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As part of a program aiming to determine all the observed term-values of two-electron atoms on the basis
of the Schrodinger wave equation, we have evaluated the 1s ns levels of helium up to n =9, in both the singlet
and the triplet states. Our previous method, using perimetric coordinates, was extended to allow for the asym-
metry between the 1s and the excited electrons. The mass po1arization and relativistic corrections were also
determined. The difference between the ionization energies J(220), obtained by solving a determinant of
order 220, and the experimental values, ranges from 3.6 cm ' for 3 'S to 5.8 cm ' for 9 'S, and from 0.5 cm '
for 3 SS to 5.7 cm ' for 9 SS. The extrapolated values indicate that with a faster computer than WEIZAC it
should be feasible to determine all of the 31 observed 1s rss levels (rz &~17) of helium to within the experimental
accuracy.

1. INTRODUCTION

HE purpose of this investigation is to do spec-
troscopy from scratch by solving the Schrodinger

wave equation for two-electron atoms to an accuracy
comparable with the experimental accuracy of the term
values. This goal has already been achieved' ' in the
case of the 1'S, 2'S, and 2'S states of He, and the
1'S and 2'S states' of Li+, while in the case of the
2 'S state of Li+ the large discrepancy found' between
the theoretical and experimental term values showed
that the 8517.4 A line on which the latter was based
had been incorrectly identified as the 2 'S—2 'I'
transition. In this paper we extend the analysis to the
1s es states of He, going up to the 9 'S and 9 'S levels.
The results are shown in Table I for the singlet states
and in Table II for the triplet states. While the precision
obtained by solving a determinant of maximum order
220 falls short of the experimental accuracy of about
0.05 cm ', especially at the highly excited levels, the
results do indicate that with a faster computer than
WEIZAC it should be feasible to establish theoretically

with sufhcient accuracy all the 31 experimental term
values in the S states of He.

One can appreciate the magnitude of the task, even
for the S states, by noting that if we attempted to
solve variationally the hydrogenic radial wave equation
we would need at least st+1 constants to describe the
state of quantum number e, having n nodes. In the
case of the S states of two-electron atoms, the wave
function f depends on the sides ri, rz, rz of the triangle,
so that the 1s ns state could require n' constants for
its representation. Indeed, in our scheme of using as a
base for P polynomials which include all terms ri'rz'rz'
such that the sum of the exponents (a+h+c) is less

than or equal to or, we see from Tables I and II that
the first time the root of the 1s ns state appears is at
co;„=e—1 for the singlet states, and at co;„=e—2

for the triplet states. Since the number of terms' k in

the polynomials for a given co is

h = (1/6) (~o+1)((o+2) (co+3),

it follows that the minimum order of the determinant k

TA&«&. The excited singlet S states of helium. Values of the nonrelativistic ionization energy v, the mass-polarization correction
—ezr, and the relativistic correction E;, in units of cm '. J=(v eM+E;) v=—Rir, 4(2ez —. 4). Rir,4=109722.267 cm '. h denotes the
order of the determinant. —e' is the nonrelativistic energy eigenvalue.

56 5
84 6

120 7
165 8
220 9

Extrapolated—ezr (220)
E; (220)J (220)J(extrapolated)

Experimental'

2'S

32012.197
32023.437
32028.436
32030.769
32031.909
32033.042—0.287

0.401
32032.023
32033.16
32033.26

3'S
13415.423
13428.486
13435.782
13439.895
13442.253
13445.483—0.082

0.141
13442.311
13445.54
13445.87

4'S
7341.838
7351.986
7358.447
7362.574
7365.221
7369.979—0.037

0.064
7365.248
7370.01
7370.48

5'S
4621.576
4630.060
4635.347
4638.895
4641.324
4646.787—0.021

0.034
4641.338
4646.80
4647.18

6'S
3169.568
3179.707
3184.672
3187.789
3189.932
3195.487—0.013

0.021
3189.940
3195.50
3195.81

7'S

2314.486
2320.893
2324.065
2326.066
2330.889—0.009

2331.77

8 1S

1764.057
1768.355
1770.509

1775.93

9 1S

1389.007
1392.025

1397.83

' See reference 6.

$ Research supported by the Air Force Oifice of Scientific Research through the European Office of OAR.
' C. L. Pekeris, Phys. Rev. 112, 1649 (1958). This paper will be referred to in the sequel as I.' C. L. Pekeris, Phys. Rev. 115, 1216 1959).' C. L. Pekeris, Phys. Rev. 126, 1470 1962).

C. L. Pekeris, Phys. Rev. 126, 143 (1962).
'because n is used in this paper to designate the quantum number, we let k denote the order of the determinant.
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TABL~ II. The excited triplet S states of helium. Values of the nonrelativistic ionization energy u, the mass-polarization correction—e~, and the relativistic correction E;, in units of cm '. j= (v —e~+E;). v=Rn, 4(2e' —4). Rn,&=109722.267 cm '. k denotes the
order of the determinant. —e~ is the nonrelativistic energy eigenvalue.

56 5
84 6

120 7
165 8
220 9

Extrapolated—en (220)
E; (220)J (220)

J(extrapolated)
Experimental'

2'S
38453.029
38453.081
38453.107
38453.119
38453.125
38453.129—0.224

1.922
38454.823
38454.827
38454.74

3'S
15073.235
15073.385
15073.401
15073.410
15073.420

—0.057
0.527

15073.890

15073.92

4'S
8009.672
8011.779
8012.249
8012.345
8012.361
8012.364—0.022

0.214
8012.552
8012.556
8012.60

4952.480
4960.341
4962.605
4963.294
4963.503
4963.593—0.011

0.107
4963.599
4963.689
4963.72

63S

3343.081
3365.011
3371.186
3373.282
3374.047
3374.507—0.006

0.061
3374.103
3374.562
3374.58

7'S
1435.423
2419.207
2434.452
2439.259
2441.087
2442.344—0.003

0.037
2441.121
2442.378
2442.46

8'S

1078.755
1831.702
1842.651
1846.410

—0.002
0.023

1846.431

1849.39

93S

~ ~ ~

1443.110

1448.77

a See reference 6.

needed to represent the 1s ns state grows like n3. For
the highest observed level' of 17'S, co; =15, k;
=816. This is not prohibitively large, especially since
at high n the first root in the singlet states (&u=n —1)
gives a term value which is correct to within about
0.5%, while the second root in the triplet states
(~= n —1) is also good to better than 1%.

2. METHOD C

and |P was assumed to have the form

lt=e 1("+"+")P(u,v,w)=e '("'+"')P(u,v,w). (10)

For the expansion of P in (4), we used as f„ the ortho-
normal Laguerre functions e &"L~(u)

P= P A(l, m, n)L~(u)L (v)L„(w),
l,m, n=0

In order to solve the wave equation

Hlp —EQ=O,

or its equivalent variational form

I= (P,HP) E(P,P) =m—inimum,

(2)

(3)

and on the basis of their properties determined the
R(t,m, n) in the representation

R= pHQ Epp=p R—(l,m, n)Lt(u)L (v)L„(w). (12)

The condition of the orthogonality of the f„ to R yields
we put

R(t,m, n) =0, (13)
4= Z A.f., (4)

where the base functions f„need not be orthogonal.
Substitution in (3) yields the variational equation

2 A-L(f-,Hf-) E(f- f-)3=0—m=o, 1 " k (5)
n=0

Equation (5) shows that the quantity R defined by

R= p(HQ Ep) =Q A„p(—Hf„Ef„), p=r, rsrs, —(6)

has to be orthogonal to every base function f which is
included in (4). The factor p comes from the expression
for the volume element

dpi'dx2'= 8m'rir2r3dridr2dr3. (7)

In the methods A and B used' ' for the ground state
and the m=2 state, the variables r&, r2, and r3 were
replaced by the perimetric coordinates u, v, w defined by

Q= 6X) 5= 6p) %=268) 6 =—E)

x= rs+rs rg $ rj+rs rQ s rt+rs r3, (9)
'W. C. Martin, J. Research Natl. Bur. Standards A64, 19

(1959).

which is Eq. (I 22) giving the recursion relation
between the A(t, m, n), and the secular determinant for
e that follows from it. Equation (13) can be obtained
directly by substituting (11) in the original wave
equation (2) multiplied by p, without reference to the
variational form (3). This was the procedure followed
in I.

By the use of method B for the 2'S state, ' we ob-
tained an accuracy in e' of three parts in 10' at a
determinant of order k=615, although for this state
the level became bound (e') 2) only for k &9.However,
for the higher excited states the convergence of method
B became increasingly poorer, because the symmetrical
form of the exponent in (10) does not reflect the actual
asymmetry that exists between the 1s electron and the
excited one. Thus, the 3'S state became bound only
at k) 50, and at k= 615, ee'(615) = 2.060999777 a.u. , a
value which is exceeded in method C, to be described
presently, already at k =35, where ec'(35) =2.061027832
a.u. The 4 'S state becomes bound only at k=444, for
which order the state 5 'S is still unbound.

It is clear that method B is not suitable for the
treatment of the excited states, and that modifications
have to be introduced to allow explicitly for the
asymmetry between the two electrons. We have to
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seek soiuttons of the form (—x)'(l+m —r)!
g(l,m)= P

=o r!(l r)—!(m —r)!
(23)

and
u=nx, v=Py, w=ys, (15)

where P is of the order Z for the 1s electron, and n' is
of the order of the ionization energy of the ns electron.
In the present exploratory investigation we have used
two sets of perimetric coordinates

k= (P/n), x= L(k+1)/(k —1))', (24)

and a is the smaller of the integers l, m. The S(l', m', n')
are homogeneous linear equations in the C(l,m, rl), the
vanishing of whose determinant yields the energy
eigenvalues e. We have assumed that

u'=ny, v'=Pe, w'=ps, y=n+P, (16) P=Z, n= (2e' —Z')& (25)

where x, y, and s are defined in (9). These give

Prt+nr2 ——-', (u+ v+w), Pr2+nrr ———,
' (u'+ v'+ w'), (17)

and the permutation of r& ~~r2 is accomplished by the
interchange of u ~~I', etc. As a base for the expansion
of lP, we used the f„defined by

f(l,m, n) =Le &&"+"+ 'Ll(u)L (v)L„(w)
&e "it' ++"'L (lu)L (v')L„(w')], (18)

the plus sign applying to the para states and the
negative sign to the ortho states.

Putting

C(l,m, rl) f(l,m, u),
l, m, n=o

we can make use of the properties of the Laguerre
functions to express the coefficients R(l,m, rl) in terms
of the C(l,m, n) in the expansion

R= r,r2r3(HQ Ef)=P R(—l,m, tl)f(l,m, l). (20)

The condition of the orthogonality of R to the base
functions f(l, nm) leads to

( l,mrl ~P R(l,m, n) T! !=S(l',m', u') =0, (21)
kl', m', u'i

where

( )m+I'4k (k 1) l+l'+m+m'

!
(1+k)' (k+1)

Xg(l,m')g(l', m), (22)

thus biasing our wave functions to secure proper
behavior at ~, and foregoing the advantage that could
be gained from independent variations in P as well as
in n, which could yield higher values of e for a given
order of the determinant.

3. DISCUSSION OF RESULTS

The theoretical ionization energies J given in Tables
I and II include the mass-polarization correction —e~,
and the relativistic correction E,, but not the Lamb
shift correction. The latter amounts to —0.104 cm ' in
the 2'S state and to —0.109 cm ' in the 2'S state,
and is probably around 0.01 cm ' or less in the higher
excited states. We note that the first time the root for
the 7'S state appears is at k=84 (N=ro —1), and for
the 7 'S state at k=56 (n=ol —2). In the case of the
9'S state, we skipped the first two roots. As in the
2'S state studied previously, ' ' the excited triplet
states show more rapid convergence than do the singlet
states. The sum of the mass-polarization and relativistic
corrections (—eM+E;) comes down to the order 0.01
cm ' beyond m=9. In getting the extrapolated values
of J, we added to the extrapolated values of v the
values —e~ and E; obtained at k=220.

The diBerence between the extrapolated and the
experimental term-values is around 0.3 cm—' for the
singlet states and about 0.1 cm ' for the triplet states.
These are higher than the experimental uncertainty
about 0.05 cm ', but the indications are that such pre-
cision could be achieved with a few additional steps in co.
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