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Resonant Absorption of Neutrons by Crystals*

H. E. JACKSON AND J. E. LYNN[.
Argonne Rational Laboratory, Argonne, Illinois

(Received March 7, 1962)

A study has been made of the Doppler broadening of resonances in the total cross section for interaction
of slow neutrons with nuclei bound in crystals. The resonance at 6.71 eV in Os metal and the resonance at
6.65 eV in U metal were chosen as examples of moderate crystal binding, while the 6.65-eV resonance in
U30s, for which k80=0.043 eV, was chosen as an example of strong binding. The shapes of the resonance
lines were determined as a function of temperature by measuring the neutron transmission of thin and thick
samples by means of the Argonne fast chopper. These shapes were compared with theoretical line shapes
calculated by means of Lamb's theory of Doppler broadening as applied to the spectra of lattice frequencies
implied by simple models of the crystal lattices. For moderate binding, a simple Einstein model which
reproduces the observed specific-heat behavior of the crystal above 40'K gives accurate resonance-line
shapes at all temperatures. However, for U30g the line shape implies a generalized Nernst-Lindemann model
of the lattice with a frequency spectrum g(v) =0.9 8(hv& —0.013 eV)+0.1 S(hvs —0.052 eV). The proportions
of the high- and low-frequency components are quite different from the values resulting from specific-heat
data. Possible interpretations of the U3OS results in terms of simple lattice models are presented.

I. INTRODUCTION "Doppler broadened" resonance form and is given by

HE standard expression for the description of a
slow-neutron resonance cross section is the

single-level Breit-Wig ner formula. It describes the
purely nuclear effect on the cross section, and its main
energy variation is contained in the factor

W(E„)= dE'gS (Et,)B(E„Eg). —

B(E)= 1/(E —E.) +(-;r) .

In calculating resonance broadening, the assembly of
target nuclei is commonly treated as a perfect gas. ' '

(1) In this model, the energy transfer is approxima, tely

Here, Eg is the virtual energy level of the compound
nucleus (neutron+target) which is responsible for the
occurrence of the resonance, I' is the resonance width,
which is inversely proportional to the lifetime of
the virtual level, and E is the energy available for
excitation of the compound nucleus. In neutron
spectroscopy, however, the neutron kinetic energy in
the laboratory system, E„, is the quantity measured
and so the resonance cross section must be known as a
function of neutron laboratory energy. This is simple
if the target nucleus is free and at rest for E is then
the neutron energy E diminished by the recoil energy
R=mE /(M+m) of the compound nucleus, m and M
being the masses of the neutron and target nuclei,
respectively.

In practice, the thermal motions of the target nuclei
in the sample being studied are usually an important
consideration. Only in the cross sections at the broad
resonances characteristic of light nuclei may the thermal
modification of the resonance shape be neglected. The
discussion of the usual case follows most easily after
introducing an energy transfer E& defined as the
difference between E„and E, and an energy-transfer
function S(E~) which is convoluted with the Breit-
Wigner term B(E) in Eq. (1) to obtain the cross section
as a function of neutron energy. The latter function,
denoted here by W(E„), is usually known as the
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Et,=R+nzswg,

where ~ is the neutron velocity in the laboratory system
and m, is the velocity of the target nucleus in the
direction of the neutron beam. The 4 function, familiar
in neutron spectroscopy, is obtained for the resonance
shape after applying the Maxwell-Boltzmann formula
for the distribution of velocities m, in a gas at temper-
ature T:

S(E ) = (1/aV'z ) exp[ —(E —R)'/~'j,
+(E.) =8'(E„),

where 6= (4RkT)'*, k being Boltzmann's constant. The
same result holds for a classical solid in which the
target nuclei are treated as harmonic oscillators whose

energies are governed by Boltzmann statistics.
A theoretical study of the resonance shape that would

result for target nuclei bound in a quantum-mechanical
crystal was made by Lamb many years ago. ' The
quantum-mechanical behavior of a crystal affects the
resonance cross section in ways that are not apparent
from a study of classical systems. A simple qualitative
discussion of the quantum effects may be pursued in
terms of a target nucleus bound in a harmonic-oscillator
well. If the nucleus is initially at rest, then in the
classical model the coalescing neutron will give it a
recoil energy R and the compound system will oscillate
in the well with this energy. The resonance then has the

' H. A. Bethe and G. Placzek, Phys. Rev. 51, 462 (1937).' H. A. Bethe, Revs. Modern Phys. 9, 140 (1937).' W. E. Lamb, Phys. Rev. SS, 190 (1939).
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Breit-Wigner shape, corresponding to zero temperature
in Eq. (4). In the quantum-mechanical model, on the
other hand, the energy of oscillation will be one of the
eigenvalues of the harmonic-oscillator well, any given
eigenvalue appearing with a characteristic probability.
The expectation value of this energy is equal to the
recoil energy R. In particular, there will be a finite
probability of the oscillator remaining in its initial
state. This is the analog of the Mossbauer effect of re-
coilless absorption of nuclear gamma rays. 4 In addition
to this sharp Breit-signer shape at neutron energy 8&,
there will be fine structure (or general broadening if
I' is greater than the spacing of eigenvalues in the
oscillator well) at adjacent neutron energies so that the
"Mossbauer line" may be obscured.

The modes of oscillation in a crystal are to be
considered as a property of the lattice as a whole
rather than as residing on individual atoms, but the
main qualitative conclusions are similar to those stated
above. Lamb derived expressions for the probability of
creation or annihilation of quanta (phonons) in the
various modes of oscillation and used these in an explicit
calculation of the resonance shape to be expected if the
target nuclei were bound in a Debye crystal. For a
cold crystal (relative to the Debye temperature O'D),
and for a sufficiently small neutron resonance width
and a fairly low recoil energy (both compared with
kO'ri), he showed that a "recoilless" Breit-Wigner peak
could be expected, as well as some crude structure at
higher energies. At higher crystal temperatures the
usual result is the classical resonance broadening,
except that the classical mean energy per degree of
freedom, kT, in Eq. (4) must be replaced by the
quantum-mechanical mean energy,

c=-', dv hv coth(hv/2kT)g(v),

theory is almost directly applicable. The aims are
twofold. First, there is the practical value to neutron
spectroscopy; the conditions under which crystal
effects may be discerned in the resonance shape and
the models by which they Inay be explained and which
may also be used to derive nuclear resonance parameters
from cross-section measurements are of particular
interest to workers in this field. Second, there is the
possibility of learning something about the lattice
dynamics through experiments of this kind; a narrow
resonance, whose nuclear parameters are known, may
be regarded as a probe for measuring some features of
the lattice oscillation spectrum g(v).

In this paper we present an account of an experiment
in which we have studied the Dopper broadening of
resonances at 6.65 eV in the cross section of U"' and
at 6.71 eV in the cross section of Os'" under varying
conditions of crystal binding. A preliminary account of
early phases of the work has already been reported. '
The osmium resonance was studied in a metallic sample.
The appropriate parameters, ' I'=0.087 eV, ko~ii ——0.024
eV, are typical of a case of weak binding for which
Lamb's classical form of broadening should be appro-
priate. Absorption by the uranium resonance for which
I'=0.028 eV and E.=0.028 eV was studied in samples
of two different compositions. A metallic foil of natural
uranium was used as an example of moderate binding.
A sample of U308 was expected to be an example of
strong binding. According to available specific-heat
data, ' ' the Debye "temperatures" of these two samples
are 0.014 and 0.043 eV, respectively. The tempera-
ture dependence of the line shape was studied for all
of these samples. The measurements and resolution
corrections are described in Sec. II. In Sec. III, Lamb' s
basic formalism is used to analyze the data in terms of
crude crystal models, and the significance of our results
is considered in Sec. IV.

where g(v) is the spectrum of oscillation modes of the
lattice, and v is the maximum frequency of this spec-
trum. The mean energy ~ is greater than kT but
approaches it asymptotically in the high-temperature
limit.

Lamb's classical form of resonance broadening has
found common use in neutron spectroscopy. An exper-
imental verification of this form was made by Landon
in a measurement of the 1.26-eV resonance in the
rhodium cross section. ' Recent improvements in the
intensity and in the instrumental resolution of neutron
spectrometers have made an examination of the
deviations from the classical approximation feasible
through the study of narrower resonances. The incentive
for such a study has been enhanced, of course, by the
discovery of the Mossbauer e8ect, to which Lamb' s

4R. L. Mossbauer, Z. Physik 151, 124 (1958); Naturwissen-
schaften 45, 538 (1958).' H. H. Landon, Phys. Rev. 94, 1215 (1954).

II. EXPERIMENTAL PROCEDURE

The total cross sections in the region of the resonances
studied were determined by transmission measurements
made with the Argonne fast chopper" operated with a
Right path of 58.9 m. The half width of the time-of-Right
resolution function of the system was 0.038 @sec/m,
which corresponds to an energy spread of 0.018 eV at
6.7 eV. The background counting rate was continuously
monitored by passing the neutron beam through filters

6 H. E. Jackson, L. M. Bollinger, and R. E. Cote, Phys. Rev.
Letters 6, 187 (1961).

7M. W. Holm, U. S. Atomic Energy Commission Research
ond Development Report IDQ-16399, 1957 (unpublished).

J. J. Katz and E. Rabinowitch, The Chemistry of Uranium
(McGraw-Hill Book Company, Inc. , New York, 1951), Chap. 11,
p. 271.

~ E. F. Westrum, Jr. and F. Grgnvold, J. Am. Chem. Soc, 81,
1777 (1959).' L. M. Bollinger, R. E. Cote, and G. E. Thomas, Proceedings
of the Second International Conference on the Peaceful Uses of
Atomic Energy, Geneva, &58' (United Nations, Geneva, 1958),
Vol. 14, p. 239.
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pressure of 10 ' mm Hg. The transmission of the
cryostat, including the aluminum walls of the vacuum
chamber without the sample in place, was approx-
imately 0.8 and was constant over the time-of-Right
region of interest.

Because of the detailed nature of the comparison
between our measured values and the predictions of
various models, a correction for the effect of instru-
mental resolution was required. The maximum correc-
tion of 6/o was required for the measurements of
metallic uranium at O'K. Consequently, a satisfactory
correction was obtained from the formula of Seidl
et al. ,

"namely,

FIG.j..Liquid helium cryostat. The volume within the aluminum
walls is pumped to a pressure of 10 ' mm Hg. The liquid helium
reservoir is connected to the top of vacuum chamber by thin-
walled stainless steel 6lling tubes 14-in. long.

Tr,,„,(t) =T.b, (t)—-', T.b,
"

(t) (t—t')'R(t, t') ct'

of platinum and silver which were thick enough to
remove all timed neutrons in the neighborhood of the
resonances at 11.9 and 5.2 eV. Our results indicated that
the background rate decreased 10 jo between 11.9 and
5.2 eV and that the signal-to-background ratio was
6: 1. at 6.65 eV. Measurements in which a thick sample
of uranium was used indicated that the energy-depend-
ent component of the background. was well approx-
imated by a linear variation.

Resonance energies and approximate resonance
parameters were determined from measurements of
the metallic samples of uranium and osmium at room
temperature by fitting the data to theoretical curves.
As expected from the foregoing discussion, the gas
model was completely adequate for analysis of these
data. This was indicated by the acceptable values of
y' obtained for fits to the curves drawn for the best
values of the parameters. In subsequent measurements
made at 77 and 4'K, the time of Right in the region of
6.7 eV was measured relative to peak positions of the
sharp resonance in platinum at 19.4 eV. The position
of the peak could be determined to within 0.1 channel
width (0.1 ysec). The total drift in the system was less
than 0.1 channel in any 24-h period. Thus, any displace-
ment of features of the line shapes at 6.7 eV relative to
the resonance in platinum must be interpreted as
characteristic of Doppler broadening by the crystal
structure of the sample under study.

Measurements of the osmium sample were made with
with a cryostat which is in every respect similar to the
design used by Landon. ' However, the uranium samples
were cooled in a cryostat of more elaborate design
shown schematically in Fig. l. The reservoir for liquid.
helium or nitrogen was a thin-walled stainless cylinder
to which the hollow copper sample plate was soldered.
The sample holder was clamped directly to this plate.
A small temperature diBerence between the sample and
the reservoir was insured. by the presence of the liquid
directly behind the sample. The entire region surround-
ing the sample and radiation shield was evacuated to a

T b (4) (t)—
(t—t') 4E(t,t') dt

( CO 2~

—
6~ (t—t')'R(t, t')rtt, (6)

where T,b, is the observed transmission, R(t,t') is the
experimental resolution function, and t is the time of
Qight. The experimental d.ata were 6tted by the method
of least squares to a polynomial in t which was then
used as T,b, (t) in Eq. (4) to determine the correction
to be applied to each point of the measured transmission
dip. All data presented in this paper have been corrected
in this manner. It should. be noted that any details of
the resonance shapes whose structure is smaller than
the resolution width will not be revealed by this
correction.

III. ANALYSIS OF RESULTS

The complete equation for the total cross section
near an isolated absorption resonance is

o (8„)=re'gal'„FW(E ),

where I'„ is the neutron width of the resonance, gJ is a
statistical factor depending on the angular momentum
JS of the virtual level, and A. is the de Broglie wave-
length (divided by 2m) correspond. ing to the relative
motion of neutron and nucleus. Notice that X., I', and
I' all depend mildly on the energy E available for
excitation of the compound nucleus. These energy
dependences will not be described explicitly here but
.have been taken into account in our calculations, as
was a small term (representing the interference between
potential scattering and the resonance) which was
neglected in Eq. (7).

The general form of W(E„) which Lamb obtained

"F. G. P. Seidl, D. J. Hughes, H. Palevsky, J. S. Levin,
W. Y. Kato, and N. G. Sjostrand, Phys. Rev. 95, 476 (1954).
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from dispersion theory is

lf'(E.)= Z /{~.)

l({~) I exp(ip»/&) I {~.)) I'

~
E(e/„n„q, ) ~

'= (1 —2n,q, ')e
—",

~E(n,+1,n, ; q,) ~'=(n, +1)q,'e &—",

~
E(n,—1, n„q.) ~

'=n.q, 'e-&',

(10c)

(10d)

(10e)

This expression describes the collision of a neutron of
laboratory energy E„and momentum p with the Lth
atom, whose coordinates are xL,, bound in a medium
whose initial quantum numbers are the set {n,} and
whose intermediate quantum numbers (after formation
but before decay) are the set {/h, ). The subscript s
refers to the modes of oscillation and the numbers o;,
and e, refer to the numbers of quanta of frequencies
v, in the modes s. The quantity p{n,) is the Boltzmann
weighting factor for the states {n,) when the sample is
at temperature T.

Clearly the energy-transfer function corresponding
to Eq. (8) is

~(E~)= Z p{~.) 2 l&{~ }I
exp(ip. »/h) I {~))I'

X&LE/ —g (~,—o.)kv.7. (9)

Lamb's expressions for evaluating the matrix elements
in'Eq. (9) are:

({+,) ~
exp(ip»/5)

~
{n,))=g E(//„n„q, ), (10a)

qP = (p e,)'/2Mhvv/Y, (10b)

where e, is the polarization vector of a wave in the mode
s. The E's involving annihilation or creation of more
than one phonon in a particular mode s may be neglected
because they are of higher order in q, , which is inversely
proportional to the large number E of atoms in the
fundamental volume of the crystal. If the crystal is
isotropic, averaging over e, for a given frequency v,
leads to qP=R/(hv, 3Ã). After making this assumption,
the calculation may proceed in terms of the frequency
distribution g(v). If the crystal is not isotropic, then
it would be necessary to carry out the calculations in
terms of the distribution of q,2 and then average over
the random orientation of crystallite directions within
the sample. In view of the facts that nothing precise is
known about the polarizations of phonons in the
materials we are investigating and that our measure-
ments are unlikely to be sensitive to all these character-
istics of the phonons, we have assumed isotropy in
analyzing the data. Presumably there would be little
difference, at least qualitatively, in the results obtained
if it were possible to proceed in the other way. The
isotropy assumption is in any case in accord with the
spirit of the crude crystal models employed in this paper.

It is easy to show by use of Eqs. (10) that the energy-
transfer function may be expanded in the form

Apg
2

$(E,) =exp —P coth q, ' b(E,)+P 8(E)—hv, )+P 8(E,+hv, )
2AT &

—hvs]kT ~hvslkT

qv qv, 8(Eg kvv kvg) gs2gt
+2 Q //(Eg hv, +hvar)—

(1 e hvvlhT) (1 e
—hv&/hT) v &

—(1 e hvv/hT) (ehv~/hT —1)

qs2qt2
f/ (E/+hv, +hv, )+

(ehvvlhT ]) (ehvg/hT 1)

Then making the isotropy assumption and using the spectrum of frequencies, g(v) leads to

g(v)coth(hv/2hT) g(l «I/k)
S(Eg) =exp —R dv S(E,)+Z

Ap (E,
~
(1 e ~&/hT)— —

R2 g(l v 1)gL I (E//h) —v
I 7 gal(E//h) —vl7+- +— dv

lhvl (1—e ""'"')lhC(«/h) —v)71(1 e& z+h.»hT) —3 l -—
I («—k.) I (1—e ' ' ""'"')

g(~ v'l)g(l v —v'I)
&( dv' + . (12)

~

hv
~
(1—e ""'/'T)

~

hv hv'
[ (1—e—h& "'&/hT)—

From Eq. (12), S(E&) may be computed in a straight- which may be compared by the least-squares method
forward manner for various models of the spectrum with the experimental data.
g(v). The results are then used to calculate W(E„), An alternative approach, which is more general and
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(EP), =R'+R(hv),

where (hv) is defined as

(13b)

(hv) = dvg(v)hv coth(hv, /2kT) =2s (.13c)

Here, coth(hv, /2kT) represents the mean occupation
number of the v. mode at temperature T. The first
relation is merely a statement of Lipkin's sum rule" for
Mossbauer radiation, namely, the mean energy trans-
ferred to the lattice is independent of the lattice model.
The second moment, according to Eq. (13b), depends
only on the mean energy, i.e., on the 6rst moment of
the phonon excitation spectrum at the temperature of
the sample. In the discussion of our results, therefore,
we have regarded lattice models to be equivalent if
their mean energies at a given temperature are equal.
It should be noted that Lamb's effective-temperature
approximation is merely the substitution of a classical
assembly whose temperature is determined by the
requirement that the mean energy, and consequently
the second moment of S(E,), should be equal to that
of the lattice it replaces.

The structure of the function S(E~) will be related
to the frequency spectrum of the crystal lattice under
study. Presumably, one cannot study S(E,) in any
detail with a resolution function that has a much greater
width than the maximum hv of the frequency spectrum
itself, without smoothing out the features of S(E~)
caused by the particular lattice. The approximate
value of hv for a particular case can be obtained from
speci6c-heat data. Because the Breit-Wigner shape of
the resonance line is the resolution function for this
experiment, the resonance parameters can then be
related to the degree of detail required in the frequency
spectrum to calculate an accurate line shape. For Os
metal the effective Debye temperature of 250'K gives a
maximum phonon energy of 0.024 eV compared with a
resonance width of 0.086 eV for the resonance at 6.7
eV. Similarly, for U metal, the effective Debye tempera-
ture of 165'K gives a maximum phonon energy of
0.014 eV compared with a width of 0.028 eV for the
resonance at 6.65 eV. For both these cases, then, a
simple approximation, namely, an Einstein model of
the lattice, is expected to be sufhcient for calculating

"H. J. Lipkin, Ann. Phys. 9, 332 (1960).

extracts the maximum amount of information, involves
determining the moments of S(E~) from the experi-
mental data. A general consideration of this approach
will be deferred to a later paper. However, we cite two
results of particular relevance to the present discussion.
By applying statistical methods, the 6rst and second
moments of S(E,) can be shown to be related to those
of the frequency spectrum g(v) of the lattice through
the expressions

(13a)

the line shape. For U308, on the other hand, the
speci6c-heat data imply a frequency spectrum whose
maximum is at 0.043 eV; and a simple Einstein model
is not adequate. Nevertheless, it is clear that only
gross features of the particular lattices studied are
important and, consequently, when the Einstein
spectrum was not adequate, we used a generalized
Nernst-Lindemann model in our computations.

The energies and total resonance widths of the
resonances were determined from the data taken at
room temperature with the metallic samples by 6tting
them to the theoretical curves. The data taken at all
temperatures were then simultaneously fitted in a
least-squares procedure to the calculations on either an
Einstein or a generalized Nernst-Lindemann model in
which both the characteristic parameters and the
neutron width are taken as free parameters. In the
Einstein model, the frequency spectrum g(v) is given by

Substituting g(v) into Eq. (12) gives

S(E,) =expL —( R/h ~v) coth(hv~/2kT) j
R

P 8(E —hv )e"""si "rII
hvg sinh(hvar/2kT)

(14)

where the I~„~ are Bessel functions of the first kind with
pure imaginary argument. In this case, the calculation
of the line shape of a given set of parameters is relatively
simple. If the Einstein fit was not adequate, the analysis
was then repeated for a generalized Nernst-Lindemann
spectrum of the form

g (v) =a,b(E, hv)+a—s5 (Es hv); a—g+as = 1. (15)

In this case, S(E&) was evaluated directly from Eq. (12)
by a numerical calculation. Each choice of parameters
was used to calculate and sum the terms of Eq. (14) for a
sufhcient number of values of Et to permit a numerical
integration of Eq. (2) and hence to calculate 0(E„)
from Eq. (7). The results for the best fits are shown in
Figs. 2, 3, and 5, together with the experimental results
which we shall discuss in the following paragraphs.

Osmium

Measurements of the transmission of a powdered
sample of metallic osmium with a thickness of 0.00124
atoms/b were made at 297 and 105'K. The results are
shown in Fig. 2. These data were 6tted very well by a
simple Einstein model with hog=0.016 eV and res-
onance parameters P„'= (1 32&0.02) &(10 ' eV, P
= (87&2) &(10 ' eV, and E~——6.71 eV. This value for
hog is also implied by the speci6c-heat data for osmium.
However, the predictions of Lamb's effective-tempera-
ture model are not significantly different from the
crystal calculation and also give a satisfactory 6t within
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atoms/b and the thick one 9.53X10 ' atoms/b. The re-
sults for sample temperatures of 293, 77, and O'K are
shown in Fig. 3, together with the best calculated line
shape. The best values of the parameters implied by our
results were hvar ——0.011&0.002 eV, I' = (5.90+0.05)
&10 4 eV, and F=0.0285&0.0015 eV. Again, the value
of hv~ is in good agreement with the specific-heat data
for metallic uranium, which also gives hvar=0. 011 eV.
Calculations of the line shape for an equivalent Debye
frequency spectrum were also made by using the
asymptotic expansion of Nelkin and Parks. "However,
the difference between the two shapes was not signif-
icant enough to warrant comment.

In Fig. 4, the results for a sample temperature of
4'K have been plotted in detail in order to compare
the effective-temperature approximation with the
prediction of the crystal model. The fact that the
measured points are displaced toward lower energies

6.9

the accuracy of this experiment. Thus, we may regard
osmium metal as an example of weak binding for which
Lamb's theory is adequate.

t
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NEUTRON ENERGY (eV)

Fro. 2. Measured line shapes for the resonance at 6.71 eV in
Os metal at temperatures of 297 and 105'K. The solid curve
represents the prediction of a simple Einstein model with hvE
=0.016 eV
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The measurements on uranium metal were made with
two foils, the thin one having a thickness of 1.40&(10 '
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FxG. O. Measured line shape at O'K for the 6.65-eV resonance in
U metal. The solid curve represents the prediction of a simple
Einstein model with hvE=0.011 eV, while the dotted curve
represents that of an equivalent effective temperatute" model.
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Fio. 3. Measured
line shapes for the
resonance at 6.65 eV
in U metal at tem-

eratures of 297,
7, and O'K. The

solid curve represents
the prediction of a
simple Einstein
model with hvE
=0.011 eV.

relative to the resonance energy indicates that an
appreciable fraction of the captures in the metal occur
with only a small number of phonon transfers. The
results are not consistent with the effective-temperature
approximation but are fitted well by an Einstein model.

U3o8

Samples of U,O, of thickness 0.938X10 ' atoms/b
and 0.889X10 ' atoms/b were studied at 293, 77, and
O'K. The results, corrected for resolution, could not be
brought into agreement with any Einstein model in
which reasonable resonance parameters were used.
However, a generalized Nernst-Lindemann. model with
a~=0.9, hv~=0. 013 eV, a2=0.1, and hv2 ——0.052 eV
gave the excellent fit to the data shown by the heavy
curve in Fig. 5. gath regard to the significance of these
parameters, the calculated line shapes were unaccept-
able for parameters outside the ranges of values:

100
6.5

l

6.6 6.7
NEUTRON ENERGY (eVI

6.8
ag =0.90+0.05, hog =0.013&0.003,

"M. Nelkins and D. E. Parks, Phys. Rev. 119, 1060 {1960}.
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hv2 =0.052&0.008.

In Fig. 6 the data at O'K are plotted linearly together
with the best calculated line shape and an equivalent
"pseudo-Einstein model, " i.e., a frequency spectrum
with two equally weighted frequencies which are sepa-
rated by an energy interval wide enough to wash out
oscillations that would be present in the line shape
for a pure Einstein model. The discrepancy between
theory and experiment is clear for the latter case and
oilers convincing evidence for the necessity to use a
more detailed model.

IV. CONCLUSIONS AND DISCUSSION

The analysis of our experimental data has revealed
some crude features of the vibration spectra of neutron-
capturing atoms in the crystal lattice. It is pertinent to
compare this information with the results of specific-
heat measurements.

It was recorded in the previous section that, for
metallic uranium, a simple Einstein model which
reproduces the observed specific-heat behavior' above
about 40'K is adequate'4 for calculating the resonance
shape at all temperatures. As the temperature increases,
the detail of the model becomes unimportant until, at
room temperature, an effective-temperature model is
adequate. This is consistent with Lamb's theory for
cases characterized as "weak binding" by the condition
that V+A))2kOn. The osmium data are also consistent
with Lamb's theory and with the gross features of the
frequency function implied by specific heat data. 7

The results for U308 are not so easily explained.
There is some question whether the specific-heat data
are relevant at all, inasmuch as the neutron absorption
process initially excites the vibration of uranium atoms
in the U~O~ lattice while the specific heat is a manifesta-
tion of the uniform excitation of the whole lattice. The
frequency spectrum we obtain from the neutron absorp-
tion experiments is quite unlike the spectrum that would
be inferred from the specific-heat measurements on
U308.' If the frequency employed for the latter is the
same as that determined from the absorption exper-
iments, then the strengths of the low- and high-
frequency groups are about 0.4 and 0.6, respectively.

These figures are not unique and the specific-heat
data can be reproduced by the spectrum a&=0.27,
hv&=0.009 eV, a~=0.73, he~=0.045 eV, for example.
This set of numbers suggests that the low-frequency
group is associated with the uranium atoms and the
high-frequency group with the oxygen atoms, the ratio
a,/a~ being identical with the ratio of relative numbers
of uranium and oxygen atoms per unit cell of the
lattice. Irrespective of interpretation, however, it is
clear that a much stronger high-frequency group is

"The simple Einstein model will not, of course, explain the
specific-heat data at very low temperatures; the Debye model is
necessary for this.
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FIG. 5. Measured line
shapes for the resonance
at 6.65 eV in U308 at
temperatures of 297,
77, and O'K. The solid
curve represents the pre-
diction of a generalized
Nernst-Lindemann
model with a lattice b

frequency spectrum g(v)=0.9B(hv~ —0.013 eV)
+0.18(hv2 —0.052 eV).
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FIG. 6. Measured line shape at 4'K. for the 6.65-eV resonance
in Uq08. The prediction of the generalized Nernst-Lindemann
model of Fig. 5 (solid curve) is compared with the line shape
appropriate to the lattice frequency spectrum obtained from
specific-heat data. Also shown is the shape for a "pseudo-Einstein
model, " i.e., a phonon spectrum with two equally weighted
frequencies which are separated by an energy interval wide
enough to wash out oscillations that would be present for a pure
Einstein model.

necessary to explain the specific heat than is required
for the resonance shape. As a striking illustration of this,
the line shape that would result from the assumption
of the second specific-heat spectrum described above
is shown by the dashed line in Fig. 6. Even at room
temperatures (not shown here), the speci6c-heat
spectrum gives a resonance shape quite di6erent from
the observations.

It is tempting to explain the discrepancy between the
two inferred spectra by a naive picture of the U30s
lattice as two virtually independent interpenetrating
lattices of uranium and oxygen. The speciic heat might
not depend drastically on the degree of coupling between
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FIG. 7. (a) Spectrum of
allowed frequencies in U&08
predicted by linear chain
theory. The peaks in the
distribution represent in6n-
ities in the actual distri-
bution. (b) Spectrum of
allowed frequencies used to
obtain a "best Qt" to the
experimental data.

0.5
v/vrnax

l I I

I.O

these, but the amount of high-frequency component
present in the frequency spectrum governing the
uranium resonance shape would be expected to be very
sensitive to this coupling.

An alternative explanation can be found by compar-
ing our spectrum with the results of simple linear chain
theory. " If equally spaced sites on a linear lattice are
occupied alternately by particles of mass 3f and ns

(3II)m) and the force Ii between each pair of neighbors
is constant, the resulting spectrum for transverse
displacements of the particles has the form shown in
Fig. 7a. The maximum frequency of the acoustic
branch (low-frequency branch) corresponds to a mode
in which alternate particles of mass 3f diQer in phase
by x while the particles of mass m are at the nodes of
the wave. The high-frequency limit of the optical
branch corresponds to a mode in which the neighbors of
the chain are in antiphase. Both these modes can be
excited by selective neutron absorption by the mass-M
particles. On the other hand, in the low-frequency
optical mode

1
which is still higher than the maximum

acoustic frequency by a factor (M/m)&$, the heavy
particles are at nodal positions. Consequently, this
mode will not be excited by selective heavy-particle
neutron absorption. In other words, the over-all prob-

~~ See, for example, R. A. Smith, 8'ave mechanics of Crystalline
Solids (Chapman and Hall, Ltd. , London, England, 1961).

ability of excitation of the optical modes is lower than
may be expected from a knowledge only of the vibration
spectrum. It seems reasonable to assume that these
qualitative features of the linear chain will appear in
the realistic three-dimensional case. As shown in Fig. 7,
the relative frequencies of our spectrum are remarkably
close to the frequencies of these modes. Our data imply
a small coupling of capture by particles with mass M
to the high-frequency mode.

It is interesting to note here that an analogous effect
has been observed in this laboratory by Schi8er et al."
A small amount of Co" was introduced as an impurity
in beryllium metal (Debye temperature about 1000'
from specific-heat behavior) and the intensity of the
14-keV Mossbauer p-ray line of Fe" was used to
establish a Debye temperature from the Debye-Wailer
factor. The result, O(200', illustrates the low fre-
quencies caused by the heavy Co impurity atoms in a
lattice of predominantly high frequency.

Finally, it is necessary to note the relevance of this
work to the nuclear aspects of neutron spectroscopy.
It is now clear that an experiment aimed primarily
toward determining nuclear resonance parameters
should use pure metals as samples whenever possible.
Not only is the mean frequency of the lattice vibrations
(roughly speaking, the Debye temperature) lower than
for compounds, but it appears to be perfectly correct to
use the available information on the frequency spectrum
in conjunction with Lamb's basic theory to obtain the
resonance shape. In this way it should be possible, by
measuring the temperature dependence of the resonance
parameters, to obtain the nuclear parameters very
accurately. For instance, if the mean frequency of the
uranium metal lattice is taken to correspond precisely
to he=0.011 eV, as confirmed by the specific-heat data,
then the partial widths of the 6.65-eV resonance are
I'~= (27.2&0.4))&10 ' eV and I'„=(1.52&0.01)&&10

—'
eV. It is obviously misleading to use compounds as
samples because information on the over-all frequency
spectrum of the lattice is of no value in calculating the
resonance shape.

"J.P. SchiGer, J. Heberle, and P. Parks, Bull. Am. Phys. Soc.
6, 442 (1961).


