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The change of the Fermi matrix element of the P decay of 0" to the first excited state of N" from its
value V2 due to Coulomb corrections is reestimated. It is shown, that for pure 1p-shell states the reduction
is between 0.02 and 0.20% Configuration mixing in the 1p shell may increase these figures considerably.

Instead of arbitrary admixtures of higher configurations, a collective model for the presumably most
important of such admixtures is considered: The model of a "breathing state" (radial density oscillation).
It is shown that for sufficiently low values of the energy of the first excited breathing state compatible with
experimental data for the level spectrum of the mass-14 system, the P-decay matrix element may be reduced

by as much as five percent. In view of the lack of present knowledge about the breathing state and nuclear
compressibility for light nuclei, it is concluded that the discrepancy between the measured values of the
vector and p,-meson decay coupling constants of P decay may well be due to such an effect.

I. INTRODUCTION

HE observed near equality of the p-meson decay
coupling constant G„and the vector coupling

constant Gv as measured from the 0'~—N'4* (2.312-
Mev) p decay forms the basis of the Conserved-
Vector-Current theory. "Recent experiments' 4 have
indicated the validity of this theory. A re6ned measure-
ment of the lifetime of 0'4" and of the transition
energy' has yielded an improved value for G&, G&
=1.4145&(10 "erg cm' without radiative corrections, '
and Gy=1.4025)&10 ' erg cm' if one applies the
radiative corrections' as calculated by Kinoshita and
Sirlinr and Herman. ' (These numbers do not include
the Coulomb corrections. ) This has to be compared
with the p,-meson decay coupling constant' G„=1.4312
&(10 4' erg cm'. The difference between the two
constants amounts to 1% without the radiative
corrections, and to as much as 2% if one includes the
radiative corrections, and is well outside the quoted
experimental error. This error is 0.1% for G„(uncor-
rected), and 0.2% for Gv (uncorrected).

How can one account for this difference if the
conserved-vector-current theory holds'? MacDonald'
has considered the effect of the Coulomb interaction on
the P-decay matrix element in 0".This matrix element
has the value v2 under the assumption that isotopic
spin is a good quantum number. He obtained an upper
limit of 0.18% for the change of the matrix element.
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Oneda and Pati" and Lee and Yang" have studied the
eGect of an intermediate boson. At present, there is
some evidence for the existence of such an intermediate
boson from the p value of the LM-meson decay. A boson
of about the same mass as the K meson could explain
both the difference in G„and Gy and the p value.
Blin-Stoyle and Le Tourneux'2 have estimated the
effect of the or+ —n' mass difference on the 0" ft value
and did obtain a correction for the coupling constant
of about 1% which could explain the difference. If one
excludes the possibility of a sizeable error in the
electromagnetic corrections" and uses estimates for
the contribution of second-forbidden P matrix elements
which show them to be small, " the investigation of
Blin-Stoyle and Le Tourneux and the proposal by Lee
and Yang and Oneda and Pati seem to offer the only
possibilities to explain the difference in the two coupling
constants in the framework of a conserved-vector-
current theory. "

In this paper, we reconsider the estimate of Mac-
Donald' of the Coulomb effects. The reasons for this
are threefold. MacDonald did not completely anti-
symmetrize the wave functions with which he calculated
the estimate. It is conceivable that proper antisym-
metrization and angular-momentum coupling may
change his estimate. Furthermore, he calculated the
radial integrates of the Coulomb interaction by using
harmonic-oscillator wave functions. It has been sug-
gested, however, that a calculation with square-well
radial wave functions may give a bigger estimate.
(The repulsive Coulomb interaction will succeed better

I S. Oneda and I. Pati, Phys. Rev. Letters 2, 125 (1959)."T.D. Lee and C. N. Yang, Phys. Rev. 119, 410 (1960)."R. J. Blin-Stoyle and J. Le Tourneux, Phys. Rev. 123, 627
(1961)."R. J. Blin-Stoyle, V. Gupta, and J. S. Thomson, Nuclear
Phys. 14, 685 (1960).

'4 While this manuscript was being revised, the author obtained
a preprint of a paper by A. Altman and W. M. MacDonald
(University of Maryland Technical Report No. 241) in which it
is shown that a determination of the parameters of a charge-
dependent potential as proposed by Blin-Stoyle and Le Tourneux
from experimental data in the mass-14 system is found to give a
reduction of the Fermi matrix element of 0", which is very
much too small to account for the observed discrepancy.
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in separating the prot;ons from each other if they are
bound in a finite square well than if they are bound
in an infinite harmonic oscillator. ) Finally, MacDonald
did not consider the effect of configuration mixing of
the P-shell states in his estimate. Such mixing is
indicated by recent experiments" ' and somewhat
corroborated by the results of a subsequent paper. '
Configuration mixing has a non-negligible effect on the
P-decay matrix element: For pure 1p-shell states, the
Coulomb interaction in N'4* and 0" is the same, as we
are dealing with a proton hole and a neutron hole in
one, and with two neutron holes in the other case. The
only, and very small, difference in the two wave
functions originates from the difference in spin-orbit
coupling of the neutron hole and the proton hole, from
the difference in magnetic moment interaction, from
the difference in binding energies, and from admixtures
of other configurations via the Coulomb force. It is
because of this fact, the equality of the Coulomb
interaction in N'4* and 0'4 within the p shell, that the
estimated change of the matrix element is so small.
This equality does not hold as soon as other configu-
rations are mixed in, since one can then no longer use
the concept of a hole state.

In Sec. II, we give an outline of the procedure for
the calculation of Coulomb effects for pure p-shell
states; in Sec. III we describe the results. Section IV
deals with the estimate of corrections due to configu-
ration mixing. This estimate will turn out to be very
unreliable. In view of the importance of the question
and the diS,culty to obtain a reliable estimate of the
inhuence of configuration mixing, we shall give an
alternate discussion of the Coulomb effect in Sec. V.
Section VI summarizes the results of the paper.

II. CALCULATION OF COULOMB CORRECTIONS
FOR PURE P-SHELL STATES

1. Coulomb Effects and Other Causes for a Change
of the Matrix Element within the 1P Shell

We make the following assumptions. Without the
presence of any Coulomb forces, the ground and first
excited states of N" and the ground states of 0" and
C'4 can be described as linear combinations of p-shell
states. The ground state of N'4 has J=1+, T=O; its
wave function written in terms of the I;5 coupled
wave functions ' +'I.g is of the form

i
J=1+, T=O)=Cs'Sr+Cd 'Fr+Ca&'Di. (1)

Correspondingly, the isotopic triplet consisting of the
C' ground state, the first excited state of N'4, and the
0"ground state can be described as the T,= 1, 0,+1-
components of a state with spin J=O+, T=1, respec-
tively, which has the wave function

t
J=0+, T= 1)= C's'So+ C'p'Po (2)

'~ W. E. Moore, J. N. McGruer, and A. I. Hamburger, Phys.
Rev. Letters 1, 29 (1958).' E.Baranger and S. Meshkov, Phys. Rev. Letters 1, 30 (1958)."H. A. Weidenmuiler (to be published).

V= Q —,'(1+t, ')(1+t,' )—, (4)

may change the value of the Fermi matrix element in
three different ways: it may cause the constants C8'
and C&' to be different in 0" and N"*, it may result
in a different radial dependence of '50 and 'I'(l in 0"
and N"*, and it may cause configuration mixing. The
state (2) will interact with higher lying non-p-shell
states via the interaction (4), and the resulting eigen-
function will contain admixtures of these excited states.
Since the expression (4) does not commute with T',
the square of the total isotopic spin operator, these
admixtures will be different for 0" and N"*. We shall
discuss the change of the matrix element due to this
type of configuration mixing in the following sub-
sections of this section and in the next section; at the
moment, we confine our attention to the Coi'lomb
interactions within the 1p shell.

The difference in the constants C8' and CI*' in 0"
and N"* can be estimated in the following way. In
their analysis of the mass-14 system, Visscher and
Ferrell" determined the constants Cq' and C~' for C"
from a nuclear Hamiltonian. They also considered the
difference in the ft value for the P decays of 0'4 and
C'4 to the ground state of N". It is known that the P
decay of 0" to the ground state of N" is not as highly
forbidden as the C" decay. Whereas in C" the experi-
mental value of the square of the Gamow-Teller matrix
element is roughly

~

J'o.~'o~4=4. 1X10 ', we have for
0" the experimental value

~

J'o ~'o~4=2.4X10 '."This
difference is directly related to the difference of C&'

and Cr' in 0'4 and C". The matrix element of the P
decay, CsCs' —(1/%3)Cr Cr ', changes by roughly 0.005
when going from 0'4 to C". From this change, Visscher
and Ferrell could deduce the constants Cg' and C~'
for 0".We overestimate the change of overlap in the
matrix element (3) by equating Cs' and Cr' for N'4*

with C~' and C~' as determined by Visscher and PerreH
for C'4, and by using their values for 0". This yields
a reduction of (3) by 0.02%%u~.

"W. M. Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957).

Approximate values for C8, Cp, CD, CB, C~ have been
given by Ferrell and Visscher" (see, however, the
discussion in reference 17). If the constants Cs' and
Cr ' in Eq. (2) are exactly the same for 0" and for the
first excited state of N" (henceforth denoted by N'4"'),

and if the functions '50 and 'Po have exactly the same
radial dependence for both nuclei, then the Fermi
matrix element for the 0" decay has the value v2:

Mp ——((Cs' 'Ss+Cr' 'Es)N *~ s (T,—zT„)
~

X(Cs''&s+Cr''&o)o )=~2. (3)

Here, T and T„arethe x and y components of the
total isotopic spin operator.

The Coulomb interaction between all the protons,

g2
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This number —0.02%—is probably an overestimate
of the change of the matrix element for the following
reason. For pure p-shell states, the interaction (4) has
vanishing nondiagonal matrix elements for N"* and
0".This means that the other 7=0+ p-shell state Lthe
linear combination of '5o and 'I'o which is orthogonal
to (2)j does not mix with the state (2), independently
of the values of the parameters C~' and Cp'. In an
unprecise manner of speaking, one may say that the
two neutron holes in 0" and the neutron hole and the
proton hole in N"* have no Coulomb interactions. The
nondiagonal matrix elements for C", however, do not
vanish, since in C" the proton holes interact. Therefore,
we expect the wave function of C' to differ from the
wave functions for 0" and N", which we expect to be
equal. If the diR'erence of C8' and C~' in 0" and C"
were due to Coulomb forces only, we would expect no
change in the Fermi matrix element from its value (3).

Visscher and Ferrell have pointed out, however, that
the Coulomb interaction in C" can account only for
one-third of the observed difference in the P-decay
matrix elements of 0" and C" to the ground state of
N". The other two-thirds must be ascribed to the
difference in spin-orbit coupling of a neutron hole and
a proton hole, or other causes. It is only this part of
the difference of the constants Cq' and Cp' for 0" and
C" that we have to consider as we will expect a corre-
sponding difference in the wave functions for N"* and
0".The above estimate, 0.02%, will therefore have to
be multiplied by (-', )', taking out the part due to
Coulomb interaction, and by (-', )', taking into account
that the difference in wave functions between N"* and
0" will be only half the difference between C" and 0' .
This yields o X0.02%, a negligible number. MacDonald'
obtained instead 0.13%. This figure contains a numer-
ical error. "

Having ruled out the difference of the constants C8'
and C~' for 0" and N"* as a possible cause for a
sizeable change of the Fermi matrix element (3), we
shall now consider the radial dependence of the func-
tions 'So and 'Po in 0" and N"*. The last neutron in
N'4* has a binding energy of 8.283 MeV, the last proton
in 0'4 has a binding energy of 5.403 MeV." (In these
numbers, we have already included the neutron-proton
mass difference. ) Therefore, the ra, dial wave functions
of these two particles will be asymptotically different,
and their radial overlap integral will be different from 1.
We have tried to estimate this effect. We have con-
structed several square-well potentials of different radii
which give a binding energy of 8.283 MeV for a 1p-shell
neutron. As the characteristic parameter of a square
well potential is UR', well depth times square of the
radius, each of these potentials actually includes a
whole set of binding energies for a 1p-shell neutron.

' W. M. MacDonald (private communication).
'0 F. Ajzenberg-Selove and T. Lauritsen, in Rem Series, edited

by Landolt-Sornstein (Springer-Verlag, Berlin, 1961), Group 1,
Pol. 1,

YAar, E I. Reduction of radial overlap because of different
binding energy (Vo=well depth, A=radius of the well, I=radial
overlap integral).

R (in 10 "cm)
2.7
3.5
5.0

Uo (in Mev)

41.59
29.14
19.43

0.99819
0.99837
0.99980

In order to describe the different binding of a 1p-shell
proton, we used the wave function of the neutron
inside the well and a wave function with the correct
binding energy (5.403 MeV) outside the well. This
wave function does not have a continuous derivative
at r=R, of course. We normalized the wave functions
and calculated the overlap integral.

The results of such a calculation are shown in
Table I. We give the depth of the well, the radius, and
the radial overlap integral. We see that for increasing
radius, the overlap integral approaches one, as it should
from the construction. A good value of the nuclear
radius is 2.7 F (see the discussion in Sec. III); here
we obtain a reduction in overlap of 0.18%. This may
overestimate the effect however, since we have assumed
that the proton wave functions assumes its asymptotic
value already at r=R. Therefore, the use of a bigger
radius seems more "realistic, " and we conclude that
the reduction in overlap is probably less than 0.10%.

After the discussion of the Coulomb effects within
the 1p shell, we turn now our attention to the Coulomb
interaction between the state (2) and non-p-shell states.

where

U= Uo+Ur+Uo,

U, =g,[1+,(t('). t( )))
g2

(5a)

g2

Uo
—p ref, (of,(i) r(t(o. t(i))j

Therefore, the admixtures will have isotopic spin 0, 1,
2, and 3. As Vo is a scalar, we may add it to the nuclear
potential and discard it for the purposes of the following
dss cuss&on.

We calculate the inhuence of the Coulomb interaction
with non-p-shell states in perturbation theory. This is

2. Basic Formulas

Besides mixing the two J=O+ p-shell states, the
interaction (4) introduces admixtures to (2) from
higher-lying 7=0+ states. U can be written as the sum
of a scalar, the s component of a vector, and the ss
component of a second rank tensor in isotopic spin
space,
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presumably good since non-p-shell states have higher
excitation energies than the other J=o+ p-shell state
(probably to be identified with the observed 7=0+,
T=1 state in N" at 8.62 MeV). We denote the wave
function of the 0"ground state by P;, the wave function
of the N'4 first excited state by P/. Perturbation theory
then yields

@-(T.=+1)
I
l'+l' l0")

4'=1V ' 0'+ 2
n7-'i E —E.

xk.Ã.=+&)), (s)

defined by

P(T', T",T(e))= ,'C(-1T'T(n); 0,0)C(1T"T(e); 0,0)

+-',C(1T'T(e); +1,0)C(1T"T(e); +1,0)

———(T(e)LT(e)+17}llLLC(1T'T(e); 0,0)
242

)&C(1T"T(e); +1,0)+C(1T'T(e); +1,0)

&&C(1T"T(e);0,0)]. (1Oa)

The problem consists in calculating the quantities
n(T,e). The definition of 5 agrees with the definition
given by MacDonald': positive 8 gives the amount of
reduction of the square of the matrix element.

where 2V; and Ãf are normalization factors, Ei„and
Ef„the energies of the states with wave functions
P„(T,=+1) and P„(T,=O), and tP,

' and P/o are the
T,=+1 and T.=o components of the wave function
(2). Using the Wigner-Eckart theorem, we get

1V '(P o+ P . g C(1T'T(e); +1,0)
nAi T/=1

Xn, (T',e)P„(T.=+1)], (7)

iP/=1V/ '$P/'+ P P C(1T'T(e); 0,0)
nQf T/=j

&&n/(T', e)tP„(T,=0)],
where

n;, /(T', e) = (8)

The summation over T' extends over the two terms in
the potential, V~ and V2. Under the assumption
Ei—E;,„=Ef—Ef„,which seems justified except for
higher order Coulomb effects, we get n.;(T',e) =n/(T', e)
=n(T', e). The values for the normalization factors are

1V '=1+ Q C(1T'T(e); 0,0)C(1T"T(e);0,0)
FIT//n

&&n(T',e)n*(T",e), (9)

-'~=1——(&IT IA)
v2

n(T', e) *(T",e)P(T', T"; T(n)). (10)
T/T//n

Here, the parameters P are of geometrical origin and

and correspondingly for 1V,z. With (7) and (9), the
Fermi matrix element changes by (we keep only terms
of second order in n):

3. Calculation of the Quantities u(T, n)

As we did not succeed in reducing the expression (10)
by means of closure, we tried to estimate 5 by calcu-
lating it within the framework of the shell model. The
reduced matrix elements g „IIVr Ilg, /) occurring in (8)
depend on the form of f;,/. According to (2), these
integrals consist of two terms, multiplied by Cz' and
C~', respectively. For the purposes of the present
estimate, we assumed Cs'= Cz

' ——1/K2. This is in rough
agreement with the results of Visscher and Ferrell. "
Among the excited states P„that enter into the expres-
sion n(T', e) (8), those corresponding to two-quantum
excitations from the ground-state configuration cer-
tainly have the smallest energy denominator, and the
largest overlap. They were the only configurations
taken into account in the calculation. The reduced
matrix elements also depend on the form of the P„,
i.e., on the coupling scheme used for the description of
P„.We constructed all wave functions f„with spin
J=O which resulted from the following two quantum
excitations:

1p ~ 2p, (1p)' ~ (1d)', 1s ~ 1d,

1p —+ 1f, (1p)' ~ (2s, 1d), (1s)' —& (1p)',
(1p)' ~ (2s)' 1s~ 2s. (11)

These wave functions were subject to the condition of
complete antisymmetry and proper angular momentum
coupling. In most cases, there are many wave functions
belonging to one of the excitation modes in (11) and
differing in the way the angular momenta are coupled.
We obtained an upper limit for the sum (10) in the
following way; We took only the term in the summation
over e, the tP„ofwhich gave the largest overlap integral.
(The other overlap integrals are normally smaller by
a factor of three at least. ) The energy denominator
was chosen to be E„—Ei=10 MeV. From the N"
spectrum z' one infers that the lowest nonp-shell level
with spin 0+ has an excitation energy of at least 11.6
MeV. This corresponds to E„—E;=9.3 MeV justifying
the assumed value of 10 MeV. We conclude that the
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TAnLs II. Values of the radial integrals (in F ') for the Coulomb interaction for various excitation modes and for
diferent choices of radial wave functions as described in the text. (V in MeV, R in F.)

1.
2.
3.

5.
6.
7.
8.
9

10.
11.
12.
13.
14.
15.
16.

&2p 1plr. =ol 1p 1p&

(2p 1p[L=2[1p 1p)
(2p 1s[L=O[1p 1s)
&2p 1.[I.=1[1.1p&

(2s 2s[L=1[1p 1p)
&2s 1d[r.= 1[1p 1p&

&td id[r.= 1[1p 1p&

(1d 1d[ L=3[1p 1p)
(2s 1p[ L=0[ 1s 1p)
&2s 1p[I.=111p 1s)
(2s 1s[I.=O[1s 1s)
(1d 1p[L,=2[1s 1p)
(1d 1p[L=1[1p 1s)
(1p 1p[I =1[1s1s)
&1P 1PIL=o[1P 1P)
&tf 1PIL=2[tp tp&

(r'&~&'

H.Q.

0.0575
0.0319
0.0894
0.1150
0.0707

—0.1313
0.2222
0.1414
0.0495

—0.0495
0.0990
0.1564
0.2190
0.2424
0.3636
0.1543
2.63

VR2= 933
R=4.829

0.0350
0.0124
0.0515
0.0678
0.0483

—0.0547
0.1887
0.1256
0.0338

—0.0362
0.0593
0.1403
0.1847
0.1899
0.2692

3.80

VR'=835
R=4.569

—0.0033
—0.0122

0.0145
0.0555
0.0585

—0.0771
0.1960
0.1308
0.0275

—0.0560
0.0622
0.1396
0.1812
0.1758
0.2604

3.93

VR2=835
R=2.892

0.0533
0.0220
0.0771
0.1009
0.0792

—0.0895
0.3096
0.2061
0.0561

—0.0589
0.0982
0.2307
0.3038
0.3138
0.4446

2.49

VR'=670
R'=4.093

~ ~ ~

0.0269
—0.0290

0.2100
0.1391
0.0476

—0.0127
0.0703
0.1568
0.2072
0.2157
0.3060

3.68

UR'= 670
R=2.892

~ ~ ~

0.0381
—0.0411

0.2973
0.1969
0.0674

—0.0180
0.0995
0.2219
0.2933
0.3053
0.4331

2.60

estimate for 5 obtained in this manner gives definitely
an upper limit on 5, the actua, l value of which will

presumably be much smaller.

III. RESULTS OF THE CALCULATION

1. Calculation with Harmonic Oscillator
Wave Functions

Of all the excitations listed in (11), by far the
largest contribution comes from the excitation 1p ~ 2p.
For the harmonic oscillator constant ~ we have used
the value (~/2')'=0. 24236&(10" cm '. This is the
value used by MacDonald. ' Visscher and Ferrell" used
instead the value 0.23746X10" cm—'. The difference in
the result is unimportant. These figures are essentially
in agreement with Coulomb energy differences and the
analysis of electron-scattering data on neighboring
nuclei. Meyer-Berkhout et ar." obtain a value for the
root-mean-square radius which is slightly dependent
on the method of analysis of the electron scattering
data; it lies between 2.40 and 2.57&(10 "cm' This is
to be compared with the value corresponding to our
choice for (~/2sr)', 2.63&(10 ' cm'. The difference is
unimportant for the purpose of our discussion. With
this value for (~/2~)' and the procedure described in
Sec. II, we obtain

[ 5/2 [
(0.05%. (12)

This contribution comes only from the 1p ~ 2p exci-
tation (all other contributions are significantly smaller),
and for this excitation, 6 turns out to be positive. Thus,
we obtain the right sign, but an effect the upper limit
of which is an order of magnitude too small. The
estimate (12) agrees very well with MacDonald's

"U. Meyer-Berkhout, K. W. Ford, and A. K. S. Green, Ann.
Phys. 8, 285 (1955).

result' which is [5[ &0.09%. Actually, the upper limit
given in (12) is more conservative than MacDonald's
as we have used a smaller energy denominator.

In the estimate (12), we have used a particular
7=1 level of the 1p —+ 2p excitation, which gives the
largest contribution to 5/2. There is a T=2 level of
the same configuration, giving a negative value for 5 of
about one-half the above estimate. The possibility
cannot be excluded that this T=2 level is lower in
energy than the previously used T=1 level. In view
of the smallness of the estimate (12) and since we do
not consider it likely that the T=2 level will be below
the T= 1 level, we will not consider this possibility any
further.

2. Calculation with Finite Square-Well
Radial Wave Functions

It is interesting to compare the results of a calculation
utilizing harmonic-oscillator wave functions with those
using finite square-well wave functions. The di%.culty
with a square well is, of course, that with a reasonable
value for the binding energy of the last 1p particle, the
2p state (or even the 2s and 1d states) will not be
bound. We circumvented this difhculty by adopting
values of the range and depth of the well in such a
manner that the 2p state was bound. For comparison
with a more reasonable choice of the potential, we
calculated some of the integrals also for a more "real-
istic" nuclear potential of square-well character which
gave a reasonable binding energy for the last bound
nucleon. The calculations were done numerically; the
results are shown in Table II.

In the 6rst column, we de6ne the radial integral in
the form (sslss'l'[L=Ls[ss"l"ss"'l"'). Here, ss and l are
the quantum numbers of the normalized bound-state



radial wave function in question, and J=Lp specifies
the value of I.o in the expression r&~%~~'+' which
occurs in the expansion of the Coulomb interaction in
Legendre polynomials,

00 r= P P, (coso„)—,(13)
f12 (fl + r2~ 2fir2 COS012) L+1

where r(= r], r)——r2 for r] (r2, and r(= r2, r&= r j for
r~&r2. In the second column, we give the values for
these integrals for the harmonic oscillator potential in
units of 10+" cm ' using (cu/2x)'=0. 24236)&10" cm '
In the following five columns, we give the values again
in units of 10"cm ' for five different choices of square-
well potentials, indicated in the two top lines by the
values of VR' in units MeV&(10 " cm' where R
=radius of the well, V= well depth, and by the value
of R in 10 " cm. The blanks correspond to integrals
between states, one of which is unbound for the partic-
ular choice of parameters. We have not attempted to
calculate the contribution of the 1p-+ 1f excitation,
as here the reduction of the matrix element due to the
angular part of the overlap integral is so large that the
possible change in the radial integral is insignificant.
In the last row, we give for comparison the root-mean-
square radius for the 1p-shell for the various potentials.

Two facts become obvious from Table II: the square-
well radial integrals for values of VR' and R for which
the 2p state is bound do not tend to be significantly
larger than the values calculated with harmonic-
oscillator wave functions, even if one multiplies them
with the ratio of the root-mean-square radius for the
1p shell divided by the same value for the harmonic
oscillator to correct for the "wrong" radius. A com-
parison of the different values of the radial integrals
corresponding to different choices of the square well
shows that the dependence on the potential is slight
except in the case of functions which have a node,
where the integral may become very small. We conclude
that our previous estimate for 8, ~8~ &0.10%, need not
be altered, and that the admixture of excited states
through the Coulomb interaction cannot be made
responsible for the observed difference in the coupling
constants Gy and 6„.

The results of this perturbation-theoretic estimate
agree very nicely with the results of Sec. II. The
calculation using the argument of the reduced overlap
of the wave functions for proton and neutron should
give the same answer as perturbation theory for
excitations of the 1p —+2p type. Since these are the
only excitations actually used in the estimate for 6 in
Sec. III, we expect agreement of the two answers.
(This was pointed out to the author by Dr. MacDonald. )

As to the contribution of all the other excitation
modes listed in (11), inspection of the calculated matrix
elements shows that their contribution is very much
smaller than 0.05%, in spite of the very large number
of states that can be constructed from them.

8/2 =0.17%, (14)

would be the estimate for the change of the 0"~ N"*
P-decay matrix element obtained this way.

This estimate is very crude in many ways. Firstly,
we have no absolute scale on which to correlate cor-
rections to Fermi and to Gamow-Teller matrix ele-
ments. Furthermore, we do not know whether the
Coulomb correction inQuences the Gamow-Teller
matrix element in the same way as the Fermi matrix
element. We expect that the Gamow-Teller matrix
element is influenced more strongly as it depends —for
pure p-shell states —on the difference CsCs' —3 ~Ci Ci ',
whereas the Fermi matrix element depends on
Cs'(Oi4)Cs'(N'4*)+C~'(0'4)C~'(Ni4*). Because of nor-
malization, the latter quantity is less subject to changes
than the former. However, this very argument becomes
invalidated by the presence of sizeable admixtures of
non-1p-shell configurations.

In view of the difficulty of estimating the amount
and importance of configuration mixing, we turn to
the discussion of a collective description of the effects
of the Coulomb interaction.

V. THE EFFECT OF THE NUCLEAR
COMPRESSIBILITY

From the fact that the Coulomb interaction repels
the protons from each other, it is clear that 0" will

tend to be slightly bigger than N"~. This will result in
a reduction of the overlap integral. We can estimate
the change in radius and the reduction of the P-decay
matrix element as follows: The Coulomb energy is
given by

8,=nZ (Z—1)e'/R,

IV. ESTIMATE 01 THE EF$'ECTS OP
CONFIGURATION MIXING ON THE

MATRIX EIEMENT

It is clear that the aforementioned estimate of 8 will

be significantly altered by configuration mixing in the
1p-shell. However, without any knowledge of the
amount and type of admixture and the matrix elements
involved, it seems to be quite impossible to give a
reasonable estimate for the effect of this admixture.
We therefore want to give a semiempirical discussion
of this question.

As was mentioned in Sec. II.1, the matrix elements
for the P decay of 0" and C" to the ground state of N"
differ by 0.005. One may take this value of 0.5% as a
measure of the effect of Coulomb distortion on the
matrix element also for the 0"~ N'4* P decay in the
presence of configuration mixing. If such a mixing were
important, then the above number of 0.5% would

partly represent the inQuence of this mixing. According
to aforementioned considerations by Ferrell and
Visscher, only one-third of the above number can be
accounted for by Coulomb interactions within the 1p-
shell. One-half of the remaining 0.34%, that is,
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where R is the nuclear radius. If R changes by a small
amount, d R, E, changes by

~E,= —nZ(Z —1)(e'/R) (~R/R)
+aZ(Z —1)e'/R(~R/R)s+ . . (16)

Under volume changes, the volume energy changes by

AL', = —',-K(~ R/R)'+

L(o/)
3

226.40 5I3.90

f& (MeY)

9l3.60 1427.5
I

2055.6 2797.9
I
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where K is the nuclear compressibility. The equilibrium
radius is given by R,~=R/1+(AR/R), ~], where 19.5 26

Ee (MeVj

45.5

nZ(Z —1)e'/R
!

AR'l

R J q 2nZ(Z 1)es/R+E

The value of nZ(Z —1)e'/R can be obtained directly
from the Oi4 —N" (2.312-MeV) mass difference, and
for E we use E'= 700 MeV (see the discussion below).
This yields

=0.38
t eq, N

"A. R. Bodmer, Compt. rend. Congr. intern. phys. nucleaire,
Paris, 1958, 718 (1959) and references quoted therein."K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

Assuming a constant density distribution within each
nucleus, and a sharp cutoff for the density at the
nuclear surface, this change in radius results in a
reduction of the overlap integral (and therefore the
P-decay matrix element) by 8/2=0. 57%, which has the
right order of magnitude. This estimate depends
mainly upon two assumptions which we shall discuss
presently: The value of K that we used, and the
assumed simple form of the density distribution.

The value of E used in the estimate given above,
K=700 MeV, corresponds to the value obtained from
an analysis of isotope shifts in heavy elements. "
(Because of the large mass effect in light nuclei and
their smaller volume, the compressibility for light
nuclei cannot be obtained directly from such an
analysis. ) The experimental errors in the isotope shifts
are comparable with values of E as large as 1400 MeV."
The study of nuclear matter" yields a value of K,
E—2500 MeV, which is, however, incompatible with
the analysis of isotope shift results. " These numbers
refer to either very heavy nuclei or in'.nite nuclear
matter. Very little is known about the compressibility
of the light nuclei. In order to have a better under-
standing of the orders of magnitude involved, we prefer
a discussion in terms of the excitation energy of a
"breathing mode" (radial volume oscillation) rather
than the compressibility.

We assume that the "breathing mode" can be
described as a radial oscillation of the homogeneous
density around its equilibrium value. If we restrict

FIG. 1. The relative change of radius, nR/R=(nR/R)a', o«—(nR/R)a; N&4 as defined in Eqs. (18) and (19),and the resulting
reduction of the Fermi matrix element, 6/2, as defined in Eq.
(10), both in percent, as functions of the nuclear compressibility
E and the energy of the breathing mode Ez.

ourselves to quadratic terms (harmonic oscillator
approximation), we obtain the following relationship
between the compressibility K and the excitation
energy 8& of the erst excited state of the radial volume
oscillation (breathing mode):

(3mAR'/5k')L'gP= E, (20)

where m is the nucleon mass. For K=700 MeV and
R=2.6 F, this yields If'&—22 MeV. In general, we
would expect the breathing mode to have an energy
E&'g of about twice the distance of levels in the shell
model, i.e., 20 MeV&E~(30 MeV, corresponding to
500&K(1300 MeV. There is, however, some evidence
that such a breathing mode may occur at lower energies
for the region of the periodic table considered here:
Ferrell and Visscher'4 suggested that the 6.06-MeV
state in O" can be interpreted as a breathing mode,
and a similar argument applies to the 7.6-MeV state"
in C". Griffin" has criticized these considerations, and
there seems to be general agreement that these two
states are not pure breathing states, but contain a
sizeable admixture of the breathing state wave function,
together with other two-quantum excitations. A situ-
ation similar to the one encountered in the discussion of
these two states exists in N'4: It is not possible to
explain the small distance in energy between the two
lowest J=O+, T= 1 states with the shell model. "

A low-lying breathing mode implies a reduced stiG-
ness of the system against density oscillations. Since
our estimate in Secs. II and III amounts practically to
the estimate of this stiffness with the p-shell model,
the above considerations must be interpreted in shell-
model language as follows: For a low-lying breathing
mode, the lowest 0+, T= 1 state has a certain amount
of the breathing-mode wave function mixed in (con-
figuration mixing) which reduces its stiffness against
volume deformations. This links the present arguments
to those of the last section. In this connection it is

'4 R. A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956)."R. A. Ferrell and W. M. Visscher, Phys. Rev. 104, 475 (1956).
J. J. Griffin, Phys. Rev. 108, 328 (1957).



gratifying to see that for an excitation energy Zs ——30
MeV, the change of overlap (=—8/2) is reduced to
0.30%%uz in rough agreement with the estimates of Secs.
II and III. If, on the other hand, 8~=6 MeV (this
means that we identify the second 0+, 7= 1 state with
the breathing state), we obtain 8/2 —5'P~!

Since we do not know at what excitation energy the
bl'cath 1llg llano dc occurs ln Hl c ITlass-14 system we

conclude this discussion by giving in Fig. 1 the relation-
ship between the excitation energy of the breathing
mode Zs (measured, of course, from the lowest 0+,
7=1 state), the compressibility X, the relative change
in radius between 0'4 and N"* in percent, and the
change in overlap (and reduction in the Fermi-matrix
element it/2) in percent estimat. ed with the simple model
discussed above.


