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The impurity resistance of an interacting electron gas is evaluated at low but finite temperatures. Analytic
techniques similar to those developed by the author for use in the zero-temperature problem are applied to
the complete Kubo formula. The calculations are exact to all orders in the electron-electron interactions
and to lowest order in the concentration of impurities. To lowest order in the temperature the conductivity
is given correctly by the independent quasi-particle model. Corrections of order 7% are discussed in detail.
It is shown that the only nonvanishing term of this order which explicitly contains the correlation between
two quasi-particles is independent of the impurity concentration, and thus may almost always be neglected.

I. INTRODUCTION

HIS paper is the third in a series devoted to an
investigation of the transport properties of a
normal, interacting electron gas. In the previous
papers!+? the impurity resistance of this gas was com-
puted at absolute zero temperature. The result was
exact to all orders in the electron-electron and electron-
impurity interactions and to lowest order in the concen-
tration of impurities. The main purpose of the present
paper is the formulation of this theory at finite tem-
peratures. In particular, we shall apply techniques
similar to those developed in I, IT, and A to the evalua-
tion of Kubo’s formal expression for the transport
coefficient,® and shall show that the zero-temperature
limit of this calculation yields the previous result. In
addition, we shall examine in detail some of the finite
temperature corrections. The thermal conductivity of
this system also has been investigated; and a proof of
the Weidemann-Franz law will appear in a subsequent
publication.

The Kubo formula probably provides the most
rigorous possible point of departure for transport theory.
Despite its extremely formal appearance, it has in fact
proved amenable to direct evaluation for some simple
models. Edwards? and Chester and Thellung® have
used the Kubo formula (or its equivalent) to calculate
the impurity resistance of a system of independent
electrons, and have recovered the usual solution of the
linearized Boltzmann equation. Verboven® has extended
this work to higher orders in the concentration of
impurities and has found corrections to the conduc-
tivity not ordinarily derived via Boltzmann techniques.
It would seem, however, that the Kubo formula might
be most fruitfully applied in the full many-body

* Supported in part by the Office of Naval Research.

t Permanent address: Carnegie Institute of Technology,
Pittsburgh 13, Pennsylvania. .

tJ. S. Langer, Phys. Rev. 120, 714 (1960); 124, 1003 (1961).
These papers are hereafter referred to as I and II, respectively.

2 Some mathematical techniques used in II are developed by the
author in Phys. Rev. 124, 997 (1961), hereafter referred to as A.

3 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

4S. F. Edwards, Phil. Mag. 3, 33, 1020 (1958).

5 G. V. Chester and A. Thellung, Proc. Phys. Soc. (London) 73,
745 (1959).

8 E. Verboven, Physica 26, 1091 (1960).

problem where it is not clear that any Boltzmann
formulation is valid. Detailed prescriptions for pertur-
bation expansions in quantum statistics have been
developed within the last few years in papers by
Montroll and Ward,” Bloch and De Dominicis,® and
Luttinger and Ward.? Although transport coefficients
are somewhat more complicated than the partition
function, many-body techniques of the above kind
must be applicable to nonequilibrium problems.
Attempts in this direction have been made by Montroll
and Ward,® and more recently by Konstantinov and
Perel,! and Izuyama.!? A somewhat different approach
to the problem has been presented by Martin and
Schwinger.!®

Before going on to the detailed formalism to be
presented here, let us review briefly some of the more
important physical features of the previous work. The
most striking result, as stated at the end of paper II,
is that the zero-temperature, zero-frequency conduc-
tivity is given exactly by Landau’s quasi-particle
description of the Fermi fluid.** In other words, the
single-particle picture of the low-lying excitations of a
many-Fermion system turns out to be a direct conse-
quence of the general structure of many-body pertur-
bation theory. This is not really very surprising,
especially in view of recent work by Luttinger!® and
Klein'¢ on various equilibrium properties of the Fermi
fluid. It is not immediately obvious, however, that the
simple picture applies equally well to nonequilibrium
properties.

The dynamical properties of a quasi-particle are
determined by the behavior of the single-particle
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propagator in the neighborhood of its pole on the
unphysical sheet of the complex energy plane. This
pole occurs at the point wyx which satisfies the equation

ek——wk—E’(k,wk)=0, (11)

2’ being the proper self-energy function. We identify
the real part of wi with the energy of the quasi-particle
and the imaginary part with its rate of decay. A
quasi-particle always carries a charge e equal to the
charge of a single electron. When there is a finite
concentration of impurities in the system, a quasi-
particle must take the form of a wave packet localized
within the mean free path. Because the background
medium is fixed by the impurities, the current as-
sociated with a quasi-particle is given by the group
velocity, i.e.,

Jk= edwk/dk= eux. (12)

It may then be shown that the conductivity is

c=n.e2r/m*,

(1.3)

where 7. is the number of electrons per unit volume,
and m* is the effective mass at the Fermi surface
defined by

dwy
*

dk

=kp.

k=kp

(1.4)

The relaxation time 7 may be written in the form
= nau(hr) f o (6) (1—cosd) 2 singds,  (1.5)
0

where #; is the concentration of impurities and ¢ () is
the differential cross section for scattering of a single
quasi-particle by a single impurity. [Equation (1.5) is
equivalent to Eq. (3.31) in ITif we understand that the
correct scattering amplitude is N (kr)i+.]

The scheme of the present paper is as follows. In
Sec. IT we start with Kubo’s formula and derive a
prescription for the evaluation of the conductivity via
perturbation theory. This prescription is simpler than

ij(w) =é f:dt(fjr_l)ﬂﬂd)‘ Z—t Tr{po/ ;(0)J:(¢-+iN)} = —é/

0w

From (2.3) and (2.4) we know that

Tr{poJ ;(0)J :(t+i8)} =Tr{po/ «();(0)}; (2.6)

thus

1 0 e——iwt__l
oislw)=—- f dt(
QJe w

This form for ¢ was first derived by Verboven.®!" In

)Tr{potfia),h(om}. @.7)

17 This simple derivation of Verboven’s result is due to J. M.
Radcliffe.
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those developed by the authors mentioned above,!*1?
and lends itself to an analysis in terms of reduced
graphs of the sort discussed in A. The extension of
these analytic techniques to the finite-temperature
problem is presented in Sec. III. In Sec. IV we apply
these techniques to the evaluation of the conductivity
and show that Eq. (1.3) is the zero temperature limit
of this theory. Finally, in Sec. V we examine corrections
to the conductivity to order 72

II. KUBO FORMULA

We start with Kubo’s exact formula for the conduc-
tivity tensor?

1 o 8
o) = / it / N Tr{po ;(O)T (N}t (2.1)

where J; is the current operator,

Ji=(e/m) L kaarlax; (2.2)
and
Ji({t)=eHt] g iHe, 2.3)
po 1s the equilibrium density matrix,
po=(1/Z)eBE-N :  7=TreBE-uN  (2.4)

H being the Hamiltonian for the system of electrons
and impurities, but excluding the external electric field.
ax’ and ay are the creation and annihilation operators
for an electron of momentum k. g is the chemical
potential; 8=1/ksT where kp is Boltzmann’s constant ;
and Q is the volume of the system. We use units in
which #=1.

The integrand in Eq. (2.1) is essentially an auto-
correlation coefficient which must vanish for sufficiently
large values of the time # if the system is to have a finite
conductivity. In other words, because of the presence
of the impurities, any current fluctuation which occurs
in the system will decay. With this assumption we may
immediately perform the A integration in Eq. (2.1).
We integrate over ¢ by parts and note that the quantity
in brackets is a function only of {47\ :

) e—iwt_ 1 ] 9
dt( ) / AN — Tr{poJ ;(0)J;(t+1N)}
o OA

0 w

1 (® foini—1
o
QJo w

all of the following work we shall consider only the dc

conductivity of an isotropic system. In this case we
define

)Tr{pofjm)wo—f,~<t+iﬁ>]}. (2.5)

a=§ 7::(0)=— (2/3Q) Im / i Te{pd (1)-J(0)}. (2.8)
=1 0

From this point on, our formal development proceeds
in close analogy with that of II, Sec. II. We define the



IMPURITY RESISTANCE OF

function
F()=Tr{peT[J(®)-I(0)]},

where T is the usual time-ordering operator. Because
only positive values of ¢ occur in (2.8), & is the same as
the integrand in the conductivity formula. It is &,
however, which is most conveniently evaluated in terms
of Feynman diagrams.

Let F(») be the Fourier transform of &

(2.9)

1 00
F(»)=— lim / Selld,  (2.10)
20 ™0 J_
F(v) has the spectral respresentation:
F(») =y (’){ L }d’ (2.11)
v)=—: plv V', .
21 vV —v—in I V4+v—in
where
p(y) = Z e BEn—pN2)
Z n,m
X |(n|I|m)|26(Ep—Eu—v), (2.12)

|%) and |m) being eigenstates of H with eigenenergies
E, and E,, respectively. Equations (2.11) and (2.12)
are easily derived by inserting the complete set of states
|%), |m), etc., into (2.9) and evaluating the Fourier
transform (2.10) explicitly. Notice that, unlike the
analogous function defined in II, p is continuous from
y=—o0 to 4. We may expect the value of p to be
considerable for values of » greater than —kgT, the
negative values corresponding to the fact that a system
at a finite temperature can emit energy. In the limit
T — 0, p vanishes for »<0 and has a discontinuous
derivative at »=0.

Inversion of the Fourier transform for {>0 yields

00 0

F@)= F(V)e_i"‘dv=/ o()e*tdv, >0. (2.13)

The conductivity ¢ now may be expressed very simply
in terms of p.

2 00
=——Tm / 101 5(0)
3Q 0

2 00 00
=——lim o(») Im[ idi et
0 —00 0

0

(2.14)
32 )

a 2w dp
p(»)—8(v)dy=——
dv 3

v

»=0

We shall find it more convenient to rewrite (2.14) in
the form:

T 1
U=3——Q m;&(v)—P(—V)]- (2.15)
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The great advantage provided by Eq. (2.15) is that
it enables us to calculate o without evaluating F(¢)
directly. As was pointed out by other authors,0-12
simultaneous perturbation expansions of the operators
po and J(#) lead to complicated expressions involving
integrations along a path in a complex time-temperature
plane. Such a procedure seems to preclude use of the
familiar Green’s function techniques which have proved
so powerful in other problems. If we understand,
however, that it is p and not & which is of primary
concern, we are free to perform a slightly simpler
calculation.

Consider now the function

G(u)=Tr{poeH*Je Hx. ]}, (2.16)

Notice that G may be obtained by calculating F(z)
for >0 and then analytically continuing to {=—iu.
Thus, in principle, G contains as much information
about the system as does &. Furthermore, for real
values of # between 0 and 8, G may be evaluated
directly by using the propagator techniques devised
by Luttinger and Ward.® In their graphical notation, G
is the sum of all vacuum polarization graphs in which
the external vertices occur at 0 and % and each vertex
contains the operator J. The standard technique for
evaluating G involves computing the Fourier coefficients

]
Gz=f G (u)eCmiti® ugy, (2.17)
0

That is, we construct a periodic function with period 8
whose value is defined by the function G(x) in the
interval 0 <# <. The propagator methods of Luttinger
and Ward are directly applicable in the evaluation of
G1. A detailed discussion of these methods is contained
in the next section.

The spectral function p(¥) may be obtained from
G in the following way. We insert the complete set of
eigenstates of H (|m), |n), etc.) into (2.16) and perform
the integration indicated in (2.17). We find

1
G,=_Z_ > e BBk | (n] T | m)|2

eB(En—Em+27ril/ﬂ) —_ 1

X . (2.18)
E.—E,+2nil/B3
Next we define a function G(»), such that
Gr)=Gi, v=2mil/B. (2.19)

To complete the definition of G (v), we require that it
have a branch cut along the real axis and’ be analytic
everywhere else in the » plane, including” at infinity.
According to (2.18), we may obtain such a function by
using exp2ril=1 in the numerator of the left-hand side
and then identifying 2mil/B=v in the energy de-
nominator. The discontinuity across the cut is, for
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real v,

1
G’(v)=; lim {G(v+in)—G(r—in)}
g 10

— 5 A G T

" X3(Em— En—v)(1—c#). (2.20)
By comparing (2.20) with (2.12), we find
G()
p(v)= . (2.21)
1—e b

Equation (2.21) completes the connection between the
Kubo formula and orthodox many-body perturbation
theory.

III. REDUCED GRAPHS

We turn our attention now to the perturbation
expansion of the function G(). Our aim, as in I and II,
is to resum this expansion in such a way that the
conductivity ¢ finally is expressed in the form given by
Eq. (1.3). This resummation may be effected via the
finite temperature analog of the ‘“reduced graphs”
discussed in A. We shall see that the series of reduced
graphs yields an expansion of ¢ in increasing powers
of the temperature.

The basic rules for the perturbation expansion of
G; have been developed in detail by Bloch and De
Dominicis.8 We shall use the propagator version of this
formalism devised by Luttinger and Ward.® Briefly, the
prescription of these authors for the evaluation of G,
is the following:

1. Draw all possible linked vacuum polarization
graphs. Remember that the electrons interact both
among themselves and with the static field of the
impurities. Remember also that, at this point in the
calculation, we are considering a system with a particu-
lar configuration of impurities. We shall average over
impurity configurations later.

2. With each electron line associate a factor

1 1
=Sr(k$)=-
¢

B ex—$1

)
) §z=u+g(21+ n. @1

Restrict the {¢’s in such a way that the total ¢ is
conserved at each vertex just as if { were an energy
variable. An impurity interaction® transfers no ¢. A
¢ transfer of v; is to be accounted for at each of the two
external vertices.

3. At each internal vertex insert the appropriate
interaction potential. At the external vertices insert the
current operator J and form the scalar product as
indicated in Eq. (2.16).

4, For a graph with # internal interactions and ¢
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closed electron loops, insert a numerical factor
(_ 1)n+cﬁn+1.

The factors B arise from the integrations over the
variables # at the vertices. There are -2 vertices, but
one external vertex is fixed at #=0.

5. Finally, sum over all {’s, momenta, and spins.

In order to avoid difficulties associated with electron
self-energy diagrams, we modify the above rules so as
to sum over skeleton graphs. The precise modifications
are:

1’. Draw only skeleton graphs, i.e., graphs in which
no self-energy parts occur on any electron line. Now
we may omit impurity interactions in the diagrams
as long as we understand that each electron line repre-
sents the exact single-particle propagator calculated
in the field of the particular impurity configuration,
that we are considering.

2’. With each electron line associate a factor
1/B8Skw (1), where S is the exact single-particle
propagator. .S has the spectral representation!®

® G (£)
Sk ()= / s —== (3.2)
— =8
where
1
e, i’ (E)=Z > (n| x| m)(m| at | n)eB En—uln)
X8(En—En—£)(#&»+1).  (3.3)

All other rules remain unchanged except that # now
represents only the number of electron-electron inter-
actions which appear explicitly in a skeleton diagram.

As an example of the application of these rules, let
us compute the contribution to p(») from the skeleton
graph shown in Fig. 1. We have

1
GW=— 3 X [dt|dé
ﬁ mom., spins 1’/
Q(£)a(%)
(E—§0) (E—Sv—w)

Following Luttinger and Ward,® we perform the sum

(3.4)

1
F1. 1. A simple
vacu}tllm polarization
+ graph whose contri-
Epg,[' fZ'Q{I VL bution to p(») is

computed in the text.

u

18 J. M. Luttinger, Phys. Rev. 121, 942 (1961).
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over I/ by using

S E() = (8/2mi) f F@F@de,  (3.5)

where
J (@)= (fem+1)7, (3.6)

and the contour I' is drawn in Fig. 2. When, as in (3.4),
F(w) contains only simple poles, we may close I' at
infinity to obtain

GO= 3 d&/déz @ (£1)@ (&)
fE)—f(&—w)
X
E2—E1—wn

The correct analytic function G(») is obtained by
noting that, because »=2wil/B, f~(§—wv)=S"(§).
Thus

GOG)= ¥

mom., spins

, 3.7

dt: f dts G(£) @ (E) F(82) F(£)
1— —B(&2—£1)
KX—

Eo—E1—v

(3.8)

where we have used the identity
F (&)= (&)= (&) (&) (1—eFEtv),

with
FE=1—f(5=(FEP4+1)"
Finally, from Egs. (2.20) and (2.21) we have

(3.9)

(3.10)

pP)= 2

mom., spins

i / 0t @(8) (6 F (8 (80
X8(&—E1—v). (3.11)

The definition and evaluation of reduced graphs in
the finite temperature problem is somewhat more
complicated than it was at zero temperature. The
difficulty lies in obtaining the analytic function G(»)
from G;. If one sets »;=v» before summing over /' in
Eq. (3.4), one finds a function with an essential singu-
larity at infinity rather than a branch cut on the real
axis. More generally, consider what happens to (2.18)
if one sets 2wil/B=v in (2.17). We must conclude that
the techniques of analytic continuation used in A are
not applicable in the present problem. We can, how-
ever, derive very similar results via a less elegant but
analogous procedure.

The contribution to G; from any graph v may be
written in the form

0

Gz('y):/. dgl...f dENg(El,"‘gN)

—o0

o ( (—1)mte

}, (3.12)
Br T (=20 (fv—Zn)

—

=

@ PLANE

F16. 2. The contour I used in Eq. (3.5).

where V is the number of internal electron lines and L is
the number of independent closed loops. (L=N—n—1,
# being the number of interactions.) The Z’s are linear
combinations of the {;’s and »; with coefficients =1
or 0. g(£1,-- &) contains the @’s, the explicit inter-
actions, and sums over momenta.

The analysis of G; according to A consists of
three steps:

1. Hold all the £'s fixed and locate the poles of the
quantity in brackets in (3.12). We shall call this
quantity {I(»)}.

2. Calculate the residues at these poles.

3. The residues generate discontinuities across the
cut upon integration over the §s. Perform these
integrations, being careful to sort out contributions
from overlapping singularities in such a way that the
result resembles a unitarity sum.

First we assert that the result of step 1 must be
exactly the same as in the zero-temperature problem.
Summation over the {’s returns us to a time-independent
form of the perturbation expansion in which energy
denominators occur. The poles arise at the values of »
where certain of these energy denominators vanish.
The point here is that just the same energy denomi-
nators must occur in the finite-temperature theory as in
the zero-temperature theory. To see this, we may
return to the explicitly time (temperature) dependent
form of the expansion. That is, insert

1 o0 Qo 1
s it ki (£)
6 l —o0 E_g‘l

et

00

= / 0 G (Dot +(), £>u>0;

=_/ dE Qi (E)e ¥ f~(§), —B<u<0, (3.13)
for each electron line and
1 2win
6i‘1+§‘2,?3+§4=’§ / exp{ P (ll+l2"‘l3_l4)}d% (3.14)
0

at each vertex. The resulting expression has precisely
the same form as the time-ordered product which
occurs in the zero-temperature theory except for the
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)

v, ¥

“v3ty

F16. 3. The reduced graphs associated with the
vacuum polarization function.

presence of the Fermi functions f#(¢) and the fact that
the range of integration over (real) # is finite. It is
obvious, however, that the # integrations will bring
down the same energy denominators as do the ¢ inte-
grations. Furthermore, we may sum over all time orders
which do not change the particle- or hole-like nature of
any line without changing the Fermi functions. Accord-
ing to the discussion in A, the denominators which
remain after this summation yield true poles in I.

We now repeat the prescription given in A for
location of a pole in the function 7(»). We look for an
intermediate state such that, if all the electron lines
in this state were broken, the graph would separate into
just two pieces. Each of these pieces must be connected
and each must contain one of the external vertices.
A pole occurs at that value of » for which the energy
denominator associated with this state vanishes. A
graph in which only this intermediate state and the
external lines are exhibited has been called a “reduced”
graph. The reduced graphs relevant to I(») are all of
the form shown in Fig. 3.

Our second step is to compute the residue of the pole
associated with any one of these reduced graphs. For
convenience in performing this calculation we introduce
a few minor changes in notation. Let us now measure £
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from the chemical potential u; i.e.,

E=E+p (3.15)
Usually we shall omit the primes on the new &'s. Also
let us consider the propagator S simply as a function
of v;=2mil/B. Thus

Qi v
S ()= / PO

f—")ﬂ/ﬁ—' 12

Conservation of ¢ at each vertex becomes conservation
of », the advantage of the form (3.16) being that
Vi+Vm=viym. To perform sums over »; we shall use

(3.16)

1 1
E ; A(v) =Zr—z: ﬁdv hr(»)A ), 3.17)

where

h(v)= (¢ — 1)1 (3.18)

and 4 is any function of ». The contour C encloses all
the poles of % and none of those of A. Note that

h(—mi/B)=—~().

Finally, we often shall write vy, »y, ---
Vi Vigy ="

Now label the lines in any reduced graph in the
manner suggested by the labeling in Fig. 3. That is, the
lines running from right to left (hole lines) are labeled
V1, va—V1, V3—Va, ***, Vp—Vp_1, Where p is the number
of intermediate particle-hole pairs. The lines running
from left to right (particle lines) are labeled vp=+vpi1,
Vpte—Vpil, *°+, V—Vep_1. This labeling automatically
conserves » in the diagram. The function I may be
written in the form

(3.19)

instead of

Izp(vl,' . ',V2p—171/)

(3.20)

I(v)=

where I, contains all the remaining sums associated
with lines not drawn explicitly in the reduced diagram.
I, must be chosen to be an analytic function of the »’s
having only poles and no singularities at infinity.

Our procedure here is very similar to that of A. We
suppose that all sums have been performed except that
over v, and write

1
I)=-2 ———1:1(n,)
B V1 Er—'hr/ﬁ— V1
I1(vs,
i k(vl)—IFI“L,

1—ir/B—n1

- (3.21)

2wt J C

where I satisfies the same condition of analyticity as
I,,. Then select one pole of I; in the complex »; plane.

That is, write
Ri(»)
~+J1(v1,v),

1\v)—n

Ii(v,v)= (3.22)

2 . )
B2, e wapmr (E1—im/B— 1)« « - (Eap—im/B+v2p-1—7)

where J; is analytic in the neighborhood of »;=P;. The
contribution of this part of I to I is

1 R],(V) ¢
Is(v)=— dvy h(vy)
S() 27r¢»£ " (1/(51—’1:71'/6—111)(P1—V1)
R,
= Th(¢—7 —h . .
P—titir /ﬁE (&1—im/B)—h(P1)] (3.23)
If we make the ansaiz
Pi=E—in/B—v, (3.24)
then
Rl(V)
Is(V)=—E—_£—_—f+(E1)f"(§1)(1— —AE—tn) - (3.25)

where we have used Egs. (3.9), (3.10), and (3.19).
In order to find R, and E,, we simply repeat the above
procedure selecting the pole associated with the second
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line in the reduced graph. That is, we write
1
Il(Vl,V) ="‘Z —-.—12(1'1,1!2,1/). (326)
B ve 52—’”{'/6— V2+V1
We isolate a pole of I, in the », plane,
R,
12(111,1/2,11): +]2(V1,V2,V), (327)
27 V2
and make the ansatz
Py=Es—in/B—v. (3.28)
The resulting singular part of I is
Iis=— @ dv2 h(»2)
2mi J ¢
R,
X . .
(§a—im/B+v1—v2) (Bo—im/B—v—v2)
Ry
Eg— Ez— Vi—v
X[ (&) [*(Be) (1 —e Pt (3.29)
Then
Py=E—in/B—v=E,—§—v (3.30)
implies
E1=E2—£2+i1r/ﬁ, (331)

which justifies the ansatz (3.24) on the basis of (3.28).
For the residue we have, using (3.31),
(&) fH(Es)

Ri(y)=—Ry(»
® FH(Ey)

: (3.32)

where it is understood that R, here is to be evaluated
at y1=P1. The remaining singular part of [ is

.RQ(V)
Is(v) =————/*(Ea) [~ (&) [~ (&)

El— 1~V
X(l— —B(EI—EI)). (3_33)

The above procedure must be repeated for each of the
hole lines 1<7<p—1, according to the rules

P1+1EE7~+1“‘1.7F/,3—V; (334)

E.=Erp—£rpitin/B; (3.35)
~(&rp) fHES

Rr=_ T+1M. (336)

JHE)

Beginning with the first particle line, however, we
change the ansaiz (3.34) to

Pr+1=Er+1_i7r/ﬁ+ v,

This leads to
Ep = Ep+1+ Epit 17"/6

p<r<2p. (3.37)

(3.38)
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- () [ (Epi)
ST &) [~ (Eppn
Rp=— Ryt 20 (3.39)
fH(E»)
For r > p+1, the rules for iteration are
- By=FEopi— & tin/B; (3.40)
. IRy
ST Er) fH(Eria
r= Nppy — . (3.41)

(&)
Finally, at r=2p—1, we have [from Eq. (3.20)]
Pop 1=Esp 1—in/B+v=—Ept+in/B+v; (3.42)

thus,
Eap1=—E2pt+2im/B. (3.43)

Working backwards, using (3.43), (3.40), (3.38), and
(3.35), we find

E!,z £2p+ M ‘"I"Ep-i—l*ép— v _22. (344)
Similarly, for the residues, we have
RZp_]_= "‘Izp, (345)

where it is understood that I, is here to be evaluated
at the values v,=P,. From Eqs. (3.34), (3.35), (3.37),
and (3.40) we see that this last condition implies

Ve vyr=Ey— B, y=E,—im/B, r5#p or 2p—1. (3.46)
For r=p we have, from Eq. (3.38),
votvpri=Ep+Ep— 2‘”/6 =&pp— 7f"’"/ﬁ; (3-47)

and, for r=2p—1, Eq. (3.42) yields

vep—1= Pop 1= Egp 1—im/B+v=—Eyptim/B+v. (3.48)

In the notation of (3.12), the last three equations imply
&£—Z,=0 (3.49)

for all lines in the reduced diagram. Equation (3.49) is
exactly the first of the two Landau equations discussed
in A. By iterating Egs. (3.36), (3.39), and (3.41)
starting from (3.45), we find

—1)rH

Ri(v)= F (&) f(E) [ )
Xf+($2p)12p(Vr=Pr).

Thus, the complete expression for the singular part of
I(v)is

Ts()=(=1)

+ 1
SrE) (3.50)

(1—gBGart- - D)

529+' b Ep— e —bi—y
X () - fHEpr) f(E0)- - [ (&)
XI2p(Vr=Pr)-

(3.51)

Notice that the restrictions on the £’s imposed by the
second Landau equation are included in (3.51) via
the Fermi factors f%(£) associated with each of the
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lines. The entire right-hand side of (3.51) is a simple
pole associated with the energy denominator for the
intermediate state described by a reduced graph. This
completes the second step of the analysis.

The third step in the analysis of reduced graphs is
the integration over the &s to find the discontinuity
across the branch cut. The only difficulty here arises
when, for some values of the &s, one or more poles in
I,,(v) happen to coincide with the explicit pole in
(3.51). This situation must be treated in exactly the
same way as in A; and we shall not repeat those argu-
ments here. The result is the following. The function
I:,(v) consists of two parts, say M1(v) and Ms(v),
associated with the two shaded circles in each of the
graphs of Fig. 3. For the contribution to the dis-
continuity G from any reduced graph we must write an
expression of the form:

0

G ()=

—00

><?171_1)101 [My(v—in) Ma(v+in) 1f (£20) - - -

dél/ dENg(EI:"';EN)

Xf+($p+l)f_(£p)' . f—(fl)
X6(£2p+' o +£p+1— Ep— - "'El"”)
X (=17 (1—e?).

We may sum over all reduced graphs of order 2p by
summing over all possible combinations of M; and M.
Here we must be careful to construct only skeleton
diagrams. Then it is simpler to write the quantity in
square brackets in (3.52) as [M1M,*] with the under-
standing that the M’s are functions of the &s. As
pointed out in A, this result is very similar to a unitarity
sum.

(3.52)

IV. EVALUATION OF THE CONDUCTIVITY

The mathematical techniques discussed in the last
section are now to be applied to the evaluation of the
conductivity. First use the definition of p in Eq. (2.21)
and rewrite (3.52) in the form

00 00

p<p>(,,)=(_1)p+1/_w dgl---/_w dé2p

X8(bopt-r-Flprr—Ep— - —E1—)
X fH(&sp) -+ frEp) f~(&p) - (&)
XX X APAD*@(&) - R(E) ]

¥ mom., Spins
(4.1)

The vertex functions A now contain all the interactions,
¢ integrations, and momentum sums implied by the
shaded circles in the reduced diagrams. Note that the
spectral functions @ associated with the 2p internal
lines of the reduced graph are written explicitly. This
accounts for all the factors previously included in the
function g(&,- - -,£x). It must be understood that the
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A’s are functions of £y, - - +, £2, and also of the momenta.
Momentum subscripts have been suppressed through-
out. The sum over vy means that we are to sum over all
combinations of vertex diagrams A;(®-A,®* in such
a way as to form all possible reduced skeleton diagrams
of order p.

Next we must form the function p® (—») in order to
evaluate o as given by Eq. (2.15). To do this, notice that
the quantity in square brackets in Eq. (4.1) is sym-
metric under the exchange of variables & < &5y, -+ -,
£p <> £9p. That is, we exchange the particle and hole
variables. The symmetry follows simply from the
structure of the diagrams. By using this symmetry, we

may write'ss
0 00

I I

Xo(Eapt+ - —E1—v) f~(E2p) - -

X (Epr) fH(Ep) - -~ fH(£)

XX X ADAD*C(E) - G (E) ]
v mom.,spins w2

The resulting contribution to ¢ according to (2.15)
contains a factor:

fr(&ap) - fHEpr) f(Ep) - - (&)
— () - fEpr) fH(Ep) - - fH(ED).

If we use the identity

frE=EEw (8,
we may write the expression (4.3) in the form
Jra) - frEp) f~(8p) -+ [ (£1)

X[1—exp{—B(fpt+ -+ +tpp1—E— - —E)} 1.
4.5)

(4.3)

(4.4)

Then

0

T 1
=% (—1)P+11im—/ d£1~~-/ dinp
3Q2 » =0y —»

—o0

X8 (Eapt-v-—E1—v) fH(&sp)- -
X fHEp) (&) -+ (&) (1—e)
XX X A@AP*@(E) - Q(£2p) ]

4 mom.,spins

'37‘. 0 0
=3 (._1)p+1/ g, - / dtay
SQ p —c0 —0

X8(Eapt+ v —E) fr(fap)- - f(80)
X[ X A@A@*Q(&) - @(Ep) .

4 mom.,spins

(4.6)

182 Note added in proof. It follows from Eq. (2.12) that
p(—v)=e"Pp(v);

o= (x8/32)p(0),
which is equivalent to the final form of Eq. (4.6).

thus, from Eq. (2.15)
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The temperature dependence of the pth term in the
conductivity as given by (4.6) may be determined by
standard techniques. The delta function and the Fermi
factors restrict the £’s to a region of order 23T about the
chemical potential p. For sufficiently small tempera-
tures, we may evaluate (4.6) by expanding the quantity
in square brackets as a power series about £=pu. If we
take only the leading term in this expansion we find a
factor

B dEl"'/ Bkap 8(Erpt- - - — E) fH(62p) - - - f(81)

- - =p>2rX const. (4.7)
It follows that the set of reduced graphs generates an
expansion of the conduct1v1ty in increasing even powers
of the temperature.

In order to take the zero temperature limit of (4.6)
we need consider only the term for which p=1. This is

& fr ()

—

XX X A®-A0*a@a®)]

4 mom.,spins

e
——Es—z S

X[

e =_—_

X AD-AWFa(Ha(d)].

mom.,spins

(4.8)
As T'— 0, (4.8) becomes

o(T= 0)——hm[ Y ADAD*QE)GW], (4.9)

T-0 "mom.,spins

which is precisely the same as Eq. (2.12) in II. Notice
the following points. For this lowest order reduced
graph (p=1) we have summed over graphs simply by
replacing A;® and A,® by the sum of all vertex
diagrams, indicated by the symbol A® as in IL. This
cannot be done for higher order graphs without con-
structing diagrams which are not skeleton-like. Also
notice that the functions A® and @ are still tempera-
ture dependent through the 8 and p which appear in the
definition of {;. As discussed by Luttinger and Ward,
however, in their zero-temperature limits these functions
become the same as those used previously. This
completes the proof that the expression for the conduc-
tivity given in II is the exact zero-temperature limit
of a complete statistical formulation of transport
theory.

V. CORRECTIONS OF ORDER 7*

The final section of this paper is devoted to a dis-
cussion of the lowest order finite temperature corrections
to Eq. (4.9). As pointed out above, these corrections
are of order T2 They arise in two places. First, there

are terms of order 72 occurring in the lowest order
reduced graph as given by Eq. (4.8). Second, there is a
contribution from the reduced graph of order p=2.
We consider first the term ¢ as given by Eq. (4.8).
The final expression on the right-hand side of this
equation has a form very similar to the Greenwood-
Peierls formula'® used as a starting point by Edwards?
and by Chester and Thellung® in their evaluations of
the conductivity of a system of independent electrons.
In fact, Eq. (4.8) represents the generalization of the
Greenwood-Peierls formula to a system of noninter-
acting quasi-particles. We may interpret the various
factors as follows. The factor 8f+(£)f~(£) tells us that
the conductivity is determined predominantly only by
those particles whose energies £ lie within k57" of the
Fermi surface. The vertex function AW is, apart from
the normalization factor discussed in II, the current
(e/mXgroup velocity) of a single quasi-particle. To
prove this, note that we may insert the current operator
into any internal electron line by using the relationship

Sr(k,$1) (eks/m)Sr(k,$)=—e(8/0k)Sr (k). (5.1)
The Ward identity,
AO (k)= (e/m)ki—e(d/0k)Z'(k,g),  (5.2)

follows immediately. 2’ is the usual self-energy function,
computed here in the absence of impurities. A® is now
a function of the temperature via the electron-electron
interactions. That is, the propagation of a quasi-particle
is affected by the thermal fluctuations of the background
medium in which it moves.

The spectral functions @(£) have the effect of
constraining the particles to lie on or near the energy
shell; i.e., they insist that the energy & and the mo-
mentum very nearly satisfy the dispersion relation for
real quasi-particles. To be more specific, let us consider
the function (@x(%)), where the angular brackets
denote the average over configurations of impurities.
We construct (@) from the average single-particle
propagator [Eq. (3.2)], which we may write in the form

Ok’
Sk x’ av ={S (k1) W o =———————. (5.3
St = S se=— s 59

Analytic continuation to real values of {; yields (see
Luttinger'®)

lim,o 2(k, i) =A(k,H =T (kE;  (5.4)
and
(@x(8))= (1/2mi) lim, o[ (S (k, £+in))—(S(k, E—in))]
21 I'(k,?) 55)
™ [ek— E— A (k,é):|2+I‘ (k,£)2

Thus, if T' is small and slowly varying, the function
(@) looks like a slightly broadened delta function

D, A, Greenwood Proc. Phys. Soc. (London) 71, 585 (1958).
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peaked near

a—§&—A(Kk,£)=0. (5.6)

The width of this peak I' is a measure of the uncertainty
in the quasi-particle energy, and is related to the rate of
relaxation relevant to the resistivity. A more complete
discussion of these points may be found in papers I
and IL.

It is convenient to decompose I' into two parts:

F(“JE)=Pe(k;$)+rimp.(k75): (56)

where T'; is that part of I' which arises solely from
electron-electron interactions. All the impurity effects
are contained in T'imp. In the zero-temperature problem,
as discussed in A and by Luttinger,'® T', behaves like
(§—u)? near the Fermi surface. That is low-lying
quasi-particle excitations are nearly stable. For the
conductivity at absolute zero temperature we needed
only the value of " at £=u; thus I', did not contribute.
At finite temperature, however, (¢—p)? is of order
(k5T)?, and must be retained in the present calculation.
Furthermore, T'.(ku) is itself of the order (kzT)
We conclude that the quasi-particles relevant to the
conductivity as given by Eq. (4.8) have an intrinsic
decay rate, independent of the impurities, of order 72
On the other hand, because the total current is con-
served In electron-electron collisions, I'; cannot con-
tribute to the relaxation rate which occurs in the final
formula for the conductivity. There must then be an
exact cancellation of this 7% term.

In order to find this cancellation without all of the
complications involved in the complete average over
impurity configurations, let us simply replace the @’s
which occur in Eq. (4.8) by {(@)’s. That is, we examine
the terms of order 72 occurring in the expression

2B r*®
0= dESOrE
- XTIA® (D[Hax(@). (1)

In principle, of course, (5.7) omits the cross terms in the
impurity average which, in the zeroth order calculation,
give rise to the “scattering-in” part of the relaxation
rate. It is a straightforward but tedious exercise to in-
clude these terms correctly in the following analysis. In
fact, we shall see that the following 7% corrections re-
main finite in the limit of zero impurity concentration;
thus there is no real approximation involved here. As
in all previous work, we shall systematically omit all
contributions to the conductivity except those which
behave like ;7.

F16. 4. The lowest
order reduced graph
associated with the
electron self-energy
function.
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As long as A and T are slowly varying functions of
k, we may write

(Cx(®)p=[1/27T (k&) JoLex—E—A(kE) ] (5.8)

The corrections to Eq. (5.8) are of order I' and may
be neglected to lowest order in 7;. Now to order 72 we
may write

1 1 1 r.
= a - +.--. (5.9)
P(k,f) rimp.—l_re Fimp. Fimp.2

Thus we consider a T2 correction in (5.7) of the form

2m >
- @O ®
302 J
Lok

. imp.2

x[gw(k,s)i a[ek—z—m,s)]]. (5.10)

At this point we must evaluate T',(k,£) via the same
sort of analysis as that used in Sec. IIT of this paper.
Only the lowest order reduced graph, drawn in Fig. 4,
contributes to order 7% in (5.10). The contribution of
this graph to I', turns out to be

f+7;£)-/ / / dgdgady

Xé(E1tEa—E—O T (&) fH (&) (&)
X X [T]Pa(g)a(g)a(s),

mom.,Spins

(k&)=

(5.11)

where T represents the part of the diagram indicated
by the small shaded circle in the figure. Notice that T
is just the scattering amplitude for two quasi-particles.
The remainder of the quantity in square brackets in
(5.10) now may be evaluated to zeroth order in the
temperature and at £=pu. Thus, we may write

lim Leac—n—A(kp)]
1 I‘imp.

—; [(ek'—l‘— A)2+Pimp.2]2

27['1‘ imp .2

1
=;|<S(k,ﬂ))|2(@k(u)). (5.12)

F16. 5. A graphical
representation of the
expression (5.13).



IMPURITY RESISTANCE OF

Inserting (5.11) and (5.12) into (5.10), we find to
order 7?

™3
- / / / / &5 EdE
3Q

Xo(Ertba—E—H fH(E) fH (£ [~ (8) /()
Xlim 2 [A®p)(S (ku)T|?

7—0 mom.,spins

X{ e (1) X Rocra (1) X Qo () )( Qg (). (5.13)

Here we have again averaged over impurity configura-
tions simply by replacing the @’s in (5.11) by (@)s.
The expression (5.13) may be associated with the
diagram drawn in Fig. 5. In (5.13) this diagram has
been evaluated as if it were a reduced graph of order
p=2, the intermediate state consisting of those lines
which are cut by the dashed line in the figure. That is, we
combine the quantities A® (k,£)(S(k,£)) T into a single
vertex and relabel this A®, Notice that we might just
as well have drawn Fig. 5 with the self-energy part
inserted into the hole line rather than the particle line.
To do this, simply rewrite Eq. (5.11) for T'; by using
the identity

frE) (&) f(&) zf“(&)f_(ia)f*(is)
frlatéa—§) f(ata—t)

It is convenient to associate the expression (5.13) with
one half the sum of the two possible diagrams. The
factor % turns out to be important.

It is obvious that Fig. 5§ is not a skeleton diagram
and is of just the form that had to be omitted in the
construction of reduced graphs of order p=2. This
point suggests that we look for the expected cancel-
lation of (5.13) among the second-order diagrams.
Consider, for example, the diagram shown in Fig. 6.
The contribution to o from the intermediate state
containing two pairs is, to order 72,

™3
- / / / / d&dEdEds
3Q

Xo(&r+Ea—E—§) fH(E) fH(&) [~ (&) ()
Xlim ¥  AOku) AV*(k+q, p)

T—0 mom.,spins

XS (eu) )(S* (k+-q, 1)) | T @ ()
X{ Cactq (1) X i (1) ) Crr—q (). (5.15)

The similarity of (5.15) to (5.13) should be apparent.
In evaluating (5.15) to lowest order in T, we may
make the approximations:

Timp. (ex—p—A~+1Timp.)
7 (ex—p—A)24Timp 22

(5.14)

(S (ko) X G () =

o' e—u—Alw] (5.16)

imp.
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k+q,f,

F16. 6. A special skeleton diagram which yields a
second-order reduced graph.

and

(S*(k+q, 1) ){ Qucrq (1))

1

>~

Lexq—u—Ak+q, )] (5.17)

2 imp.

Notice that here we have two factors % as opposed to
the single factor 3 which appears on the left-hand side
of Eq. (5.12) in connection with the expression (5.13).
This extra factor of 3 which occurs in the evaluation of
diagrams of the form of Fig. 6 is exactly right to make up
for the 3 which we attributed to diagram counting at
the end of the last paragraph. In other words, the
diagrams of Figs. 5 and 6 make 72 contributions to o
which are directly comparable.

We examine now the sum of all reduced diagrams of
order p=2 which may be formed using only the special
vertex graphs drawn in Fig. 7. These graphs have the
common feature that each may be separated into two
parts, A® and T, by cutting only a single electron line.
It follows from the discussion of the last paragraph that
we are now allowed to form all combinations of these

k!

k+q k'-q

ktq,(€-v) K-q,(€-v)

(v) S

() (d

F1c. 7. The special vertex graphs which participate in the cancel-
lation of a spurious 7% correction to the conductivity.
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vertex diagrams without regard to whether the result is
skeleton-like or not. For example, Fig. 5 may be
constructed by combining Fig. 7(a) with its time-
reverse. By combining 7(c) with the time-reverse of
7(a) we form Fig. 6. Each of the graphs in Fig. 7
contributes a factor of the form

I1imp. Fimp.

+T

J, (5.18)

where Timp.=NTimp. is the true relaxation rate and
J=NA® is the current of a quasi-particle as discussed
in II. The sign = must be determined by returning to
Eq. (3.52) where we gave » a small imaginary part
before letting it vanish. Now the single explicit internal
electron lines in Figs. 7(a) and 7(b) may be labeled by an
energy variable £+v; whereas the corresponding lines
in Figs. 7(c) and 7(d) must carry an energy £—». The
sign of the » in the energy variable determines whether
the propagator is to be evaluated just above or just
below the real axis, and, according to Eq. (5.4), whether
TI" appears with a -+ or — sign. It follows that the vertex
graphs 7(a) and 7(b) carry a sign opposite to that of
7(c) and 7(d). The sum of all four graphs then contains
a factor

Jk‘f-Jk'—Jk_M—Jk'_q:O, (519)

which vanishes because current must be conserved in
the scattering event described by T. This proves the
desired cancellation and eliminates the spurious 772
correction in 6@, ,

The remaining reduced graphs of order p=2 must
be constructed with vertex functions A® formed by
inserting the external interaction line only into internal
lines of the scattering amplitude T. With this restric-
tion it is impossible to construct anything but skeleton
diagrams with arbitrary combinations of the vertex
graphs. Thus we may sum all diagrams by inserting
at each vertex in the reduced graph the sum of all
vertex functions. Denote this sum by A®’, Further-
more, the singularities associated with the four lines
in the reduced graph no longer can reappear in A®’,
In contrast to Egs. (5.16) and (5.17), we now may use
the approximation

(@ (u))=0[ ex—pu—A(kp) ] (5.20)

LANGER

for each of the lines in the reduced diagram. The net
T2 contribution from reduced graphs of order p=2 is

3
@ =— / / / / ASTAST SN
69

Xo(&1tEa—E3—£0) fH(ED) fH(E) [ (&) f~(£0)
Xlim 3 [A®" XA (u) X Qur ()

7—0 mom.,spins
X Ccya (1)) Qg (1) )-

By virtue of (5.20), @ is finite in the limit T'jpmp, — 0,
and need not be included in our final expression for
the conductivity.

The fact that the second-order reduced graphs do not
contribute to the dc conductivity to lowest order in the
impurity concentration suggests the following physical
interpretation of these higher-order terms. Apparently
Eq. (5.21) describes a contribution to the conductivity
associated with a correlated pair of quasi-particles.
That is, during the time in which two quasi-particles
are in interaction, the pair plays the role of a new kind
of current carrier. In a normal Fermi fluid, however, the
pair correlation persists only for a finite time; thus the
pair current decays spontaneously even in the absence
of impurities. As long as the pair correlation time is
short compared to Timp ™., we may expect (5.21) to
make a negligible contribution to ¢. On the other hand,
a resonance in the scattering amplitude T near the
Fermi surface might cause A®’ to become large; and
a bound-state pole might be disastrous. In fact, Thouless
has shown that the appearance of a bound-state pole
in T is directly related to the phenomenon of super-
conductivity.?

(5.21)
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