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A theory, which has been developed recently by the authors to explain the origin and characteristics of
the long-period superlattice CuAu II, is used to explain, in a more general way, similar characteristics of
long-period superlattices found in face-centered cubic alloys having compositions around the A3B. Although
there is a difference in symmetry in the atomic arrangement between the AB- and ASB-type alloys, the
application of the theory can be made in a straightforward manner. It is found that one- and two-dimensionaI
long-period superlattices can exist in the A3B-type alloy systems, but that a three-dimensional one should
not occur. In the case of the one-dimensional long-period superlattices, the theory can be reduced to the
same form as for the CuAu II (AB type) case. The theory predicts correctly the period of the superlattice,
e.g., those found in the Cu-Pd, Cu-Pt, Au-Cd, Ag-Mg, and Au-Zn systems, the type of antiphase, the direc-
tion of the period and the sign of the tetragonal distortion which occurs when the long-period superlattice
is formed.

The theory is also applied to the case of the two-dimensional superlattice, examples of which are found in
the Cu-Pd, Au-Mn, and Au-Zn alloys. Since a more detailed knowledge of the electronic structure of the
alloys is necessary in dealing with the two-dimensional superlattices, less quantitative information on their
characteristics is obtained. However, predictions concerning the period of the structure, type of antiphase,
and lattice distortion are reasonably good.

An explanation is given for the possible relation between the magnitude of the truncation factor and the
shape of the Fermi surface which is based on recent indings in the noble metals.

I. INTRODUCTION

ONG —PERIOD super1attices, a superstructure
& having regular antiphase domains, have been

found in many alloy systems and considerable data
concerning the structure of these alloys have been ac-
cumulated. In an attempt to understand the origin of
the formation of such a peculiar structure we have been
engaging in a systematic study, both experimental and
theoretical of these alloys. In a previous paper, ' here-
after referred to as I PS I, experimental work was re-
ported in which additional elements in various quanti-
ties were added to the antiphase structure CuAu II.
The effect of the additional elements on the period of
the antiphase structure was determined, and it was
found that there existed a de6nite relation between the
period of the antiphase and the electron-atom ratio of
the resulting alloy. On the basis of this observation and
its analysis a theory was proposed, based upon the con-
cept of the stabilization of alloy phases at the Brillouin-
zone boundary, to explain the dependence of the period
2M on the electron-atom ratio e/a. This dependence is
shown by the formula

e xi 1.
————2a—

where t is a truncation factor which takes into account
the nonsphericity of the Fermi surface. The above equa-
tion using the plus sign and a t value of 0.95 predicts
the variation of M with e/tt with considerable quantita-
tive success for the case of CuAu II with additional
elements. The equation, however, shouM be regarded
as representing the zeroth approximation in the deter-
mination of the domain size, since other factors such

' H. Sato and R. S. Toth, Phys. Rev. 124, 1833 (1961).

as the antiphase domain boundary energy, etc., will
affect the domain size. The theory also explains why a
distortion occurs in the lattice when the antiphase
structure is formed, By taking into consideration the
antiphase boundary energy, the theory also can explain
the change in domain size with domposition which
occurs without a change in the e/tt ratio (the concen. tra-
tion effect), the change in domain size which occurs with
a change in temperature, and why the phase change
CuAu I—CuAu II should occur (temperature e8ect).

In taking a composite picture of this basically order-
disorder problem, it was emphasized that the main
ordering energy is still due to the short-range interac-
tions. The main feature of the proposed theory was to
show that a small change in energy due to a lowering
of the energy of the electrons at the Brillouin zone
boundaries is sufhcient to cause the formation of the
antiphase structures.

The agreement between theory and experiment for
the case of CuAu II is so good that one could assume that
the model adopted is indeed the correct explanation for
the formation of the antiphase structure in this alloy
system. However, CuAu II is rather a special example
of these types of alloys. In the case of CuAu II, the
long-period superlattice appears at an equal composition
range of A and 8 atoms and the symmetry of the atomic
arrangement on the crystal lattice is tetragonal. On
the other hand, most of the long-period superlattices,
have been observed at the composition near A& andi
the symmetry of the atomic distribution remains cubic.
In addition to the one-dimensional periodic structures.
like CuAu II, two-dimensional structures have also
been found. However, these alloys have basic charac-
teristics which are common with CuAu II, and the
theory adopted there is a general one. Therefore, wc
can expect that this type of theory should provide a
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FIG. 1. One- and two-dimensional long-period superlattices in
an AGB alloy. 3f& and M3 denote the domain size in each direction,
and the arrows show the regions of the antiphase boundaries.
(a) The unit cell of the one-dimensional superlattice is indicated
by the dark lines, and is composed of two antiphase domains I
and II of size %3=5.0. (b) The unit cell of a two-dimensional
superlattice is composed of four domains as indicated by the dark
lines with domain sizes of 3f1=5.0 and HEI~=4.0.

good explanation of the characteristics of other alloys
;as well. The purpose of this paper is to treat the
-problem, especially that of the A38-type alloys, from
;a more general view than before and to compare the
theoretical predictions with available experimental data.

XI. SOME FEATURES OF LONG-PERIOD
SUPERLATTICES

Before applying the theory to specific alloy series, it
may be worthwhile to outline briefly what features of
long-period superlattices should be explained by the
theory, and what general experimental data is available.

Thus far, the long-period superlattice has been found
mostly in face-centered cubic alloys having composi-
tions around the AB and A38.~ In these, only one-
dimensional antiphase structures are found in the AB
type while both one- and two-dimensional structures
are found in the ASB type. No three-dimensional anti-
phase structures have been found. By a one-dimensional
antiphase structure, we mean the superperiod exists

denly in one direction in any particular region of the
crystal. Therefore, we can describe this structure by
using a long unit cell composed of a row of fundamental
unit cells of the face-centered cubic lattice, in a direc-
tion of the period, with two antiphase domains of size
3Ixsu3, each separated by an antiphase domain boundary
as shown in Fig. 1(a).2Ms is called the period of the one-
&dimensional long-period superlattice. For the two-
dimensional case, we can describe the structure as an

~L. Guttman, Solid State Physics, edited by F. Seitz and D.
'Turnbull (Academic Press Inc. , New York, 1956), Vol. 3, p. 146.
;Some periodic structures in hexagonal close packed systems have
;also been reported. See reference 13.
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I'IG. 2. Types of antiphase
at a domain boundary. (a)
Three di6erent ways of ex-
changing sites to form an
antiphase. This exchange is
conveniently represented by
three "out-of-step" vectors:
(b) n ~P; +-', ia&+as) anti-
phase of the 1st kind, (c)
a ~p, +-,'(a2&ag) anti-
phase of the 2nd kind.
(d) o. ~ a; W ~(a&aa&) anti-
phase of the 2nd kind. If
an additional superperiod
exists in the ai direction
(c) indicates the e type and
(d) indicates the i type.
The arrows at the bottom
of each figure show the
regions of the antiphase
boundaries.

'D. Watanabe and S. Ogawa, J. Phys. Soc. Japan ll, 226
(1956).

orthorhombic unit cell which is one unit cell thick in
one direction but in the plane perpendicular to that
direction includes four antiphase domains of size
M~a~)&M3a3 each separated by antiphase boundaries,
respectively [Fig. 1(h)j. The important feature is
that, as is understood from the figure, the two-dimen-
sional periodic structure is not a simple superposition
of a one-dimensional periodic structure in two directions
but that the antiphase domains in two directions are
connected by a definite relation. That is, the nature
of the antiphase relation between I and II and that
between III and IV should be the same. Furthermore,
the same is true for I and III and for II and IV. A
three-dimensional structure would then be described
by an orthorhombic unit cell with eight antiphase
domains. In the following arguments, we assume the
period iV~, M2, etc. , to be integers. The meaning of the
nonintegral values of 31~, M2, etc. , observed experi-
Inentally has been discussed in I PS I.

In forming an antiphase structure in a binary alloy
with face-centered-cubic structure, two types of "out-
of-step" may occur at the boundary, these being re-
ferred to as either the "first or second kind". ' An anti-
phase may be produced by replacing a 8 site by an A
site. Since the face-centered-cubic structure is composed
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of four independent simple cubic sublattices, there are
three ways of having an antiphase. I.et us express the
three cubic lattice vectors which are mutually perpen-
dicular as aI, a2, and a3 and let the direction perpen-
dicular to the antiphase boundary be colinear with a3.
Then the out-of-step vectors, corresponding to the
replacements of the sublattices at the antiphase bound-
ary, are -', (at+as), -', (a&+as) and —',(a&+as). The one
vector —,'(at+as) lies in the plane of the antiphase
boundary and this antiphase is referred to as an anti-
phase of the first kind. %hen the out-of-step vector
lies outside the antiphase boundary, it has been called
an antiphase of the second kind. The two vectors for
the second kind antiphase are equivalent in the one-
dimensional case but can be different in the two-
dimensional case. Since the difference arises when the
superperiods exist in two directions, it is natural to
define the difference with respect to these two axes.
Let the direction of the second period be colinear with
aI. Of the out-of-step vectors for the antiphase boundary
perpendicular to as, st(at+as) includes both vectors
indicating two periods, but s(as+as) does not include
the vector collinear with the direction of the other
period. For future application, let us define the former
as the i type and the latter as the e type. These relations
concerning antiphases are illustrated in Fig. 2. The
direction of the period, or the direction of the normal
to the antiphase boundary, can be in any direction.
However, in all cases we will be dealing with, the direc-
tion of the superperiod coincides with one of the L100j
directions and the antiphase boundary coincides with
one of the (100}planes as illustrated above. This fact,
however, should be explained by the theory.

Experimentally, it has been found that a/l one-di-
mensional long-period superlattices have an antiphase
of the first kind. Two-dimensional long-period super-
lattices have an antiphase structure which can be either
the same or different in nature in the two directions.
Both the first and second kind of antiphases are found
to exist. It is important to explain why each superlattice
chooses its particular antiphase structure.

Another distinctive feature of the long-period super-
Lattices is the distortion which occurs as a result of
its formation. In both the AB and A3B type struc-
tures, the distortion takes place in the direction perpen-
dicular to the antiphase boundary. This distortion,
which depends upon the electron-atom ratio, should be
predicted.

III. ONE-DIMENSIONAL LONG-PERIOD
SUPERLATTICE

A. AB-Tyye A110ys

1. Cz&-Au System

Thus far, the only good example of a one-dimensional
long-period superlattice in an AB-type alloy is the alloy
CuAu II,4 which has been discussed fully in I PS I. A

' C. H. Johansson and J. O. Linde; Ann. Phys. 25, 1 (1936).

FIG. 3. Srillouin zone structure for CuAu. Thin lines represent
the zone for the disordered phase; thick lines represent the zone
for the ordered CuAu I phase.

brief review of this alloy is necessary here since it repre-
sents this particular class of antiphase structure.

In the ordered CuAu alloy (CuAu I type), the sym-
metry of the atomic distributions becomes tetragonal,
and hence the Brillouin zone is anisotropic with regard
to the cubic axes. The first Brillouin zone for the ordered
structure is bounded by f001}and (110}faces as shown
in Fig. 3, and can include one electron per atom. The
distance from the center of the zone to the {001}faces
is much shorter than the distance to the (110}faces
and hence the Fermi surface overlaps freely in the c
direction. Therefore, only the (110} planes play an
important role in the stabilization of the long period
superlattice. The adjustment of these planes in such a
way that the resulting zone just includes the Fermi
surface can be done by forming a superperiod in only
one direction. In Fig. 3, this is taken in the k, direction,
since the k, direction is taken as the c axis of the
tetragonal structure of CuAu I as was explained in
LPS I. The accommodation of the Fermi surface and,
hence, the nature of the stabilization at the zone bound-
aries is shown in Fig. 4. Thus the establishment of the
one-dimensional antiphase structure is the unique way
to stabilize a face-centered cubic AB-type ordered alloy
as CuAu. Hence, it is natural to have a one-dimensional
antiphase structure but not a two-dimensional one. The
degree of separation of the zone boundaries depends on
the size of the Fermi sphere and hence on the number of
electrons. This relation between the domain size and
the electron-atom ratio of CuAu II with additional
elements, is given by Eq. 1, with the plus sign and a
truncation factor t=0.95.

The explanation of why an antiphase of the first kind
is found in this type of alloy is trivial. For CuAu, two

~ In LPS I, this 6gure was shown along with the (100) spots
in order to indicate the location of the zone boundaries. Since the
(100) spots do not exist in the reciprocal lattice of CuAu II except
those of the (001),we are now afraid that this addition of the (100)
spots might have caused some confusion and misunderstandings.
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FIG. 4. Reciprocal
lattice of CuAu II
in a plane through
the origin and paral-
lel to the (001)plane,
showing the struc-
ture of the Brillouin
zone of CuAu II and
of the enclosed Fermi
sphere.

of the four sublattices are occupied by Cu atoms and
the remaining two are occupied by Au atoms. However,
there are only two equivalent sites in the lattice, and
consequently an antiphase of the first and second kind
as dined by the out-of-step vectors are equivalent in
this particular case. There is no need to differentiate
between the type of antiphase, and one can say that
CuAu II is composed of antiphase boundaries of the
erst kind.

The distortion to be found in this type of structure
has also been fully discussed in LPS I. There it was
shown that a distortion in the direction of the long
period of the superlattice is to be expected for the condi-
tion where the Fermi surface can be more closely ac-
commodated due to a small distortion of the zone along
the axis parallel to the long period. As a result, it is
concluded that for alloy systems where the electron-
atom ratio is greater than the critical value (e/a)„one
expects an elongation in the direction of the superperiod.
On the other hand, for systems in which the e/a ratio
is less than the critical value, a contraction should occur
in the direction of the period.

A long-period superlattice structure similar to CuAu
II has been suggested for Mg-In alloys near the stoichio-
metric proportion. ' However, detailed results have not
been reported and it is impossible to compare the data
with the theory.

zone should be completely filled and should not play
an important role in the stabilization of the alloy. The
second Brillouin zone is bounded by (110}planes and
forms a rhombic dodecahedron, as shown in Fig. 5(b).
This zone can accommodate one electron per atom and
thus the surface should play an important role in the
stabilization of these alloys. Stabilization can be ob-
tained by accommodating the Fermi surface by a similar
adjustment of any of the twelve (110} surfaces as
compared to the four f110} surfaces in the AB-type.
alloy. It will be shown that a superperiod in one direc-
tion affects eight of the twelve surfaces, and that all
twelve surfaces are affected as a result of the formation
of a two-dimensional long-period superlattice. This will

explain the formation of the two-dimensional super-
lattice and also explain why a three-dimensional long-
period superlattice should not form. "The stabilization
of the long-period superlattice for the 238-type alloy
is connected with the type of out-of-step formed at
the antiphase boundary. Therefore, it is expedient to
discuss these two problems simultaneously.

As mentioned previously, an antiphase of the first
kind is characterized by an out-of-step vector —,

' (a~+a2)
in the plane of the boundary when the superperiod is in
the as direction, while the antiphase of the second kind
is represented by a vector —',(a2+a3) or —',(a3+a&) outside
of the antiphase boundary, these two vectors being
equivalent in the one-dimensional case. The difference
in the two kinds of antiphase for the 338 alloy may be
indicated by the manner of separation of the superlattice
spots, and the basis for the calculation of the separation
of the superlattice spots caused by the existence of a.

superperiod is given as follows:

ky
Jl

B. 238-Type A110ys

One-dimensional long-period superlattices have been
found in face-centered cubic alloys of the 238 type. The
extension of the theory to this type of alloy is somewhat
different from that applied to the AB type as canbe
seen by comparing the Brillouin zones of these struc-
tures. The Brillouin zone for the A 38-type face-centered-
cubic alloy is shown in Fig. 5. For the disordered state,
the Brillouin zone is a truncated octahedron and is
indicated by the thin lines in Fig. 3. When the alloy
becomes ordered, the Brillouin zone splits and the 6rst
Brillouin zone is now bounded by f100} planes, as
shown in Fig. 5 (a). The volume of this zone is 1/a' and
can accommodate only 0.5 electrons per atom. Thus, this

G. V. Raynor, Trans. Faraday Soc. 44, j.5 (1948).

FIG. 5. Brillouin zones for
an ordered AqB alloy. (a)
Brillouin zone boundaries in
k, —k„plane. (b) Rhombic
dodecahedron formed by twelve.
(110)planes.

' Exceptions from this statement may be conceivable, cf. Figs.
44 and 16. Occurrence of a three dimensional superlattice, how-
ever, is still improbable. See Part IV.



LONG —PERIOD SUP ERLATTI CES I N ALLOYS. I I

The structure amplitude S for the one-dimensional
long-period superlattice shown in Fig. 1(a), can be
formulated in the following equation

sins-1VzA i sin~lV'&As sins. lVs (2Ms) As
Isl =

sins. Az 1 sznsAs i sins. (2Ms)As

sinmM3A3
(2)

sin+A 3

0
o (Oll) ~ (lot)

where C =Cz+C'zze' ' '"'. Ai, As and As are continuous
variables in the reciprocal lattice; E3 is one-half the
number of antiphase domains along the z direction and
is assumed to be far larger than M3, Si and S2 are the
numbers of unit cells along the x(ai) and y(as) direction.
Cz and Czz are the structure factors of the fundamental
face-centered cubic unit cell included in the antiphase
domains I and II, respectively. The relation between
4z and 4'zz is, therefore, determined by the type of anti-
phase between these two domains. In an A s0-type face-
centered cubic alloy with a erst kind of antiphase with
the long period in the z(as)-direction, Cz and Czz are
dehned in the following way:

C'z EA{1+ pex7I z(A i+As)+expri (As+As) }
+En exp'-i(As+At),

3
C zz

——E~{1+exp7ri(A z+A s)+ expwi(A s+A z) }
+En expzri(As+A s)

Here, E~ and E~ are the atomic scattering factors for
electrons by A and 8 atoms, respectively. The manner
of separation is calculated on the basis of the intensity
distribution given by formulas (2) and (3). However,
the approximate manner of the separation can be deter-
mined by the last structure factor C. Then, it is easily
understood that only superlattice rejections of indices
with certain mixed integers h~, h2, and h3, depending
upon the particular type of antiphase, split along the
direction of the period. For example, when the direction
of the superperiod is in the hs direction and the out-of-
step vector is defined by -', (at+as) Li.e., the first kind
for which Eqs. (2) and (3) were developed], those
superlattice rejections with mixed h~ and h2 split along
the L00hs) direction. Let us show this situation with
the (101) superlattice spot for the sake of simplicity.
By putting A i——1, A s=0 and As= 1 in Eq. (3), we find

C'z= —E~+Ea,
Czz= &~—~a,

C z+C'zzes~'

=
I (E~—Ea) I I

2(1—cos2wMs)
I (4)

Therefore, the spot vanishes at the center (101),
r S. Ogawa and D. Watanabe, J.Phys. Soc. Japan 9, 475 (1954).' H. Raether, IIundbgch der Physik, edited by S. Flugge

(Springer-Verlag, Berlin, 1957), Vol. 32. pl 443.' A. B. Glossop and D. W. Pashley, Proc. Roy. Soc. (london)
A250, 132 (1959).

9
~f

/ P (IIO)
II

(oil)

Fzo. 6. Splitting of the (110) superlattice spots due to the exist-
ence of the superperiod in the as direction with (a) antiphase of
the erst kind and (b) antiphase of the second kind. The third
axis is added when it is necessary to show the separation in the
direction perpendicular to the plane.

' N. F. Mott and H. Jones, The Theory of the Properties of
3fetals and Alloys (Clarendon Press, Oxford, 1936), p. 152.

meaning that a splitting of the spot occurs. The separa-
tion can be calculated to a good approximation, if M~
is reasonably large, by

IC'I =
I (E~ Ea) I I2C1—cos2sMs(1+as)jl, (5)

since the phase factor in C z and C zz does not change very
much by the separation. The equation has a maximum
at

8s——a zss/2M s, (6)

where z3 is an odd integer. Therefore, if we take the
primary reflection, zss ——1, the spot (101) splits into two

(1, 0, 1&1/2Ms). It is also easily shown that if hi and hs

are unmixed, S does not vanish for such superlattice
spots. In this way, the manner of separation of the
spots is determined.

I.et us assume that the direction of the superperiodl
is again in the hs direction (i.e., collinear with the as
direction). The mode of separation of the {110}super-
lattice spots for the two types of antiphase structure
is shown in Fig. 6. The splitting of the {110}spots in
the reciprocal lattice for the antiphase of the first kind.
occurs in the hs —hs plane and the hs —hi plane, the
spots being split are the {011}and {101}groups. The
manner of separation of the spots of each group is
identical to that which occurs for the case of CuAu II.
Since two groups of superlattice spots split for the A38-
type superlattice and the related Brillouin-zone bound-
aries are found from these spots, "there will occur a cor-
responding separation on eight faces of the Brillouin
zone instead of the four for the AB case. If we denote
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the separation of the superlattice spots as 5s (which
was defined in LPS I as g) then the distance from the
origin of the zone to the separated zone surfaces is given
by

(7)

.82-

.80—

t= 0.94f

t = 0.945

where the plus and minus signs refer to the outer and
inner faces, respectively. Thus the inscribed sphere
would fit uniformly within these eight Brillouin-zone
faces and the reduction in the energy of electrons should
take place at these faces.

If an antiphase of the second kind occurred, the out-
of-step vector could be taken as the —,'(a,+a,). Then the
superlattice spots would split in the h3 direction again
but the separation would occur in the hi —hs and hs —hs
planes. The manner of splitting of the superlattice
spots in the hs —hs plane is the same as above, and the
distance from the origin to the zone boundaries that
are formed is given by Eq. (7). In the hi —hs plane,
however, the separation of the spots is perpendicular
to the plane and in the h3 direction. For this kind of
separation, the distance from the origin of the zone to
the corresponding separated faces of the Brillouin zone
is given by

(2+ass):

and is different from that which occurs for the hs —hs
plane. Thus the Fermi sphere cannot fit uniformly
within the boundaries of this Brillouin zone, and the
condition for stabilization for the second-type antiphase
is definitely unfavorable compared to that which occurs
for an antiphase of the first kind. Consequently, an
antiphase of the first kind should occur when a one-
dimensional long-period superlat tice is formed, as
substantiated by the experimental evidence, and stabili-
zation will occur at eight of the twelve faces of the
Brillouin zone. In order that the maximum adjustment
can be achieved by the minimum separation of the spot,
or by the introduction of the minimum number of
antiphase boundaries, the direction of the separation
of the spot should be in one of the t100] directions as
is easily understood from the shape of the Brillouin
zone. In other words, the direction of the superperiod
is ahvays chosen to be in one of the $100j directions.
This explains the fact that the antiphase boundaries
are always chosen to be one of the {100) planes as
stated before.

We may now compare the above predictions of the
theory with the available experimental results on alloys
which form a one-dimensional long-period superlattice.
From Eq. (7), and as explained in LPS I, the relation
between the electron-atom ratio and the domain size
is given by

.76—
lX

I

72„

.70-
LLI

.68—

.66 i i i I I i I i i

I 2 3 4 5 6 7 8 9 IO II 12

DOMAIN SIZE-M

Fro. 7. Domain size M vs eiectron-atom ratio e/a for anti-
phase structures in the Cu-Pd-alloy system.

boundaries, respecively. Since the separation in both
directions is the same, the condition is exactly the same
as that for the case of the AB-type alloy. Not only is
the domain size predicted in the same way as the AB
type, but the distortion of the lattice in the direction
of the superperiod should also occur in the same way".

1. Cu;I'd System

Long-period superlattices have been found in the
Cu-Pd system for Pd contents ranging from 20—30 at. %.
From the electron diffraction work of Watanabe and
Ogawa, and from x-ray investigations by Hirabayashi
and Ogawa, " and Schubert et al. ,

" a one-dimensional
long-period superlattice has been found in the alloys
having Pd contents from about 20 to 26 at. %. The
two-dimensional structure is found at higher concentra-
tions. The long-period superlattice forms in the c(as)
direction and has an antiphase of the first kind as defined

by the "out-of-step vector" st(a, +as). From the re-
ported data, one can plot the accumulated data on
domain size M vs the electron-atom ratio assuming a
valence of one for Cu and zero for Pd. This is shown in

Fig. 7. In this figure, the values for two-dimensional
cases are also plotted, where M3 should be taken as the
period of the one dimensional superlattice, as referred
to by Ogawa et al. ," as will be shown later. Since the
e(a ratio is less than one, or more exactly less than the
critical value of about 0.85 including the correction
factor due to t, the stabiliztaion should occur at the inner
zone faces and consequently the negative sign in Eq. (9)
must be used to calculate the theoretical curve. The
calculated curve using a truncation factor t =0.941 is
shown in Fig. 7 and it can be seen that the agreement
is very good.

where the domain size Ms ——1/28s and the plus and minus
sign refers to stabilization at the outer- and inner-zone

"H. Sato and R. S. Toth, J. Phys. Soc. Japan, Supplement,
1962 (to be published).

"M. Hirabayashi and S. Oga~va, J. Phys. Soc. Japan 12, 259
(1957)."K. Schubert, B. Kiefer, M. WVilkens, and R. Hauler, Z.
Metallk. 46, 692 (1955).
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When the long-period superlattice is formed, the lat-
tice contracts in the direction of the period so that the
c/u ratio becomes less than one. This is the correct
change predicted by the theory for an alloy where
stabilization occurs at the inner-zone boundaries.

l32-

I.BQ-

RA et al.
ERT et al.

3. Ag-Mg System

In the alloy range of 20 to 30 at, % Mg, there occurs
a one-dimensional superlattice having an antiphase
of the first kind. This structure was first suggested by
Clarebrough and Nicholas"" and a definite structure
was established from x-ray work of Schubert et ul."
and by Fjuiwara et al." From this data one can plot
the domain size M vs e/a assuming a valence of two for
Mg and one for Ag. This is shown in Fig. 9, together
with the theoretical curve. The curve was obtained
from Eq. (9) using the plus sign and a value of 3=0.962,
and fits the data very well.
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Fro. 8. Domain size M vs electron-atom ratio e/a for anti-
phase structures in the Cu-Pt-alloy system.

' L. M. Clarebrough and J. F. Nicholas, Australian J. Sci
Research Ser. A 3, 284 (1950).

's J. F. Nicholas, Proc. Phys. Soc. (London) A66, 201 (1953)
K. Fujiwara, M. Hirabayashi, D. Watanabe, and S. Ogawa,

J. Phys. Soc. Japan 13, 167 (1958).

2. Cz~-Pt System

A one-dimensional long-period superlattice is found
in the Cu-Pt system at Pt contents around 25 at. %.
Schubert et al." have determined the structure of this
system using x rays and have found the period of the
antiphase to lie in the c direction. Using their data and
assuming a valence of one for Cu and zero for Pt, one
can plot the domain size M vs e/a and compare it with
the theoretical curve, using the minus sign and a
truncation factor t=0.958 in the equation. This is
shown in Fig. 8 where it is seen that the curve fits the
data very well. When the superlattice is formed, the
c/a ratio becomes less than one as the theory predicts.

1.28-

l

o 126
~ I-

I.24-
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1.20-
w
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1.18-
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Fro. 9. Domain size M vs electron-atom ratio e/a for anti-
phase structures in the Ag-Mg-alloy system.

The alloys at these concentrations are cubic in the
disordered state, but upon ordering and forming the
long-period superlattice, distort and form a tetragonal
structure with c/a greater than one. Since the period
of the antiphase is in the c direction, this is the distor-
tion predicted by the theory for alloys having e/a
values greater than the critical value.

4. AN-Cd System

A one-dimensional long-period superlatt, ice isomor-
phous with the structure of Ag3Mg has been described
by Schubert et al. ," and recently by Hirabayashi and.

Ogawa, "using x-ray techniques. Only three composi-
tions have been investigated, these being 24.6, 25.0,
25.5 at. % Cd. Assuming a valence of one for Au and
two for Cd, one can plot M vs e/a for these three alloys.
Using Eq. (9) with a plus sign and a value of 1=0.95,
one can compare the theoretical curve with these points
as shown in Fig. 10. As pointed out by the authors, the
domain size does not deviate from the value M=2.0.
Very little change, if any, should occur since the e/a
ratio of these alloys lie in a region where the e/u vs M
curve is very steep. However, we cannot deny that, there
is a strong tendency for the alloy to stick to the value
M = 2 even if the e/a value indicates a smaller value for
M. This tendency is observed not only in the Au-Cd
system but also in the Ag-Mg system, the Au-Zn
system and even in CuAu II with additional elements.
In order to have a value M less than 2, the size of the
antiphase domains wouM result from a mixture of
Sf=1 and 2. Since the change from M=2 to M=1
would cause an expecially large increase in the domain
boundary energy, there should be a tendency for an
alloy to avoid this change in structure.

"M. Hirabayashi and S. Ogawa, Acta Met. 9, 264 (1961).



H. SATO AN D R. S. TOTH

l.36

I 32

l.30-

0-HIRABAYASHI and OGAIA

-SCHUBERT et af.

AQ-Cd

f.28

I.26
K

I.24-

o 1,22-
a
C3
La)

1.20
4J

I.I8-

I.I40 I

t=0.950
I

5 6 7' 8

DOMAIN SIZE-M

Fro. 10. Domain size cV vs eiectron-atom ratio e/o for
antiphase structures in the Au-Cd-alloy system,

The c/a ratio becomes greater than one when the
antiphase structure is formed, as predicted for an alloy
of this type.

by several researchers, ""but were assumed to occur
as an intermediate phase since the domain size varied
considerably with annealing and was quite large. The
period of the domain in this equilibrium phase seems
rather long from the view of the electron-atom ratio.
However, in this system, the domain boundary energy
is comparable to the stabilization energy, ' and this
value of M could be explained in terms of the effect of
the domain boundary energy. A more detailed study
would be required to determine the origin of the long
period in this system. "'

A summary of the pertinent data on one-dimensional
long-period superlattices is given in Table I.

As is indicated in Figs. 7—11 and in Table I, the
agreement of the theory with the experimental results
is more than satisfactory if one thinks of the simpleness
of the model adopted. The following features are
especially important in the comparison of the theory
with the experimental results:

(1) The dependence of the period M on the electron-
atom ratio can be Gtted by a theoretical curve with
almost the same truncation factor t, which is about 0.95,
in all alloy systems investigated.

(2) Both branches of the e/u vs M curves for alloy
systems having e/a values greater or less than the criti-
cal value are explained.

5. AN-Ze System

Another antiphase structure isomorphous to Ag3Mg
and Au3Cd is found in the Au-Zn system. This struc-
ture referred to as AusZn(H) is found only at high tem-
peratures. Upon cooling, a more complicated ortho-
rhombic structure is formed. Iwasaki et a$."and Schu-
bert et a/. "have found that the domain size is 3f=2.0
for compositions ranging from 20 to 29 at. %%uoZn . As-
suming a valence of two for Zn, one can plot this data
and compare with the theoretical curve based upon a
value of t=0.95. This is shown in Fig. 11.The curve is
quite steep and therefore the domain size should not
deviate much, if at all, from the value %=2.0, as in
the case of Au3Cd.

As predicted by the model, the c/a ratio becomes
larger than one for these alloys, when the antiphase
structure is formed.
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6. CN-AN System

Quite recently the existence of an equilibrium
CusAu II phase at around 32 at. % Au has been reported
in which a one-dimensional superlattice with a period
&=9.0 is formed. ""One-dimensional antiphase do-
mains have been reported previously in the CusAu range

"H. Iwasaki, M. Hirabayashi, K. Fujiwara, D. Watanabe,
and S. Ogawa, J. Phys. Soc. Japan IS, 1771 (1960)."R.K. Scott, J. Appl. Phys. Bl, 2112 (j.960).I S. Yamaguchi, D. Watanabe, and S. Ogawa (private
communication).

l.l2-
f f f 1 t
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Fro. 1t. Domain size 3II vs electron-atom ratio e/o for antiphase
structures existing only at high temperatures in the Au-Zn-aHoy
system.

"A. Guinier and R. GriGoul, Rev. met. 55, 387 (1948).
"H. Raether, Z. angew. Phys. 4, 53 (1952)." Eote added fn proof. A detailed study of the Cu-Au system

~as carried out by the authors and the origin of the unexpectedly
long period of Cu3Au II was found to be due to the domain
boundary energy. R. S. Toth and H. Sato, J. Appl. Phys. (to be
published).
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TAaLE I. Summary of data on one-dimensional long-period superlattices.

Alloy series

Cu-Pd
Cu-Pt
Au-Cd
Ag-Mg
Au-Zn
Cu-Au

Composition
range (At. '%%uo)

20—26% Pd
24-26% Pt
24.6-25.5% Cd
22—28% Mg
21—

29'%%uo Zn
(a) CuAu II+addi-

tional elements
(b) 31.6%

Antiphase
type

first kind
first kind
first kind
first kind
first kind
first kind

first kind

e/a —(e/a).
'

(c/a) —1
Truncation

factor t

0.941
0.958
0.950
0.962
0.950
0.950

' The critical value of the electron-atom ratio.
b Here 5/a is taken instead of c/e, since the c axis is taken for the tetragonal structure of Cuhu I.

(3) The type of "out of step" at the antiphase bound-

ary is correctly predicted by the theory.
(4) The tetragonal distortion of the lattice c/a, which

depends on the e/a ratio, is correctly predicted by the
theory.

These agreements of the theory with the experimental
facts cannot be mere coincidence, and it can definitely
be concluded that the Brillouin-zone mechanism dis-
cussed is the decisive origin for the alloy to choose a
complicated periodic structure. The fact that the size
of the Brillouin zone changes continuously with the
change in the number of electrons so that it always con-
tains a reasonable size of the Fermi sphere, indicates
de6nitely that the stabilization takes place at the zone
boundary.

As was pointed out in LPS I, there seems to be some
question concerning the shape of the Fermi surface in
alloys in applying the above idea to the stability of
alloy phases. The recent study on the Fermi surface of
noble metals (Cu, Au, Ag) indicates that the Fermi
surface of these metals bulges out in the L111]direction
and touches the (111) boundary. "It was pointed out
in LPS I that this fact might not be compatible with
the manner of interpretation for CuAu II and, more
generally, with the application of Jones' models4 to
the prediction of the phase boundaries of alloys. How-
ever, this is not necessarily true. According to meas-
urements, the diameter of the neck of the Fermi surface
is rather small and, therefore, it leaves a reasonably
spherical surface in the $1101 direction. " Therefore,
the reduction in the energy of electrons at the (110)
boundary of the Brillouin zone is still possible. At
the same time, the bulging out of the neck reduces the
belly diameter, and this is equivalent to having a smaller
Fermi sphere in the t 110) direction. In addition, the
shape of the remaining Fermi surface is not quite
spherical and is contracted somewhat in the L110j
direction. "" There should also be a distortion of

"The Fermi Surface, Proceedings of an International Conference
at Cooperstozm, Sm Fork (John Wiley and Sons, Inc. , Neer York,
1960).

u H. Jones, Proc. Roy. Soc. (London) A144, 225 (1934);A147,
396 (1934); Proc. Phys. Soc. (London) 49, 250 (1937)."R.W. Morse, in The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley & Sons, New York, 1960) reference

the Fermi surface at the zone boundary at contact,
although the exact relation where the maximum stabil-
ization takes place is not known. Thus, the fact that
the truncation factor t we adopted to correct for the
nonsphericity of the Fermi surface has a common value
of 0.95 for many alloy series can be reasonably well
explained with this idea. '~

This concept is not inconsistent with the case where
the e/a value is low. Since the major energy gap nearest
to the center of the Brillouin zone occurs across the
(111) boundary, there is a tendency for the Fermi
sphere to bulge out in this direction, although it may
not touch the (111)boundary. Therefore, the effective
diameter of the Fermi sphere in the L110j direction
will be a6ected as described above.

IV. TWO-DIMENSIONAL LONG-PERIOD
SUPERLAT TICES

It has been shown that a one-dimensional long-period
superlattice for an A38-type alloy obtains its stabiliza-
tion by the reduction in the energy of free electrons at
eight of the twelve (110} Brillouin-zone faces (two
sets out of three sets of four Brillouin-zone faces each).
Further stabilization could occur if all twelve faces of
the zone were involved in a similar manner. This can
be done by having one more superperiod in the direc-
tion perpendicular to the previous one. In this sense, a
two-dimensional superstructure would be the more
stable form of a long-period superlattice and, therefore,
the one-dimensional superlattice can be assumed to be
an intermediate phase while the three-dimensional
superlattice should not occur at all.

The relative stability of each type of superstructure
would depend on the energy balance between the in-
crease in boundary energy as a result of the formation of
antiphase boundaries, and the reduction in the energy
of electrons at the Brillouin-zone faces. The introduc-
tion of the two-dimensional antiphase creates extra
boundaries and therefore increases the boundary energy
above that for the one-dimensional case.

23, p. 214; R. W. Morse, A. Myers and C. T. Walker, J. Acoust.
Soc. Atn. 33, 699 (1961).

s' B. Segall, Phys. Rev. Letters 7, 154 (1961), Phys. Rev. 125,
109 (1962); G. A. Burdick, Phys. Rev. Letters 7, 156 (1961).» H. Sato and R. S. Toth, Phys. Rev. Letters 8, 239 (1962).
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The meaning of the variables A; and X; is as given
before. The relations among the structure factors CT,

Ci~, Ci~i and C~g are determined from the relations of
antiphase structures among them. If the antiphase in
the As direction is of the first kind and that in the A,
direction is of the second kind (i type), these structure
factors are given as follows:

Fzo. 12. Splitting of the (110) superlattice spots in the three
principal planes for a two-dimensional long-period superlattice
with a combination of an antiphase of the 6rst kind and an anti-
phase of the second kind (i type). The third axis is added when it
is necessary to show the separation in the direction perpendicular
to the plane.

The shape of the Brillouin zone which results from
the formation of a two-dimensional antiphase structure
and therefore the reduction in energy depends upon
the type of antiphase at the domain boundary as dis-
cussed for the one-dimensional superlattice case, where
only an antiphase of the first kind is found. The relation
is especially important in the two-dimensional case,
because not only are two kinds of antiphase boundaries
created in perpendicular directions, but also at least
one set of four Brillouin-zone faces is doubly affected
by the two-dimensional superperiod as chill be explained
later. Thus we may consider simultaneously the stabili-
zation of these structures and the choice of antiphase
at the two kinds of boundaries.

The following sets of antiphase boundaries are pos-
sible: both having an antiphase of the first kind; both
having an antiphase of the second kind of the same type
(either i or e type), there being two sorts of "out of
steps" for the antiphase of the second kind; mixtures
of the first and either type of the second kind and a
mixture of the two diferent types of the second kind.
Since the mixture of the first and second kind of out-
of-step is usually found in the two-dimensional long-
period structure, let us consider this case first to see if
there is any advantage for this particular kind of mix-
ture over others. The general manner of separation of
spots can be calculated in a similar manner to that for
the one-dimensional superlattice, although more compli-
cations arise.

The structure amplitude of the two-dimensional
periodic superlattice based on Fig. 1(b) can be given
by the following equation"'

"D.Watanabe, J. Phys. Sac. Japan 15, 1030 (1960).

81——&111/2M1 and Bs= Kris/2Ms (13)

are satisfied, where e~ and e3 are both odd integers.
The primary separation (for 1si ——ass ——1) of (011) is
therefore into four spots (&1/2M1, 1, 1&1/2Ms).

In exactly the same way, the spots (101) and (110)
are proved to split into two along h3 and hj, respectively.
Generally speaking, superlattice spots separate in the
direction of the period in such a manner when the
index jg; and hI, mix if the "out-of-step" shift
is &s(a,+a~). When the double splitting occurs as in
Eq. (13) due to a two-dimensional superperiod, the
one spot splits into four instead of two. In other words,
the manner of separation is determined by the type of
antiphase structure of the particular alloy.

C'1=Ex (1+expL1ri(A1+As)$+expi vari(As+A3) j}
+Eii expi iri(A, +A,)7,

4 ri Eg ( 1+expI vari (A 1+A s)]+expi vari (A s+A 1)]}
+E~ exp&vri(As+As)],

tglrri —Eg(expi pre(A 1+As)]+expi 1ri(As+ A s))
+exp Lm i (A 1+A,)1}+Eii,

@Iv EA(1+expi vari(A2+As) j+expi 1ri(As+A i))}
+Eii expL1ri(A, +A, )1

Now, for superlattice spots (011)„ for example, we
would like to show that it splits into four for such a
two-dimensional long-period superlattice described
above. Exactly as before, with little sacrifice in ap-
proximation when 3I& and M3 are both reasonably
large, the manner of splitting of this spot can be
calculated for (011) with Eq. (10),

C'= (E~—Ea) L1—exp (2~iM 1~1)]
X (1—expL21riMs(1+83)]}, (12)

Eii)
I I

2L1 cos(21rM 151)j I

X
I
2(1—cosi 21rMs(1+8:)j}I.

Therefore, the maximums appear when
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FIG. 13. Cross sections of the Brillouin zone for the case shown
in Fig. 12. The dotted lines in the h~-h3 plane indicate the tilting
of the Brillouin-zone surfaces corresponding to the separation of
the superlattice spots in the direction perpendicular to the plane.
The hq axis is not added here.

The approximate calculation adopted above is reason-

ably good as long as the 3f's are reasonably large. How-
ever, if the M's become smaller, the intensity of the
second maximums, which are not the maxima deter-
mined by Eq. (13), for example, becomes appreciable
and a more detailed calculation is required especiaHy
for a complex separation of spots such as doubly split
spots.

If we choose the direction perpendicular to the first-
kind antiphase to be in the direction of a~ and that
perpendicular to the second-kind antiphase to be in
a~, the out-of-step vector for the former is —', (a&+a2)
and, for the latter, is chosen to be —', (a~+as) (i type).
The other possibility for the second kind (e type) is
—,'(a~+a2) but these two are not equivalent when the
combination with other types of antiphase is treated
as indicated before. The latter case will be discussed
later. In Fig. 12, the manner of separation of the (110}
superlattice spots is shown for the former kind of
combination of the antiphases in each principal plane,
h~ —hg, h2 —h3, h~-h& in the reciprocal lattice. Let us
further specify the separation of the superlattice spots
in the hq direction as 63, and in the hq direction as 8~.

The manner of separation of the (110}Brillouin-zone
faces which corresponds to the separation of the super-
lattice spots is shown in Fig. 13. The distances from
the center of the Brillouin zone to these faces are

(2~28~+bj2)'* for h~ —h2 groups (a),

(2&253+832+bP)& for hm —h8 groups (b), (14)

(2+28g+ 532) ~ for hg —h~ groups (c).

The plus and minus signs correspond to outer and inner
zone boundaries as before. Note that the (b) group of
faces is doubly affected.

It is easily understood, from the above conditions,
that there is no way of inscribing one sphere to all the
separated BriHouin-zone boundaries as was done in the
one-dimensional case. To find the condition for the
maximum reduction in energy, it is necessary to obtain
detailed information about the electronic structure of
the aHoy, i.e., the energy contour, energy gap at the
boundary, etc. Since the separations are equal in the
case of the one-dimensional superlattice, it was possible
to avoid this intricate situation. Because such informa-
tion is hard to get at the present stage, let us instead

try to determine the minimum energy condition here
from the condition of the best possible fit of the Fermi
sphere to the Brillouin-zone faces. Then the condition

(b) of Eq. (14) should erst be chosen as the radius of
the Fermi sphere. As mentioned previously, a one-
dimensional superperiod affects eight of the twelve
Brillouin zone-faces (two sets of three sets of Brillouin-
zone faces), and consequently, at least one set of faces
is doubly affected when a two-dimensional superlattice
is formed. This is indicated by condition (b). The double
effect which occurs for the initial four faces of the zone
results in a tilting of the 6nal zone faces in two directions
in addition to the splitting. Thus the number of Bril-
louin-zone faces resulting from condition (b) for either
the inner or outer set would be eight instead of the usual
four. Because we are dealing with the stabilization at the
zone boundary and, for this, the number of boundaries
which contact the Fermi sphere shouM play a decisive
role, one would expect condition (b) to be met whenever

a two-dimensional superperiod of this kind is formed.
A combination of fitting to condition (b) plus one of
the other two conditions would then provide the maxi-
murn stabilization. This can only be done by the condi-
tion that the distance given by (b) and that by (a)
are equal, since the distance given by (c) is always
shorter than that given by (b). In order that the dis-

tances be equal, the following condition should be met:

2+283+83'+Op= 2+25g+8g',

&283+5/= &28g.

Therefore, 8i shouM be larger than 83 if we take the
plus sign and vice versa, and the value of 53 (or 8~)

can be determined from the e/a value using an equation
equivalent to Eq. (9) 2' with a truncation factor which

is assumed to be the same for the two directions. The
important conclusion here is that the domain sizes
should be different in the two directions and that their
values depend upon the e/a value.

If we take the "out of step" for the second kind to be
—',(a&+a2) (e type) instead of —',(a&+a&), the manner of
separation of the (110}superlattice spots and conse-

quently the separation of the {110}Brillouin-zone
surfaces will be different from above and will be as
shown in Fig. 14. It is clear from Figs. 13 and 14 that

~' The choice of taking 53 or 5~ will be discussed later.
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of the first and the second kind of antiphase (i type),
as long as the values of 83 and 8~ are small. In this sense,
it can be concluded that whenever a two-dimensional
antiphase structure appears, the combination of the
first and thc second kllld oil't of steps ($ type) should
be formed at the antiphase boundaries as long as 8~ and
8& remain reasonably small or the e/a value of the alloy
is reasonably near the critical value.

Although the combination of the antiphases of the
first and second kind first given, meets reasonably well
the condition for stabilization as long as 83 and 8i are
small, the difference in distance between the condition
(h) and (c) in Eq. (14) becomes larger as 8s and 81
become larger. Therefore, the condition for the stabili-
zation of this structure becomes worse as 83 and bj
become larger. In such a case, a reasonable conclusion
cannot be drawn without a detailed knowledge of the
electronic structure, At the same time, the manner of

Fza. 14. Splitting of the (110) superlattice spots in the three
principal planes for a combination of an antiphase of the Qrst
kind and an antiphase of the second kind (e type). Note that the
(110) spots are not affected. For such a case, a three dimensional
structure may be conceivable. I
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the Fermi sphere cannot be accommodated within the
Brillouin zone in the latter case as well as in the former
case. Therefore, this kind of "out of step" is energetic-
ally less favorable and this means that if the combina-
tion of the first and second kind should appear, only
the former combination should be the right one.

The manner of splitting of the superlattice spots for
the combination of two first kinds of "out of step" and
for the combination of the two second-kind antiphases
of the same type are given in Figs. 15—17.A combination
of an e type and i type second-kind antiphase gives a
manner of splitting shown in Fig. 18. It is easily seen
that none of these combinations of antiphase give a
better fit to a single Fermi sphere than the combination
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Fio. 16. Splitting of the (110) superlattice spots in the three
principal planes for a combination of two i-type second-kind
antiphases.
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Fzo. 15. Splitting of the (110) superlattice spots in the three

principal planes for a combination of two first kind of antiphases.

separation of the spots based on the calculated intensity
as given here is not valid when the period becomes
shorter and a detailed calculation is required. The in-
equality in the distances from the center to the separated
Brillouin-zone boundaries in different directions could
be adjusted to some extent by a distortion of the lattice.
A distortion of this origin should also exist in a two-
dimensional structure. However, when e/a becomes
large and the deviation becomes accordingly large, the
cost in energy that the alloy should pay for the dis-
tortion to accommodate the Fermi sphere in a perfect
way is, of course, too large. Instead, the energy required
to introduce new types of antiphase boundaries, if
there is any possible way, would be less. In this sense,
it is possible that, as e/a increases, the combination of
the antiphase for two-dimensional long-period super-
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lattices changes from the combination of the first and
the second kind to some other combination given above,
to other directions of the superperiod from the (100)
direction or to a difterent complicated antiphase struc-
ture. This seems to explain the appearance of compli-
cated structures in the case of Au-Mn and Au-Zn alloys
as shown later.

The condition for the distortion of the lattice when
forming the two-dimensional long-period superlattice
is relatively simple for the case of the mixture of the
first- and second-kind antiphase boundaries. From the
shape of the Brillouin zone LFig. 5 (b)j and the manner
of separation of the Srillouin zone of Fig. 13 it is easily
understood that the adjustment for the force exerted
by the Fermi surface to the boundary is taken care of
by the single deformation of the zone along the ha
direction, which is the direction of the period with the
first-kind antiphase. From the geometry, only one pair

l; ' (ll03

(b)

~ o ~ ( IOI)

(a)

/ AIIO)

0
~ ~

h

o (IOI3

hl

I
Z(0) I)

/
/

(b)

FIG. 18. Splitting of the (110) superlattice spots in the three
principal planes for a combination of an e-type and i-type second-
kind antiphase.

ture changes to the two-dimensional one seems to de-
pend on whether the sample is a film or a bulk, At the
same time, there seems to be some difference in the
value of the domain size between the two cases. How-
ever, these values are treated here without any dis-
crimination. The plot of e/a vs M for the two domains
is shown in Fig. 7, where M3 represents the domain size
in the direction having an antiphase of the first kind and
3E~ represents the domain size in the directionhaving
an antiphase of the second kind. The points fit quite

1.54
~ ~

O
~ ~

(c)

~ ~
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Fn. 17. Splitting of the (110) superlattice spots in the three
principal planes for a combination of two e-type second-kind
antiphases.

1,26 "
0

a
Au-Zn

of apexes along the h3 axis of the Brillouin zone remains
practically unseparated and the distortion along this
axis changes the separation of both directions. There-
fore, in such a superlattice, the distortion is practically
tetragonal except for the further Ininor distortion indi-
cated above and therefore the condition for the dis-
tortion is the same as in the one-dimensional super-
lattice. Thus, the c/a ratio is determined by the value
of the electron-atom ratio. In all other cases, such a
simple condition does not hold and the distortion should
be orthorhombic.

Observations on several two-dimensional long-period
superlattices have been reported, among which the
research in the Cu-Pd system is the most systematic. ' "
The two-dimensional antiphase structure is found to
exist at Pd concentrations from about 26 to 30 at. %.
The concentration at which the one-dimensional struc-

o 1.24-
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1.20-
0
IKI-o 118
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1.14

I.12 "
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t=.926
t"-0.942

t I
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DOMAIN SIZE" M

I I

6 7 8

FIG. 19. Domain size M vs electron-atom ratio e/a for the two-
dimensional antiphase structures in the Au-Zn-alloy system. The
truncation factors shown are from an independent 6tting of Eq. (9)
to the two periods 3fj and Mg.
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TAmz II. {alculated value of the domain size 3fI from the
observed values of 3f& based on Eq. (14) compared to observed
values for the Cu-Pd system.

(OOR}

i'& ~ X--.~i+I „„,

{020} (Roo)

(OOO}

Auszn(R))

( '0
(ORO) (Roo)

(OOO)

Au~Zn(H)

At. ~g() Pd

21
25
27.3
28
28,5
30

3fI
(experimental)

7.4
4.7
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FxG. 20. The reciprocal lattice of Au&Zn(H) and Au3Zn(EI)
according to Iwasaki et al.' The encircled spots indicate the cor-
responding Brillouin-zone boundaries which enclose the Fermi
sphere.

well on the theoretical curve obtained from Eq. (9)
using a value of t=0.945 or 0.941 as shown. However,
as pointed out before, there is an ambiguity as to whether
83 or 8~ should be used to determine the relatio~ between
e/a and the period in a relation such as Eq. (9). In the
case of the one-dimensional superlattice, the antiphase
of the first kind always appears. In the Cu-Pd system,
M3 in the one-dimensional case at lower concentration
of Pd continues smoothly to 3E& of the two-dimensional
superlattice at higher concentration of Pd. In this sense,
63, instead of 6~, shouM give the radius of the Fermi
sphere and should be taken to get a relation between
e/a and M. However, since the truncation factor should
be diferent for the two directions h3 and h~, it does not
seem to be necessary to lay too much weight on this
kind of matter. Using Eq. (11), we can calculate the
domain size M~ from Ms and compare with the experi-
mental data. The results are shown in Table II, and
it can be seen that the calculated values agree reason-
ably well with the data, especially in the sense that 3f3 is
larger than M~ which is in accord with the theoretical
prediction. The lattice distorts tetragonally even when
the two-dimensional antiphase is formed and c/a is
less than one for these alloys. This also agrees with the
theoretical prediction.

In the Au-Zn system, a two-dimensional antiphase
structure is found near Au4Zn, in which a mixture of an
antiphase of the first and the second kind exists."As
shown in Fig. 19, the relation between 3I and e/a is
best fit by a theoretical curve with a reasonable value
of f The lattice d.istorts tetragonally and its c/a ratio
is larger than one as expected from the theory. However,
in this system, the size difference for 53 and (II& is just
contrary to the theoretical expectation. In other words,
353 is larger than 3f& just as in the case of Cu-Pd alloys,
irrespective of that fact that the e/a of this system is
larger than the critical value. Since the boundary energy
affects the size of the domains, this fact may indicate
that there is a difference in boundary energy for the
erst and the second kind antiphase. At higher Zn con-
tent, a complicated antiphase structure Au8Zn(R)
appears. " The relation of this complicated structure
to an ordinary antiphase structure can be visualized

by the comparison of the reciprocal lattice of Au3Zn(H)
and Au3Zn(Ri), 7 AuqZn(H) being the high-temperature
phase with a one-dimensional long-period structure
(Fig. 20). The reciprocal lattice points which correspond
to the Brillouin-zone boundaries enclosing the Fermi
sphere are encircled by dotted lines. The additional 16
Brillouin-zone boundaries which correspond to the two
additional encircled points of Au'Zn(R, ) in the 6gure
enclose the Fermi sphere quite well along with the
original eight Brillouin-zone boundaries of Au3Zn(H).
From the calculation, the condition is found to be most
suitably satisfied for alloys with e/a ratios which cor-
respond to a period M slightly larger than two, agreeing
with the experimental data. The Augn(Ei) structure
can be achieved by a slight shift of certain atoms from
the equilibrium positions in the face centered cubic
lattice along with an antiphase structure as shown in
Fig. 21."The transition from a usual antiphase struc-
ture to such a complicated structure can occur if the
energy which accompanies this atomic shift is compen-
sated by the reduction in energy of electrons. In any
case, the appearance of such a complicated structure
agrees with the general theoretical expectation.

In the Au-Mn system, a two-dimensional antiphase
of very short period is found at Au3Mn. "It has been
interpreted that the antiphases are both of the first
kind. In order to fit the theoretical curve to the actual

a(R, )

„~ &-o-'~ a-~
d pI~( I

'g4+8gAA/! Q
'%F

c(R()-

0 Ag

Zn

a&(

' H. Iwasaki, J. Phys. Soc. Japan 14, 1456 (1959).

FxG. 21. The ordered structure of Au2Zn(RI) according to
Iwasaki. ' Arrows show the directions of the atom shifts. The rela-
tion between the large unit cell and the fundamental unit cell is
also shown. a(R)) and c(EI) indicate the unit cell length of
Au3Zn(R1) and ay and cy are those of the original face-centered
cubic cells.
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TAPE.i. III. Summmmary o ata on allooy systems having t d'wo- imensional antiphase structures. '
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cated structure. It was found that a combination of
the 6rst kind and the second kind of out-of-step for
the antiphase boundaries for respective directions was
favorable as long as the domain size was not too small.
In this case, the lattice distorts tetragonally and the
sign of (c/a) —1 can be predicted from the electron-
atom ratio as in the one-dimensional case. Also it was
predicted that the domain size in two directions should
be somewhat different. If the electron-atom ratio devi-
ates much from the critical value and the domain size
becomes smaller, the structure begins to be unstable
and structures with other combinations of antiphase
or more complicated structures can appear. In such
a case, the lattice usually distorts orthorhombically.
It is also proved that the three-dimensional antiphase
structure should not occur.

Thus far, most of the properties of long-period
superlattices can be satisfactorily explained from a very
simple model concerning the Brillouin-zone structure

of alloys. The advantage of the present problem, which
is reRected by the above results, is that the difference
between very similar structures are being compared
and therefore the change of a very small part of an energy
term can be compared, keeping other energy terms al-
most constant. The quantitative agreement of the
theoretical prediction with the experimental results
justices the fundamental assumption that the stabiliza-
tion takes place at the Brillouin-zone boundary. How-
ever, the lack of exact theoretical knowledge concerning
this point is felt in the treatment of the two-dimensional
long-period superlattice as was shown. This situation
limits the more detailed treatments of the problem.
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