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The impu~ity ~esistance of an interacting electron gas is evaluated at low but finite temperatures. Analytic
techniques similar to those developed by the author for use in the zero-temperature problem are applied to
the complete Kubo formula. The calculations are exact to all orders in the electron-electron interactions
and to lowest order in the concentration of impurities. To lowest order in the temperature the conductivity
is given correctly by the independent quasi-particle model. Corrections of order T' are discussed in detail.
It is shown that the only nonvanishing term of this order which explicitly contains the correlation between
two quasi-particles is independent of the impurity concentration, and thus may almost always be neglected.

I. INTRODUCTION

'HIS paper is the third in a series devoted to an
investigation of the transport properties of a

normal, interacting electron gas. In the previous
papers' ' the impurity resistance of this gas was com-
puted at absolute zero temperature. The result was
exact to all orders in the electron-electron and electron-
impurity interactions and to lowest order in the concen-
tration of impurities. The main purpose of the present
paper is the formulation of this theory at 6nite tem-
peratures. In particular, we shall apply techniques
similar to those developed in I, II, and A to the evalua-
tion of Kubo's formal expression for the transport
coeKcient, ' and shall show that the zero-temperature
limit of this calculation yields the previous result. In
addition, we shall examine in detail some of the Gnite
temperature corrections. The thermal conductivity of
this system also has been investigated; and a proof of
the Weidemann-Franz law will appear in a subsequent
publication.

The Kubo formula probably provides the most
rigorous possible point of departure for transport theory.
Despite its extremely formal appearance, it has in fact
proved amenable to direct evaluation for some simple
models. Edwards, 4 and Chester and Thellung' have
used the Kubo formula (or its equivalent) to calculate
the impurity resistance of a system of independent
electrons, and have recovered the usual solution of the
linearized Boltzmann equation. Verboven' has extended
this work to higher orders in the concentration of
impurities and has found corrections to the conduc-
tivity not ordinarily derived via Boltzmann techniques.
It would seem, however, that the Kubo formula might
be most fruitfully applied in the full many-body
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Pittsburgh 13, Pennsylvania. .' J. S. Langer, Phys. Rev. 120, 714 (1960); 124, 1003 (1961).
These papers are hereafter referred to as I and II, respectively.' Some mathematical techniques used in II are developed by the
author in Phys. Rev. 124, 997 (1961),hereafter referred to as A.

3 R. Kubo, J. Phys, Soc. Japan 12, 570 (1957).
4 S. I'. Edwards, Phil. Mag. 3, 33, 1020 (1958).' G. V. Chester and A. Thellung, Proc. Phys. Soc. (London) 73,

745 (1959).
6 E. Verboven, Physica 26, 1091 (1960).

problem where it is not clear that any Boltzmann
formulation is valid. Detailed prescriptions for pertur-
bation expansions in quantum statistics have been
developed within the last few years in papers by
Montroll and Ward, ' Bloch and De Dominicis, ' and
Luttinger and Ward. ' Although transport coeKcients
are somewhat more complicated than the partition
function, many-body techniques of the above kind
must be applicable to nonequilibrium problems.
Attempts in this direction have been made by Montroll
and Ward, " and more recently by Konstantinov and
Perel, "and Izuyama. "A somewhat different approach
to the problem has been presented by Martin and
Schwinger. "

Before going on to the detailed formalism to be
presented here, let us review brieQy some of the more
important physical features of the previous work. The
most striking result, as stated at the end of paper II,
is that the zero-temperature, zero-frequency conduc-
tivity is given exactly by Landau s quasi-particle
description of the Fermi Quid. " In other words, the
single-particle picture of the low-lying excitations of a
many-Fermion system turns out to be a direct conse-
quence of the general structure of many-body pertur-
bation theory. This is not really very surprising,
especially in view of recent work by Luttinger" and
Klein" on various equilibrium properties of the Fermi
Quid. It is not immediately obvious, however, that the
simple picture applies equally well to nonequilibrium
properties.

The dynamical properties of a quasi-particle are
determined by the behavior of the single-particle

' E. Montroll and J. C. Ward Phys. Fluids 1, 55 (1958).' C. 31och and C. De Dominicis, Nuclear Phys. 7, 459 (1958);
10, 181 (1959).' J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960)."E. Montroll and J. C. Ward, Physics 25, 423 (1959).' O. V. Konstantinov and V. I. Perel, Sov. Phys. —JKTP 12,
142 (1961).

n T. Izuyama, Progr. Theoret. Phys. (Kyoto) 25, 964 (1961)."P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)."L.D. Landau, Sov. Phys. —JETP 3, 920 (1956);5, 101 (1957).
See also A. A. Abrikosov and I. M. Khalatnikov, Sov. Phys.
Uspekhi 66 (1), 68 (1958)."J.M. Luttinger, Phys. Rev. 119, 1153 (1960); 121, 1251
(1961)."A. Klein, Phys. Rev. 121, 950 (1960);121, 957 (1960).
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J'k ——ed~k/dk= euk. (1.2)

propagator in the neighborhood of its pole on the
unphysical sheet of the complex energy plane. This
pole occurs at the point cok which satisfies the equation

ok —Mk —Z (k, (Ok) =0~ (1.1)

Z' being the proper self-energy function. We identify
the real part of co& with the energy of the quasi-particle
and the imaginary part with its rate of decay. A
quasi-particle always carries a charge e equal to the
charge of a single electron. When there is a 6nite
concentration of impurities in the system, a quasi-
particle must take the form of a wave packet localized
within the mean free path. Because the background
medium is 6xed by the impurities, the current as-
sociated with a quasi-particle is given by the group
velocity, i.e.,

those developed by the authors mentioned above, ""
and lends itself to an analysis in terms of reduced
graphs of the sort discussed in A. The extension of
these analytic techniques to the 6nite-temperature
problem is presented in Sec. III. In Sec. IU we apply
these techniques to the evaluation of the conductivity
and show that Eq. (1.3) is the zero temperature limit
of this theory. Finally, in Sec. V we examine corrections
to the conductivity to order T'.

IE. KUBO FORMULA

We start with Kubo's exact formula for the conduc-
tivity tensor'

oo P

o;;(co)=— dt dX Tr{poJ;(0)J;(t+iX)}e ' ' (2.1)
o o

It may then be shown that the conductivity is

o =e.e'r/m*,

where J; is the current operator,

J;= (e/m) Pk k;aktak,.nd
(2.2)

where n, is the number of electrons per unit volume,
and re* is the effective mass at the Fermi surface
defined by

=kp.
k=kp

The relaxation time ~ may be written in the form

r '=n, e(k—
p) o (8) (1—cos8)2~ sin8d8, (1.5)

where e, is the concentration of impurities and o. (8) is
the differential cross section for scattering of a single
quasi-particle by a single impurity. )Equation (1.5) is

equivalent to Eq. (3.31) in II if we understand that the
correct scattering amplitude is 1V(k p)t+.]

The scheme of the present paper is as follows. In
Sec. II we start with Kubo's formula and derive a
prescription for the evaluation of the conductivity via
perturbation theory. This prescription is simpler than

J.(t) —eiHt Je iHi, — (2.3)

po is the equilibrium density matrix,

po
—(I/g)e P&P yN& -~ g——Tre P(FI pN) —

(2
—

4)

H being the Ha, miltonian for the system of electrons
and impurities, but excluding the external electric field.
a"~ and u~ are the creation and annihilation operators
for an electron of momentum k. p, is the chemical
potential; P = 1/&AT where k~ is Boltzmann's constant;
and 0 is the volume of the system. We use units in
which 5= 1.

The integrand in Eq. (2.1) is essentially an auto-
correlation coe%cient which must vanish for sufficiently
large values of the time 3 if the system is to have a finite
conductivity. In other words, because of the presence
of the impurities, any current fluctuation which occurs
in the system will decay' With this assumption we may
immediately perform the X integration in Eq. (2.1).
We integrate over t by parts and note that the quantity
in brackets is a function only of t+iX:

1 8 1 8 1 "(e~'—1) e 8
,;( ) =— dt —dX —Tr{poJ,(0)J;(t+iX)}=—— dtl A —Tr{p,J;(0)J,(t'ai&) }

Q o iio o 8t Q o ~ co ~o
ro ~e-iroi

dtl
l
Tr{poJ;(0)(J;(t)—J;(t+iP)j}. (2.5)Q,

From (2.3) and (2.4) we know that all of the following work we shall consider only the dc

{ J (0)J (+ p)} T { J ()J (0)} (26)
conductivity of an isotropic system. In this case we

e ne
thus

oo
Pe
i&ut—

~';(~) =— dtl
— T {poLJ,(t),J;(0)j}. (2.7) ~ ~ (0) (2/3Q) Im tdt Tr{poJ(t) ~ J(0)}. (2.g)0 o co

This form for 0 was first derived by Verboven. ' ' In
'7 This sim le derivation of verboven's result is due to I M From this Point on, our formal develoPment Proceeds

Radcljne. in close analogy with that of II, Sec. II. We define the
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function

~(t)=Tr{p,r(J(t) J(0))}, (2 9)

P (t)etvt —»[ t[dt (2 1O)

he usual time-ordering operator. Because
(2.8) r '

thonly positive values of t occur in
t formula. It is F,d in the conductivity ormthe integran in
tl evaluated in termshowever, w ichich is most convenient y eva

of Feynman diagrams.
I et FI vg e ej g b th Fourier transform of 5

vided b Eq. (2.15) is thatThe reat advantage provide y q.e gr
lculate 0 without evaluatingit enables us to ca cu a e 0.

as ointed out by ot er au thor s 10 12po
aneous erturbation expansions o e

t d expressions involvingd J t lead to comp ica e ex
a ath in a complex time-temperatureintegrations a ong a pa p

a rocedure seems to prec u e
h

' hihh o deen's function techniques w
'

famiha 6 ee s
erful in other prob ems. w

d te-hhis fp--.yp
concern, we aree free to perform a s ig y
calculation.

Consider now the function

F(v) has the spectral respresentation: g (I)—=Tr{p»e~"Je ~" }. (2.16)

1
~(v) =

271 Z QQ

p(v'), . +,
v' —v i »ft v'+ v ——z»)

where
1

p(v)
— g e-tt(Em —ttNv)

Z n 1m

I(

(2.17)

a be obtained by calculating &(t)Notice that (t may e o1

0 and then analytically continuing o
in ', t

'
as much informationin rinciple, g contains as mu

tor techniques devised
s of I between 0 and, may
tl b using the propaga or
uttin er and Ward. ' In their graphical notation, (t

h texthe external vertices
contains the operator . e s

g th mplete set of states
evaluating g involves computing t e ourieeesy ri d y

etc. into (2.9) and evauating
~2.10~ explicit y. o ic

G —
8(N) e(2v it/tt) udtts d II is continuous from l

tth l f t b
s function dehned in, p is

t ct a periodic function with period
g"'"" ' '" '

Th t
1

' dfi d b th f t (d

e 0 gto

uttin er
t erature ca emt e e gy.at a 6nite emp

Ward are directly applicable in e ev
0 "d t"1'dd

derivative at v=0.
f r t)0 ields

in the next section.
obtained from

Invelsion o e o

s ectral function p(v) may be o taine
G

'
the folio

'
g y.

eigenstates of H (~nt), ~n), etc.) into . an
the integration indicated in (2.17). We find

1ma be expressed very simp yThe conductivity 0. now may
in terms of p.

2
e =——Im tdt S(t)

30 0

2=——lim
3Q ~ p(v) Im tdt e '"t »t--

2Ã dp
p(v)—~(v) d v =——

Zp 30 dp y=p

(2.14)

1
tT =—lim -Lp(v) —p(—v)g.30~ v

nt to rewrite (2.14) inWe shall find it more convenient to
the form:

(2.15)

Next we define a function G(v), such that

G(vt) =Gt, v)=2»til/P (2.19)

lete the definition of G(v), we reqre uire that it
h l

'
and be analytict alon t e rea axis

e se in the v plane, inc u ing a
h f b2.18 we may obtain suc a

of the left-hand sidei = 1 in the numerator o e e
2 l =— th dand then identifying 2»til P=—v in e

nominator. e. Th discontinuity across t e cu is,

G =— e ~(~" v".)/(n/J/nt)/'-l
Z n, m

—Ent+2xi l /P)e
(2.18)&+2'l/P—
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real v,

G(v) = lim (G(v+ii1) G—(r ir—l))
2xi& '

1=—P e-e&e=v~-~ ~(ti) J[m) )'
Z n.m

X8(E —E —v) (1—e ~"). (2.20)

By comparing (2.20) with (2.12), we find

G(v)
p(v) =

1—e
—&"

(2.21)

Equation (2.21) completes the connection between the
Kubo formula and orthodox many-body perturbation
theory.

III. REDUCED GRAPHS

We turn our attention now to the perturbation
expansion of the function G(v). Our aim, as in I and II,
is to resum this expansion in such a way that the
conductivity 0 Anally is expressed in the form given by
Eq. (1.3). This resummation may be effected via the
6nite temperature analog of the "reduced graphs"
discussed in A. We shall see that the series of reduced
graphs yields an expansion of 0- in increasing powers
of the temperature.

The basic rules for the perturbation expansion of
G~ have been developed in detail by Bloch and De
Dominicis. ' We shall use the propagator version of this
formalism devised by I.uttinger and Ward. ' BrieQy, the
prescription of these authors for the evaluation of G~

is the following:

1. Draw all possible linked vacuum polarization
graphs. Remember that the electrons interact both
among themselves and with the static 6eld of the
impurities. Remember also that, at this point in the
calculation, we are considering a system with a particu-
lar configuration of impurities. We shall average over
impurity con6gurations later.

2. With each electron line associate a factor

Sk,k (ii)=
@k,k ($)

d$ (3.2)

where
1

+k, l (()=—P (s( a~k m)( m( akt(B)e ~& " v~ &

Z n, m

X&(& —&.—P) (e«t—»+1). (3.3)

All other rules remain unchanged except that e now
represents only the number of electron-electron inter-
actions which appear explicitly in a skeleton diagram.

As an example of the application of these rules, let
us compute the contribution to p(v) from the skeleton
graph shown in Fig. 1. We have

P mom. , spins v

X . (3.4)
l' 2 l' &g

Following t,uttinger and Ward, 9 we perform the sum

closed electron loops, insert a numerical factor

( 1)m+cpm+1

The factors P arise from the integrations over the
variables I at the vertices. There are v+2 vertices, but
one external vertex is fixed at 1=0.

5. Finally, sum over all f's, momenta, and spins.
In order to avoid difficulties associated with electron

self-energy diagrams, we modify the above rules so as
to sum over skeleton graphs. The precise modi6cations
are:

1'. Draw only skeleton graphs, i.e., graphs in which
no self-energy parts occur on any electron line. Now
we may omit impurity interactions in the diagrams
as long as we understand that each electron line repre-
sents the exact single-particle propagator calculated
in the Geld of the particular impurity configuration,
that we are considering.

O'. With each electron line associate a factor
1/pSk, k Q i) where S is the exact single-particle
propagator. 5 has the spectral representation'

Restrict the l'&'s in such a way that the total l is
conserved at each vertex just as if f were an energy
variable. An impurity interaction transfers no f A.
f transfer of vi is to be accounted for at each of the two
external vertices.

3. At each internal vertex insert the appropriate
interaction potential. At the external vertices insert the
current operator J and form the scalar product as
indicated in Eq. (2.16).

4. For a graph with e internal interactions and c

FJG. 1. A simple
vacuum polarization
graph whose contri-
bution to p(v) is
computed in the text.

"J.M. Luttinger, Phys. Rev. 121, 942 (1961).
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over t' by using

where

f (~)=(eei" "'+1) ' (3.6)
~ PLANE

and the contour I' is drawn in Fig. 2. When, as in (3.4),
P(&c) contains only simple poles, we may close I' at
infinity to obtain

G (i)=
mom. , spins

dh 0'(ki) &(b)

x , (3.7)

The correct analytic function G(v) is obtained by
noting that, because vi ——2mil/P, f ($ vi) =f—($).
Thus

G"'(v) =
mom. , spins

«i «s ~(&i)&((.)f+(b)f-(ki)

1—e &«2—&»x, (3.g)
4—b—v

where we have used the identity

f (5) f (5)=—f+(b)f (5)(1 e"' "—), (39)
with

f+(()=1—f—(P)= (e «— +1)—'.

Finally, from Eqs. (2.20) and (2.21) we have

(3.10)

~'"(v) =
mom. , spins

d4 0'(6) @(ks)f+(4)f (4)

X5 ($s—$i—v). (3.11)

The definition and evaluation of reduced graphs in
the finite temperature problem is somewhat more
complicated than it was at zero temperature. The
difhculty lies in obtaining the analytic function G(v)
from G~. If one sets v~=v before summing over /' in
Eq. (3.4), one finds a function with an essential singu-
larity at infinity rather than a branch cut on the real
axis. More generally, consider what happens to (2.18)
if one sets 2xil/P= v in (2.17). We must conclude that
the techniques of analytic continuation used in A are
not applicable in the present problem. We can, how-

ever, derive very similar results via a less elegant but
analogous procedure.

The contribution to G& from any graph p may be
written in the form

Fro. 2. The contour F used in Eq. (3.5).

1

p i

~~,~~ (5)
~
—f)u

d$ Sg,g ($)e &"f+($), p)N)0;

d5 @~,~ (k)e '"f ($), —P(~(0, (3.13)

for each electron line and

where Ã is the number of internal electron lines and L is
the number of independent closed loops. (L= 1V I 1—, —
m being the number of interactions. ) The Z's are linear
combinations of the fi's and vr with coe%cients &1
or 0. g($t, $N) contains the 6's, the explicit inter-
actions, and sums over momenta.

The analysis of G&'» according to A consists of
three steps:

1. Hold all the $'s fixed and locate the poles of the
quantity in brackets in (3.12). We shall call this
quantity (I(v)).

2. Calculate the residues at these poles.
3. The residues generate discontinuities across the

cut upon integration over the $'s. Perform these
integrations, being careful to sort out contributions
from overlapping singularities in such a way that the
result resembles a unitarity sum.

First we assert that the result of step 1 must be
exactly the same as in the zero-temperature problem.
Summation over the f's returns us to a time-independent
form of the perturbation expansion in which energy
denominators occur. The poles arise at the values of v

where certain of these energy denominators vanish.
The point here is that just the same energy denomi-
nators must occur in the finite-temperature theory as in
the zero-temperature theory. To see this, we may
return to the explicitly time (temperature) dependent
form of the expansion. That is, insert

G, (~) = dpi dp~ g(b, b)
2xig

8r,+r, ,r,+r,=- exp (li+ls —l~ —/4) du (3.14)

( 1)c+c

X
at each vertex. The resulting expression has precisely

~ ~ ~~

(3 12) the same form as the time-ordered product which
, &r (q,—g,).. . ((~—g~) occurs in the zero-temperature theory except for the
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from the chemical potential p, , i.e.,

5= 5'+v (3.15)

Usually we shall omit the primes on the new $'s. Also
let us consider the propagator S simply as a function
of PI = 22ril/P T. hus

FIG. 3. The reduced graphs associated with the
vacuum polarization function.

O,k,k (&)
+k,k'(Vl) (3.16)

presence of the Fermi functions f+($) and the fact that
the range of integration over (real) I is finite. It is
obvious, however, that the I integrations will bring
down the same energy denominators as do the t inte-
grations. Furthermore, we may sum over all time orders
which do not change the particle- or hole-like nature of
any line without changing the Fermi functions. Accord-
ing to the discussion in A, the denominators which
remain after this summation yield true poles in I.

We now repeat the prescription given in A for
location of a pole in the function I(v). We look for an
intermediate state such that, if all the electron lines
in this state were broken, the graph would separate into
just two pieces. Each of these pieces must be connected
and each must contain one of the external vertices.
A pole occurs at that value of v for which the energy
denominator associated with this state vanishes. A

graph in which only this intermediate state and the
external lines are exhibited has been called a "reduced"
graph. The reduced graphs relevant to I(v) are all of
the form shown in Fig. 3.

Our second step is to compute the residue of the pole
associated with any one of these reduced graphs. For
convenience in performing this calculation we introduce
a few minor changes in notation. Let us now measure $

Conservation of i at each vertex becomes conservation
of v, the advantage of the form (3.16) being that
vi+ v~= PI+~. To perform sums over vi we shall use

where

1 1
—Q A (vi) = IEP h(v)A (v),
P I, 2'"'b

h(v) = (eI'"—1)—'

(3.17)

(3.18)

and 3 is any function of v. The contour C encloses all
the poles of k and none of those of A. Note that

72 (5 ir2!p) = f(5)— (3 19)

Finally, we often shall write v&, v&, instead of
V)1) V&2y ~

Now label the lines in any reduced graph in the
manner suggested by the labeling in Fig. 3. That is, the
lines running from right to left (hole lines) are labeled
vi, v2 —vi, v2

—v2, , v„—vv 1, where p is the number
of intermediate particle-hole pairs. The lines running
from left to right (particle lines) are labeled vv+v„+1,
v„+2—v„+1, , v —v» i. This labeling automatically
conserves v in the diagram. The function I may be
written in the form

=1 I2„(vi, , I 2~11v)
I(v) =, ,P P &1, . . . , &2P 1 ((1—Zir/P —pi) ~ ~ ~ ($2p —22I./P+v2p i—P)

(3.20)

where Jj is analytic in the neighborhood of v&=P&. The
contribution of this part of I~ to I is

where I» contains all the remaining sums associated
with lines not drawn explicitly in the reduced diagram.
I» must be chosen to be an analytic function of the v's

having only poles and no singularities at infinity.
Our procedure here is very similar to that of A. We

suppose that all sums have been performed except that
over v~ and write

1 Ei(v)
IB(v) = dvi ii(vi)

22r2 o ((1—iir/P —vi) (I'1—vi)

L&(~ -'-/P)-7(I )j
&1 6+&irlp— (3.23)

1 1
I(v) =- Q I, (vi, v)

P &1 $1 all/P Vi,

Ii(vi, p)
IEvi k(vi)

2x'z t" 'Lil /P PI,
If we make the ansats

I1=Ei 22r/p P1 (3.24)
(3.21)

Ri(v)
f+(Ei)f ($1)(1—e &~~1 &»), (3.25)

Ei

where we have used Eqs. (3.9), (3.10), and (3.19).
In order to find R& and E&, we simply repeat the above

procedure selecting the pole associated with the second

Ei(v}
II, (vi P) = +Jl(vi, v)

I'i(v) —v 1

(3.22)

where Ii satis6es the same condition of analyticity as Is(v) =—
I». Then select one pole of I» in the complex v~ plane.
That is, write
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line in the reduced graph. That is, we write

1
Ii(V4P) Z I2(vbp2&p) (3 26)

p ~2 $2 zzr/p —v2+vi

We isolate a pole of I2 in the v2 plane,

f'(4+2)f (Ev+i)
Ry Rg)+]

f+(Ev)

For r )p+ 1., the rules for iteration are

E„=E,pi g,gi—+ zz/rP;

and

(3.39)

(3.40)

I2(pi, p2&v) =

and make the assets

+I2(vi~ V2) v) ~

I'2—
Vg

(3.27) f (E;-)f'(~., )
R„=R,+g f (E.)

(3.41)

P2 E2 izr/——P v—. —

The resulting singular part of I~ is

1Iis = dv2 h(v2)
2''1

R2
X

($2 izr/P—+vi v2) (E—2 zzr/P v V2)

(3.28)

Ei=4 + +5 +i h
—— 4— (3.44)

Finally, at r=2p —1, we have )from Eq. (3.20)j
Pzv i=EZV i zzr/P+—v= —$2P+zzr/P+v; (3.42)

thus,
Ez„ i= —$2v+ 2izr/P (3.43)

Working backwards, using (3.43), (3.40), (3.38), and
(3.35), we find

E2 $2 Pl V

Similarly, for the residues, we have

Rg„ i———I2„, (3.45)

implies
PI =Ei— z/zPr—p =E2—

$2—p (3.30)

Xf (&2)f'(E2)( —~ '"' ") (329) where it is understood that I2„ is here to be evaluated
at the values v, =P„.From Eqs. (3.34), (3.35), (3.37),
and (3.40) we see that this last condition implies

v„—v, ,=E„E„i $—„izr/P——,—rgP or 2P —1. (3.46)
(3.31)

For r = p we have, from Eq. (3.38),
Ei E2 $2+izr/p——, —

which justifies the azzsats (3.24) on the basis of (3.28).
For the residue we have, using (3.31),

f (b)f+(E2)
Ei(v) =—E2(v)

f (E.)
(3.32)

vv+ Pv+i= v+ v+i 2zrzlp= 4+—2 zzrlp (3 4—7)'
and, for r=2p —1, Eq. (3.42) yields

P2v i P2v ——1 —E2v—i Zzr/p+ v = $2v+Zzr/p+ P (3.48).
In the notation of (3.12), the last three equations imply

where it is understood that R2 here is to be evaluated
at v~= I'~. The remaining singular part of I is $,—Z„=O (3.49)

ppyi= Et+i zzl/p pi—(3.34)

E2(v)
Is(v) = f+(E2)f (&2)f (6)

Ei $]—v—
X(1—e ~&@I &»). (3.33)

The above procedure must be repeated for each of the
hole lines 1&r&p —1, according to the rules

for all lines in the reduced diagram. Equation (3.49) is
exactly the first of the two Landau equations discussed
in A. By iterating Eqs. (3.36), (3.39), and (3.41)
starting from (3.45), we find

(—1)""
~ ()= f (b) f (4)f+(4+) . .

f'(E ) Xf'(5")I.("=P.) (3.5o)

E„=E„+i $,+i+zzr/P;—
f (I+i)f+(E.+i)

R,= —R„+g
f'(E )

(3 35) Thus, the complete expression for the singular part of
I(v) is

(1 r, P(hv+ —Zi))—

(2V+ +&v+i —$,—

Beginning with the first particle line, however, we
change the azzsazs (3.34) to

Xf'(6,)" f (4„)f-(4) "f-(g,)
XIZv (v, =P,). (3.51)

P,+i—E„+i—zzr/P+v, p&r&2p. —

This leads to
Ev Ev+i+ 4+i+zzr/p

(3.37)
Notice that the restrictions on the $'s imposed by the
second Landau equation are included in (3.51) via

(3.38) the Fermi factors f+(g) associated with each of the
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(

X& + ~ )f-(b-.) -.

x -(&., )f'(~.) f'(6")
t )'e(p,)" e(p„)].

mom. ,sp ins

d$)i g(fi, ,br)6(v) (v) = dpi

X lim t Mi(v srl)Ms—(v+tr)) jf+
tl~0

(4.2)
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The temperature dependence of the pth term in the
conductivity as given by (4.6) may be determined by
standard techniques. The delta function and the Fermi
factors restrict the ('s to a region of order &AT about the
chemical potential p, . For suKciently small tempera-
tures, we may evaluate (4.6) by expanding the quantity
in square brackets as a power series about $=p. If we
take only the leading term in this expansion we find a
factor

«r
=p' '"Xconst. (4.7)

It follows that the set of reduced graphs generates an
expansion of the conductivity in increasing even powers
of the temperature.

In order to take the zero temperature limit of (4.6)
we need. consider only the term for which p=1. This is

ps.
&0) =

30

mom. ,spins

mom. ,spina

As T~O, (4.8) becomes

o(T=O) =—lim [ Q A. &'& A&'&~6, (p)S(y)] (4.9)
3Q ~ 0 mom. ,spins

which is precisely the same as Eq. (2.12) in II. Notice
the following points. For this lowest order reduced
graph (p=1) we have summed over graphs simply by
replacing A.&&') and A.2&'& by the sum of all vertex
diagrams, indicated by the symbol A. ('& as in II. This
cannot be done for higher order graphs without con-
structing diagrams which are not skeleton-like. Also
notice that the functions A.&o and 0', are still tempera-
ture dependent through the p and p, which appear in the
definition of t &. As discussed by Luttinger and Ward,
however, in their zero-temperature limits these functions
become the same as those used previously. This
completes the proof that the expression for the conduc-
tivity given in II is the exact zero-temperature limit
of a complete statistical formulation of transport
theory.

V. CORRECTIONS OF ORDER T'

The 6nal section of this paper is devoted to a dis-
cussion of the lowest order 6nite temperature corrections
to Eq. (4.9). As pointed out above, these corrections
are of order T'. They arise in two places. First, there

are terms of order T' occurring in the lowest order
reduced graph as given by Eq. (4.8). Second, there is a
contribution from the reduced graph of order p= 2.

We consider first the term o-"' as given by Eq. (4.8).
The 6nal expression on the right-hand side of this
equation has a form very similar to the Greenwood-
Peierls formula" used as a starting point by Edwards'
and by Chester and Thellung' in their evaluations of
the conductivity of a system of independent electrons.
In fact, Eq. (4.8) represents the generalization of the
Greenwood-Peierls formula to a system of noninter-
acting quasi-particles. We may interpret the various
factors as follows. The factor Pf+($)f ($) tells us that
the conductivity is determined predominantly only by
those particles whose energies $ lie within IssT of the
Fermi surface. The vertex function A&') is, apart from
the normalization factor discussed in II, the current
(e/mXgroup velocity) of a single quasi-particle. To
prove this, note that we may insert the current operator
into any internal electron line by using the relationship

S» (kg~) (ek;/m)S p(k t g) = e(r)/B—k;)S~(kg~) (5.1.)
The Ward identity,

A, &'& (kg)) = (e/m)k, e(B—/Bk, )Z'(k, f')), (5.2)

follows immediately. Z' is the usual self-energy function,
computed here in the absence of impurities. A.&'& is now
a function of the temperature via the electron-electron
interactions. That is, the propagation of a quasi-particle
is aGected by the thermal Quctuations of the background
medium in which it moves.

The spectral functions 6($) have the effect of
constraining the particles to lie on or near the energy
shell; i.e., they insist that the energy $ and the mo-
mentum very nearly satisfy the dispersion relation for
real quasi-particles. To be more specific, let us consider
the function (8~($)), where the angular brackets
denote the average over configurations of impurities.
We construct (0',) from the average single-particle
propagator [Eq. (3.2)j, which we may write in the form

(5.3)
sg f'E Z(k,—g()—

Analytic continuation to real values of f& yields (see
Luttinger")

lim„s Z(k, gairl) =6(k,&)air(k, g); (5.4)

(0',~($))= (1/2si) lim„s[(S(k, $+iq)) —(S(k, f irl))j—
1 r(k, q)

(5.5)[.,—g
—A(k, g)gs+r (k,P)

Thus, if F is small and slowly varying, the function

(8) looks like a slightly broadened delta function

"D.A. Greenwood, Proc. Phys. Soc. {London) 71, 585 {1958).
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peaked near
e,—$—h(k, $) =0. (5 6)

The width of this peak F is a measure of the uncertainty
in the quasi-particle energy, and is related to the rate of
relaxation relevant to the resistivity. A more complete
discussion of these points may be found in papers I
and II.

It is convenient to decompose F into two parts:

As long as A. and I' are slowly varying functions of
k, we may write

(~1 (6)&'= t:1/2~r(k, k)]&E~~—$—~(k,k)] (5 8)

The corrections to Eq. (5.8) are of order r and may
be neglected to lowest order in e;. Now to order T' we

D1ay write

r(k, g) =r, (k,p)+ r, , (k,p), (5.6) + (5 9)
r(k, p) r;, .+r. r, , r, , 2

where I', is that part of F which arises solely from
electron-electron interactions. All the impurity effects
are contained in F; p. In the zero-temperature problem,
as discussed in A and by t.uttinger, "I', behaves like

($—p)' near the Fermi surface. That is low-lying
quasi-particle excitations are nearly stable. For the
conductivity at absolute zero temperature we needed
only the value of r at (=p; thus r, did not contribute.
At finite temperature, however, ($—p)' is of order
(kIIT)', and must be retained in the present calculation.
Furthermore, r, (k,p) is itself of the order (kiIT)'.
Ke conclude that the quasi-particles relevant to the
conductivity as given by Eq. (4.8) have an intrinsic
decay rate, independent of the impurities, of order T'.
On the other hand, because the total current is con-
served in electron-electron collisions, I', cannot con-
tribute to the relaxation rate which occurs in the final
formula for the conductivity. There must then be an
exact cancellation of this T2 term.

In order to find this cancellation without all of the
complications involved in the complete average over
impurity con6gurations, let us simply replace the 0,"s
which occur in Eq. (4.8) by (0',&'s. That is, we examine
the terms of order T2 occurring in the expression

dk f+(E)f (5)
30

xp l~o&(k, g) I'«. (g)&'. (5.7)

Thus we consider a T' correction in (5.7) of the form

r.(k,p) =
f'(S)

dpid$2df3

x p ITI o' R,)~(b)o'(g, (5.»)
mom. ,sp ins

where T represents the part of the diagram indicated
by the small shaded circle in the 6gure. Notice that 7
is just the scattering amplitude for two quasi-particles.

The remainder of the quantity in square brackets in
(5.10) now may be evaluated to zeroth order in the
temperature and at P= p, . Thus, we may write

r, (k, q)x &IA&'&(k, p)l'
'

~L"—p
—~(k,g)7 . (5.10)

k 2&I'imp.

At this point we must evaluate r, (k, g) via the same
sort of analysis as that used in Sec. III of this paper.
Only the lowest order reduced graph, drawn in Fig. 4,
contributes to order T' in (5.10). The contribution of
this graph to I', turns out to be

In principle, of course, (5.7) omits the cross terms in the
impurity average which, in the zeroth order calculation,
give rise to the "scattering-in" part of the relaxation
rate. It is a straightforward but tedious exercise to in-
clude these terms correctly in the following analysis. In
fact, we shall see that the following T' corrections re-
main 6nite in the limit of zero impurity concentration;
thus there is no real approximation involved here. As
in all previous work, we shall systematically omit all
contributions to the conductivity except those which
behave like gg.

—'.

11III 8LEg p A(kqp)]T~ 2~/. 2

=-l&S(k,&)&l &o', (~)&. (5.12)

k'q„(2

FH;. 4. The lowest
order reduced graph
associated with the
electron self-energy
function.

Fro. 5. A graphical
representation of the
expression (5.13).
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Inserting (5.11) and (5.12) into (5.10), we find to
order T'

d(rd$sd$sd$

X~(t+b 5—k—)f'(k)f'(k)f (k)f (5)

Xlim P IA. &'&(k,p)(S(k,p)&T I'
T~O Inom. ,apins

X«k(~) &(t&'k+s(.)&«'(.))(~',(.) & (5 13)

Here we have again averaged over impurity configura-
tions simply by replacing the Ct's in (5.11) by (8,)'s.
The expression (5.13) may be associated with the
diagram drawn in Fig. 5. In (5.13) this diagram has
been evaluated as if it were a reduced graph of order
p=2, the intermediate state consisting of those lines
which are cut by the dashed line in the figure. That is, we
combine the quantities A &'&(k,g)(S(k, )))T into a single
vertex and relabel this A. (2). Notice that we might just
as well have drawn Fig. 5 with the self-energy part
inserted into the hole line rather than the particle line.
To do this, simply rewrite Eq. (5.11) for I', by using
the identity

f'(&)f+(h)f (&) f (E)f (b)f'(k)
(5.14)

f-(h+b-h)
It is convenient to associate the expression (5.13) with
one half the sum of the two possible diagrams. The
factor 2 turns out to be important.

It is obvious that Fig. 5 is not a skeleton diagram
and is of just the form that had to be omitted in the
construction of reduced graphs of order p=2. This
point suggests that we look for the expected cancel-
lation of (5.13) among the second-order diagrams.
Consider, for example, the diagram shown in Fig. 6.
The contribution to a from the intermediate state
containing two pairs is, to order T,

I IG. 6. A special skeleton diagram which yields a
second-order reduced graph.

and

(S*(k+il, ~))(O'k+s(~))

~[e»+s p—~(k+», u)j (5 17)
2~ in1p,

Notice that here we have two factors —,
' as opposed to

the single factor —,
' which appears on the left-hand side

of Eq. (5.12) in connection with the expression (5.13).
This extra factor of —', which occurs in the evaluation of
diagrams of the form of Fig. 6 is exactly right to make up
for the ~ which we attributed to diagram counting at
the end of the last paragraph. In other words, the
diagrams of Figs. 5 and 6 make T' contributions to a
which are directly comparable.

We examine now the sum of all reduced diagrams of
order p= 2 which may be formed using only the special
vertex graphs drawn in Fig. 7. These graphs have the
common feature that each may be separated into two
parts, A.(" and T, by cutting only a single electron line.
It follows from the discussion of the last paragraph that
we are now allowed to form all combinations of these

dard frd$sd$

X~(~.+~. &. ~)f'(~.)f-(~.)f (» )f (~)--
Xhm p A&'&(k p) Ao&*(k+q, ii)

T~ lnOIIL ~,spina

X(S(k,p))(S*(k+a &tr)) I
T I'(ek( )&

X(@k~,(p) &(0'k (&a) &(@k -s(~) & (5 15)

The similarity of (5.15) to (5.13) should be apparent.
In evaluating (5.15) to lowest order in I';,. we may
make the approximations:

I imp. (ek 0 ++&i imp. )
(S(k,P)&(ek(P)& =

~[(e»—p —g)s+I';

(b)

2F jlnP

(c) (d)

~[ek P +(k)P)1 (5 16) Fro. 7. The special vertex graphs which participate in the cancel-
lation of a spurious T' conection to the conductivity.
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vertex diagrams without regard to whether the result is
skeleton-like or not. For example, Fig. 5 may be
constructed by combining Fig. 7(a) with its time-
reverse. By combining 7(c) with the time-reverse of
7(a) we form Fig. 6. Each of the graphs in Fig. 7
contributes a factor of the form

mP
g( )

60
dgrdgsd)sd)4

for each of the lines in the reduced diagram. The net
T' contribution from reduced graphs of order p=2 is

~Y A.
2I'imp.

(~) =~/
2F1mp

(5.18)

X5($1+42 $3 $4)f+(6)f+(b)f (b)f (6)
Xllm p ~A. "'~'(ek(li))(ek (p))

g-+0 mom. ,api Ds

where I'; p. =Ej. ; p. is the true relaxation rate and
J=EA."l is the current of a quasi-particle as discussed
in II. The sign & must be determined by returning to
Eq. (3.52) where we gave v a small imaginary part
before letting it vanish. Now the single explicit internal
electron lines in Figs. 7 (a) and 7 (b) may be labeled by an
energy variable (+v; whereas the corresponding lines
in Figs. 7(c) and 7(d) must carry an energy P

—v. The
sign of the v in the energy variable determines whether
the propagator is to be evaluated just above or just
below the real axis, and, according to Eq. (5.4), whether
P appears with a + or —sign. It follows that the vertex
graphs 7(a) and 7(b) carry a sign opposite to that of
7(c) and 7(d). The sum of all four graphs then contains
a factor

(5.19)

which vanishes because current must be conserved in
the scattering event described by Y. This proves the
desired cancellation and eliminates the spurious T'
correction in 0 (').

The remaining reduced graphs of order p=2 must
be constructed with vertex functions A(2) formed by
inserting the external interaction line only into internal
lines of the scattering amplitude T. Kith this restric-
tion it is impossible to construct anything but skeleton
diagrams with arbitrary combinations of the vertex
graphs. Thus we may sum all diagrams by inserting
at each vertex in the reduced graph the sum of all
vertex functions. Denote this sum by A(2)'. Further-
more, the singularities associated with the four lines
in the reduced graph no longer can reappear in A.(')'.
In contrast to Eqs. (5.16) and (5.17), we now may use
the approximation

(5.20)

By virtue of (5.20), o ~'l is finite in the limit P; ~. -+ 0,
and need not be included in our final expression for
the conductivity.

The fact that the second-order reduced graphs do not
contribute to the dc conductivity to lowest order in the
impurity concentration suggests the following physical
interpretation of these higher-order terms. Apparently
Eq. (5.21) describes a contribution to the conductivity
associated with a correlated pair of quasi-particles.
That is, during the time in which two quasi-particles
are in interaction, the pair plays the role of a new kind
of current carrier. In a normal Fermi Quid, however, the
pair correlation persists only for a finite time; thus the
pair current decays spontaneously even in the absence
of impurities. As long as the pair correlation time is
short compared to I'; ~. ', we may expect (5.21) to
make a negligible contribution to 0-. On the other hand,
a resonance in the scattering amplitude T near the
Fermi surface might cause A.")' to become large; and
a bound-state pole might be disastrous. In fact, Thouless
has shown that the appearance of a bound-state pole
in 7 is directly related to the phenomenon of super-
conductivity. '
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