and HA,

' in the expression for Rp

vanish.
Associated with an expression like (103) for spp is an

absorption probability of the same order of magnitude
as that of the main resonance q= ko. On the other hand,
if the rf Geld is applied parallel to the c axis the corre-
sponding absorption probability will be reduced by a
factor (H,/H, )'. It is expected that an extension of the
analysis for the planar case to the conical case of
arbitrary 0 would lead to a similar qualitative result.

Estimates indicate that H~ is large, 10'—10' G,
at low temperature and falls with increasing T, the
slowest component, coming from X(0) goes like 3f. In
reference 1, HI, was estimated 10' 0 in Dy, and
this falls very rapidly with increasing T. H, varies
widely with T, falling to zero like M near the Weel point
and also falling to zero again at T,.

The simplest cases for observing resonances of a kind
not dissimilar from the usual kind would be in the
planar ferromagnet for Dy and probably Tb in their
low-T phases. The frequency (88) can be brought into
the microwave range if H~ were applied in the hard
direction, so that it worked against H p, (see Sec. 3.5). In
the second factor of the square root in (88), for 8)15',
negative I'6 and X give the term in I"6 opposite in sign
to those in applied field. The applied field effectively
cancels part of the hexagonal anisotropy field. Thus by
a choice of applied Geld such that 8&15' the frequency
behaves roughly like

As) XPf(H p,
—aH)Hg]l. (104)

The frequency may be lowered to a more convenient
experimental value.

The most desirable condition would be to have the
applied field almost balance the hexagonal anisotropy.
This could probably be done most conveniently by
applying a field in the hard direction large enough to
bring the spins to equilibrium in that direction (8=30 ).
For this a,ngle (85) gives

H,/H„=1/K3 (105)

As mentioned in the Introduction, the resonance
absorptions associated with these harmonics are ex-
pected to furnish independent information about the
spin-wave spectrum. In addition, the relative absorption
intensities, especially of the second harmonic as the
transverse field is varied, might give additional informa-
tion about the Fourier transform J(q) of the spin
interactions.

Except for the zeroth harmonic the absorptions will

lie in the infrared; the associated frequencies will be
given with sufficient accuracy by Eq. (67). However,
the frequency sp(0) will be quite low, and is determined

by Hp, and H p, using (72)

As)(0) XP(H, '+Hi'Hg'+Hp, 4)~/H„(103)
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while (86) demands

XPH—„S/K3)—18Fp'S'

For 5=30', (88) becomes

XPHii V3
A(u (0)=25 E(0)—3Fpo54+

5 3

(106)

the spin operators. We discuss this method for a
Hamiltonian similar to (59); however, for simplicity
P6' ——0 and the field is applied along the g direction.
(This is done so that the limiting case of an anti-
ferromagnet in the plane may be considered. For
koI, =em, the spins point alternately in the +$ and —$
directions, so that in this limiting case the field is
applied perpendicular to the spins. )

XPHii V3—18Fo'5'+ — . (107)
S 3

If (106) is just satisfied, the second factor in (107) can
be made quite small, and a conveniently low frequency
obtained. Hence experimentally it would probably be
most advantageous to use a field just strong enough to
hold the spins in a hard direction.

The case of the cone spiral in Er at low T is probably
most simply investigated with fields in the plane of a
magnitude close to the critical field. It might also be
possible to observe the resonance in the planar spiral
cases, Dy and Ho at high T. Tb has such a phase at high
T but over so narrow a range where M is small that the
linewidth is likely to be large. As discussed below t e.g. ,
(108)j it is possible by applying a field near the critical
6eld to bring the resonance into the microwave region.
This will be easiest at the low-T end of this phase where
II, is small and the hexagonal and applied-field distor-
tions severe. In this temperature region it might also be
possible to observe the higher harmonics at high
frequencies.

Both the cone and the spiral in the plane are greatly
distorted by a Geld with magnitude just less than the
critical value. The spin-wave spectra in these circum-
stances are radically changed from those in the un-
distorted cone and spiral. In particular, the spin wave
excited in a resonance experiment has low frequency.
Physically, this is because such a spin wave corresponds
to a ferromagnetic alignment. Its energy therefore goes
to zero when the ferromagnetic phase becomes stabl.
This occurs at the critical 6eld. In the presence of
hexagonal anisotropy and an applied field in the plane,
H, the resonance frequency for the cone is like (99) and
that for the plane spiral like (102) with H, ' replaced by

EI,' —+ H, '—HI,—H~, (108)

where Ho+H, is an appropriate combination.
Thus, a low frequency can be obtained for Hz+H,

slightly smaller in magnitude than B,'.
The weak a& 0 resonance given by (103) should also

be most easily observable in the temperature regions
where the spin arrangement distorts most easily, i.e.,
just above T, in Dy and at all low T in Ho.

APPENDIX

There is an alternative method for treating the dis-
torted helix in the plane (Sec. 3.4). This is to consider
the equations of motion for the Fourier transforms of

~= —P J,,S,"S,—P E,;5,„5,„+~PHP 5,„.(A1)

Equations (63b) and (63c) for the distortions in
angle hold when the applied field is along $. For a field
along g

@,=kpl, +8/;, (A2a)

8Q'=x cos(kp{'g) —xp sin(2kp|', ). (A2b)

We seek. the equations of motion for the components
of S(q).

S(q) =1V—i Q;(S,,e,+S,„e„+S,,e,)e'p "'. (A3)

The Hamiltonian may be expanded correct to terms
of the order H'. Then the equations of motion may be
found using the random-phase approximation as in
Sec. 4. The equations obtained are

A(uS. (q) = —iG(q)5„(q)+C(q)5„(q—kp)

+D(q)S, (q+ko), (A4)
where

G(q) =25{J (kp) ——,
'J(Ep+q) —-',J(—kp+q)

—-'x'$4J(ko) —2J(2k p)
—2J(0)

—2J(kp+q) —2J(—kp+q)+2J(q)
+J(q+2kp)+ J(q—2kp) 7)+pXPHx, (ASa)

C(q) = 25xLJ(0) J(2kp) J(q)+J(q—2kp)

+J(q+ko) J(q ko)] '—&PH, —(Asb—)-
D(q) = Sxr J(0) J(2kp)+ J(q+2kp) —J(q)

—J(q+ko)+ J(q—kp) )+2XPH, (ASc)
and

I'gooS„(q)=oR(q)S (q)+FS, (q kp) FS (q+—kp) (A6)

where

R(q) =2S{J(kp) —J(q) —E(q)
—-'x'$2J(kp) —J(2kp) —J(0)$)+-',lIPHx, (A7a)

F= —,'Sx(J(0)—J(2kp) $+-', XPH. (A7b)

In general any S(q) is linked to S(q&kp). We are
interested in the frequency for S(0), &u(0), which would
be zero if no applied field were present, S(0) is linked
to S(&kp). S(kp) in turn is linked to S(2kp) as well as
S(0). We neglect the interaction with S(2kp). This ap-
proximation corresponds to that of second-order pertur-
bation theory. The secular determinant for co then is
obta, ined from (A4) and (A6) neglecting the terms in
S(&2ko) that come in for fgvS(&ko),
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The secular determinant is

iR(0)
0
p
0

—iG(0)

C(kp)

0
D(—kp)

0

0 D(0)
—F 0
—cp —iG(kp)

iR(kp) —tp

0 0
0 0

0

0
0

iR(kp)

C(0)
0
0
0

—iG(kp)

=0.

We express co in a series with H as the expansion
parameter:

07=Gop+rprH+cpsH + ' ' '. (A9)

H'cpr(s)0=R(0)(G(0)+$1/G(kp)]
X t D(—kp)C(0)+D(0)C(kp) j). (A10)

Here R(0) and G(kp) are of the order of H', C and D are
of order H, and A (0) is of order H'. The expression in
the curly brackets is equal to zero. Thus as noted in
Sec. 3.4, pp(0) is zero to ftrst order in H.

It is interesting to note that this result does not hold
true for the case of an antiferromagnet confined to an
easy plane with an applied field in the plane perpendicu-

For cp(0), the frequency of interest, rpp
——0. It is

possible to expand (AS), choose the lowest order terms
in H (of order H'), and set them equal zero. (This
corresponds to the usual perturbation method. ) This
gives a value for H' cur(s0),

—iG(0)
iR(0)

0 0
0 0

0 0

=0 (A11)—iG(kp)

iR(kp) —cp

Hppr = (GpRp) '

Using (ASa) and (A7a),
— J(kp) —J(0)—R(0) --:

Hu)1 ——gBII
21 (kp) —J(2kp) —J(0)

(A12)

(A13)

'4 T. Nagamiya, K. Vosida, and R. Kubo, Advancesin Physics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1955),
Vol. 4, p. 1.

lar to the unperturbed position of the spins. "For this
particular case, ko lies at the edge of the Brillouin zone
so that +kp and —kp are equivalent. This means that
S(q+kp) is the same as S(q—kp). In this case, (AS)
reduces to a 4)&4 determinant with no elements con-
necting q=0 and q=ko.
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Nuclear Magnetic Resonance in Metallic Single Crystals
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A method is presented for observing nuclear magnetic resonance absorption in metallic single crystals.
Single crystals thick compared to the skin depth are used and accurate corrections are made for the dis-
tortion due to eddy currents. Experimental results for aluminum and copper single crystals with the fixed
magnetic field parallel to the [001$, L111), and L110$ directions, respectively, demonstrate the feasibility
of the method. The Knight shifts in aluminum and copper are found to be isotropic and equal to the powder
values. The experimental second moments vary with orientation approximately in proportion to the theo-
retical second moments, but are somewhat larger, as in the powders.

INTRODUCTION

S INCE the discovery of nuclear magnetic resonance
absorption (NMR) in metallic copper by Pound, '

XMR experiments have been performed on a, wide
variety of metals and alloys. Because of the classical
skin effect a,rising from eddy currents, the radio-
frequency magnetic fields will penetrate a good con-

' R, V, Pound, Phys. Rev. 73, 1112 (1948).

ductor only to a depth of a few thousandths of a centi-
meter. For this reason, virtually all the NMR work on
metals up to now has been performed on finely divided
powders, thin polycrystalline foils, or thin evaporated
layers. No NMR experiments have been reported on
metallic single crystals. It would be highly desirable in

studying many phenomena in m.etals, such as a,niso-
tropic Knight shifts and relaxati. on times or quadrupole
interactions, to work with single crystals. The purpose


