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and
&zj &zj &z (C2a)

Im(te(~, +t',~„); ebs(~, +i~„); (~,+i~„)); (C2b)

for k=0 one of them describes a ferromagnetic structure
and the second a Yafet-Kittel25 radial structure. The
proper choice which diagonalizes the energy is obviously
some mixture of these two conhgurations. All these
mixtures obey the SSM because the representation is
T-dimensional. As the two vectors are real, the absolute
phase can be chosen so that Eq. (36) is satisfied at
all sites for k=-', K.

For A3 there are three pairs of solutions, e.g. ,

&zj +&zj &z ) (C3a)

((~.+i~„); (~,+i~„); (~,+i~„)), (C3b)

(ei(~.—i~„);ai'(~.—i~„); (~. s~„))—, (C3c)

"Y.Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).

tion AI the single vector

Re(ei(~.+i~„); ei'(~,+i ~„); (~,+i~„)), (C1)

where the vectors at the three sites are written succes-
sively. This vector is determined uniquely. Equation
(C1) describes a 1-dimensional configuration with three
real vectors ~l'" for the directions at the different sites.
Structures are therefore possible only for k=o, k= K/2
and k = K/4. The SSM is obeyed automatically because
the representation is 1-dimensional and the conditions
for the solutions at K/4 are obeyed.

For A2 the basis vectors can, e.g. , be chosen as

for the first vector and, correspondingly,

&zj + &zj &z (C4a)

(~, i—~» ~, t—',~„; ~ i—~„), (C4b)

(a&'(~,+i~„;ei(~.+i~„); ~,+i~„), (C4c)

for the second vectors. We have chosen the vectors so
as to diagonalize the rotations. The three vectors (C3)
and (C4) transform under Cs like ~,+i~„and ~, i~„,—
respectively. In general the configurations belonging to
an irreducible representation will be combinations of
these vectors and the right combinations depends on
the interactions. The two vectors can, however, always
be chosen so as to diagonalize C3 and in this form they
obey the SSM. On the other hand, Eqs. (36) and (38)
will only be consistent with this choice in special 'cases.

In general there are, therefore, no structures in the
interior of the zone. When there are additional sym-

metry elements in the NMSG which do not add new

sites, time inversion may cause two of the three repeated
representations A.3 to be degenerate, and this gives

enough freedom to allow one to construct spirals for
arbitrary magnitudes of k.

We will not write down the vectors for six sites. The
sites break up into two sets of three, each of which is

permuted cyclically by the subgroup C3. For the
1-dimensional representations the SSM obviously holds.
For A3 one can again choose to diagonalize C3, and the
vectors will then have the form of the ~' of Eq. (C4)
for each set separately, with different coeflicients and

magnitudes in each set. In general it is not possible to
combine the two vectors belonging to one representation
so as to satisfy the SSM at all sites.
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A microscopic theory of phonon-magnon interaction in magnetic crystals is developed from erst principles.
The crystal 6eld oscillations are treated as perturbations which superpose some excited orbital states on the
ground orbital state of the magnetic ions. When use is made of these perturbed states as the starting one-
electron functions in the second quantization representation, the formulation of the Heisenberg-type ex-
change interaction furnishes the relevant phonon-magnon interaction terms. Following the above inter-
actions, the phonon-magnon relaxation times are calculated for the processes involving one-phonon direct
and two-phonon Raman processes. Estimates made for iron, where the excited orbitals are taken to be the
4p and the ground 3' orbitals, yield values for the relaxation time for the one-phonon processes (T p 10
sec at 10'K) in agreement with the suggested results. Two-phonon Raman processes do not seem to be
important at low temperatures.

INTRODUCTION

'HE interaction between spin waves' and lattice
vibrations is known to play an important role in

the relaxation processes occurring in magnetic crystals,
* Communication No. 491 from the National Chemical Labor-

atory, Poona-8, India.
~ F. Bloch, Z. Physik 74, 295 (1932).

particularly at low temperatures. ' The erst theoretical
study was made by Akhiezer' from a microscopic point
of view by expanding the exchange and dipolar terms
in power series with normal coordinates of the lattice

J.Van Kranendonk and J. H. Van Vleck, Revs. Modern Phys.
50, 1 (1958).' A. Akhiezer, J. Phys. (U.S.S.R, ) 10, 217 (1946).
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vibrations. Polder, 4 however, has pointed out some
di%culties in his calculations. The recent studies of
this problem are based on a phenomenological approach
emanating from the macroscopic concepts of the
exchange energy density and magnetoelastic coupling
energy. ' Vsing this method, Kittel and Abraham'
and Kagnanov and Tsukernik' have calculated the
time for establishment of equilibrium between the
phonon and magnon systems.

Inasmuch as the phenomenological approach does
not provide a clear insight into the various microscopic
processes involved, it is desirable to study the interac-
tion on an atomic model from first principles.

In what follows, we consider the phonon-magnon
interaction on an atomic model, taking into account
the mixing of excited and ground state atomic orbitals
due to crystal field oscillations. This procedure, when
taken in conjunction with the two-electron operator,
furnishes the relevant interaction Hamiltonian. We then
calculate the relaxation times for the establishment of
equilibrium between the spin and lattice systems
arising through the direct and Raman processes involv-
ing phonons.

interaction operator, with the explicit form

(2 4)

H, &'~ =p'/2m+ U(r,—R&')+ U&+H',

BV $2V
EP=Q( ) ERAL+-,'Q ( )5Ra8R„

(2.5)

Up= Q U(r; R„—'); Rp, ——Ri—R„.
mal

+. . (2 6)

and IIz is the Zeeman term.
In the above, P,s/2m is the kinetic energy operator

of the r'th electron, U(r, —R„) is its potential energy at
r; due to the ion core at R„, co~~ is the mode branch
frequency of lattice vibration, and r;, is the distance
between electrons i and j.For the present, the spin-orbit
interaction, anharmonic terms in lattice vibrations,
and dipolar interactions between magnetic ions are
not included. For the ith electron, the Hamiltonian
(2.2) is rewritten as

2. FORMULATION OF THE INTERACTION
HAMILTONIAN

We choose a model consisting of magnetic atoms or
ions, regularly arranged as in a crystal, each having in
addition to a closed-shell ion core, one localized d
electron. The eGect of conduction electrons is unimport-
ant as far as the phonon-magnon interaction is con-
cerned. ' The total Hamiltonian consists of the following
parts:

Here U(r, —Ris) represents the potential acting on the
electron when the ion cores are in undisplaced positions.
Vo is the static crystal field potential due to the nearest-
neighbor ions acting on the electron i when it is localized
at the ion at RP. H' represents the first- and higher-order
terms of the Taylor series development of the crystal
6eld potential V of the neighboring ions in the relative
displacements of the nearest-neighbor ions. We take
the wavefunction p„as the solution of

H= H.+Hr+Ho+H g, (2.1) (P'/2'+ U(r —Rts)+ Vpgy. ,=E.~.. (2.7)

where H, is the Hamiltonian involving one-electron
coordinates, namely,

H, =p; p,s/2m++, , „U(r,—R„),

II I. is the lattice Hamiltonian expressed as

H~= Z.n &~&.(4n"&sr+ 1/2)

(2 2)

(2.3)

where b~„t, b~„standing for the phonon creation and
annihilation operators pertaining to wave vector q
and branch P,s Ho is the electron-electron Coulomb

4 D. Polder, Phil. Mag. 40, 99 (1949).' C. Kittel and E.Abraham, Revs. Modern Phys. 2S, 233 (1953).' C. Kittel, Phys. Rev. 110, 836 (1958).' M. I. Kaganov and V. M. Tsukernik, J.Kxptl. Theoret. Phys.
(U.S.S.R.) 36, 224 (1959) Ltranslation Soviet Phys. —JETP 9,
151 (1959)j.

For a more comprehensive bibliography see C. Kittel, Inter-
national Conference on 3fagnetism and Crystallography, Kyoto,
Japan (1961),Vol. 2, pp. 161—168.

J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,
England& 1960).

ao aa ~ ~ ~

(E E.)—(2.8)

where 0. represents the excited orbitals and the index 0.

stands for the spin state. With the above definition of
one-electron functions, we can write the total Hamil-
tonian in occupation number representation by the
method of second quantization as"

H=Hi, +Q E„'A,.td„+-,' Q Q A, tAs, .t
a, b, c,d a,a'

)&(ao, b '~gt ~c,do')A„Ag. .+Hg, (2.9)

where A„t, A„represent the creation and annihilation
operators, respectively, for the one-electron states/,

IL. D. Landau and E. M. Lifshitz, Quantum 3Iechanjcy
(Pergamon Press~ New York~ 195$),

The solution of (2.5) which includes H' as the
perturbation and mixes some excited states with the
ground-state functions is represented by

+aa an'
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and obey the following relations:

A Q kt+A ktA, =8;0,

A;A k+A kA;= 0, (2.10)

A;~A, =E;;
where k is the common index for both orbital and spin
states, and X; is the occupation number of the state i.
For the ground occupied states E;=1 and for empty
excited states E,=O. Further, for the orbital states
which are occupied, the following relations hold between
the above operators and the conventional spin operators:

A.t(+)A.(+)+A.t(—)A.(—)=—1,

N, (+)+N, (—)= 1,

N, (+) N, ( —)=2$,—~, (2.11)

A.t(+)A, (—)=5+ ——S. +iS„,
A t(—)A (j)=S =S. —iS„,

where (+) and (—) indicate two spin states of the
electron.

Using relations (2.10) and (2.11) and summing over
spin states, the Hamiltonian (2.9) can be written as

H= Q h, (b, tb, „+-,')++ E.'N,

+-,' P J(E)„)P(„,'+ ', Q 4~J-(R( )Pg '8Rk

+-', Q Q L2 J'(R( )+2 eJ(«„)+4 Jp(«)j
l&m hh'

)I'8 V O'V
+0=

I

yhh'— Ri~—= R& —R
(BR@ p BRkBRk. p

The relative displacements 8Rh between the ions at
R& and R„can be expressed in terms of the creation and
annihilation operators of phonons':

1
8Rk= p (—i)e»„(h/2(d», M)1(b» t —b» )

+N»)
Q (e~» RI0 e(»—Rmp)

P g (b t b )(e'» RI0 e'» R 0)
X qu

(2.14)

s I=(2s)ll 1—
I
a,

2Si

a(taI) '
5 '= (2S}'s&(I—

2S)
(2.15)

S—Sz' =a)ta) eE (the spin dev——iation),

We now use the Holstein-Primakoff}' (H.P.) spin
deviation and other operators,

where

P(„,'—=—,'+2S) S„,
J(«)—=Q'~(1)p (2) I g» I y-(1)y)(2)&,.J(«-)=—ZQ.~-lg .l~.~ &Q). I

v" l~)&/(&. —&)),

ak ——(1/QN) P, exp(ik}, .R,')a„
akt ——(1/QN)P) exp( ik}R—')aI,, It

a) ——(1/QN)gk exp( ikk R)—')ak,

a(t= (1/QN) exp(ik. R(0)an't,

&4-&el g Ie-4 &&0-I V" Ie &&el V"'I&-&
eJ(«-) —= 2

O, P (&-—@)(&e—&-)

&&-@-Ie I A«&&@-I v"
I e &&A I

v"'I &-&
Je(«-)= 2

aP (&-—«) (&0—&-)
-J'(~.)=—ZQ-~. lz. l~.~ &Q. l

v""'l~ &/(&-—

(2.16)

where kk is the reduced wave vector for quantized spin
&))

waves (magnons). We can express the phonon-magnon

(2.13) interaction terms contained in the Hamiltonian (2.12) as

&&p, bR„bR„,+IJ (212) where a~t and a~ are the well-known creation and
annihilation operators de6ned by H.P." Following
them, we neglect quantities of the type &ii&&/2S com-

pared to unity. Further, simultaneously using the
spin-wave Fourier transforms,

II(int) P 2s J(Rk)r e'"" ""0 e"""'»' —""+e '»'"'0 —'1jg» ak»tak(b»„t —b»„)+—g P I
J'(R@0)

hh' qp, q'p'X

+aeJ(R 0%+2nJ /R 0% II (ky.Rgp i(k},—»} .Rkp I (»RA 0+e—(» Rh 0 1+e(((k&,—») .Rap —»~.Rg 0) e((kk.Rhp —» .Rk 0)~ie

e'« ""'+—»'""')jg g, „ak», tak(b t b) (b ~ t b ~
—)+ (2.1—7)

In arriving at (2.17), the summation over / has been
carried out utilizing the relation'

g)e""I'=0 for S+K,
for S= K, (2.18)

where K is the vector of the reciprocal lattice including
zero and S stands for the phonon or magnon wave
vectors. It may be noted that only normal processes,

"T.Holstein and H. PrimakoG, Phys. Rev. 58, 1098 (i940).
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i.e., K=O, are under consideration here. The various
exchange integrals occurring in (2.17) are taken for
the nearest neighbors and hence, Rk' ——(Ri« —R '),
where l and m are suSxes for the nearest neighbors.
Finally, the following momentum conservation relations
between the magnon and phonon wave vectors may be
noted which hold, respectively, for the one- and two-
phonon processes and have already been utilized in
deriving (2.17):

kk'+ iI—kk =0,

kk +il+kl —kk=0.

(2.19)

(2.20)

The first term in (2.17) represents the one-phonon
direct process which involves the creation or annihila-
tion of a phonon of wave vector g accompanied with the
scattering of two magnons (with wave vectors kk

and kk'). The second term contains Raman processes
involving the creation and annihilation of two phonons
(wave vectors q and q'). In the following sections we
consider the effect of one-phonon and two-phonon
processes in the establishment of equilibrium between
magnons and phonons.

3. EQUILIBRATION BETWEEN MAGNONS
AND PHONONS

(i) One-Phonon Process

We calculate the transition probabilities of the various
processes connecting the initial and final states using
the well-known time-dependent perturbation expression,

8 f= (22''/k)
I H„I,f'8(E, Ef). (3—.1)

It is expedient to note the properties of the creation and
annihilation operators pertaining to the magnon and

phonon systems:

aktl»k)= (»k+1) &I»k+1),

~kl»k) =».'I»k —1),

k,„tl 1V,„)= (1V,.+1)'I V,„yl),
k,„l1V,„)=1V,„:

I
1V,„—1).

(3 2)

»k . ) represents the eigenket of. the unperturbed
magnon Hamiltonian,

H =C+Qk Ak/kkta)„

here
Ak ——Qk 2J(Rk)5(e'kk Rk' —1)+2/kpH,

(3 2)

Ace), =ke,a'k), ', (3.4)

with 0,—:2JS/k, k the Boltzmann constant, and a the
nearest-neighbor distance. Likewise, I 1V«„) rep-
resents the eigenkets of the lattice Hamiltonian (2.3).
For eigenkets of the combined ground-state Hamil-
tonian (2.3) and (3.2), we use the notation

! ~ )z), ~ ~ ~

) qp (3 5)

Using (3.1), (3.2), and (3.5), the transition probability
for the emission and absorption of a phonon can be
expressed as

and /kp and H are the Bohr magneton and the external
magnetic held; the last term is the Zeeman term.

The magnon-dependent eigenvalues for kk Rk'«1
and for cubic crystals are

E = Qg(2JSkk2a2+2/kpH) (»k+1/2), (3.3)

which gives us the dispersion relation, apart from a
constant term involving II:

W(»k «, »k, 1V«„~ (»k «+1),(»k —1),(1V«2+1))= (22)/)kk) ICk«„!2(»k «+1)(»k)(1V«„+1)5(Ek «+E,„Ek), (3.6)—

W(»&, «, »k, 1V «~
—+ (»k «+1),(»k —1),(1V «„—1))= (22r/A) ICk«~!2(»k «+1)(»k)(1V «„)5(Ek «

—E «
—Ek), (3 7)

where
—(4/+1V)p 2g uJ(R )I &ikk Rk«ci(kk —q) .Rk«]+&—iq Rk«]g (3.8)

The transfer of energy between the magnon and phonon systems is expressed as

Q= Q 5,„(1V,„)

2x=—2 I 4'«. I
2&~«.l:(»k-«+1) (»k) (1V«.+1)—(»k-«) (»k+1) (1V«.)3(Ek-«+E«.—Ek). (3.9)

The 5 functions in (3.6) to (3.9) ensure the energy conservation. Let T. and Ti be the spin and lattice temperatures,
respectively, which govern the equilibrium Bose distribution of magnons and phonons. Thus with T,= T and
AT= T, T&, we can write (3—.9) after developing the terms containing (T AT) in terms of T—aylor series in powers
of hT. Keeping only first-order terms, we get

(3.10)
2' AT (k~«„)'

Q=— 2 IC...I' s(E, ,+E,„E,). —
fg T2 qpk k (EE&, q/kT 1)(EEk/kT 1)-(EE«p/kT 1)
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We change the summation into integration, and use the Debye approximation for the dispersion relation of phonons,
i.e., coq„=e,

~ q~, where v, is the velocity of sound. Further, &q„can be simplified using the approximations":

aiid hence

Thus, (3.10) becomes

BV BV

BRg 8Rg

gq„= (k/2~„3I) '',

4 fi
&I~/, q ~ = — (i) (—2k/, qa' cosO/„) [25 "f(R/, )].

QiV 2(oq„M
(3.11)

e I/'g/1C 7

&(H(Ey q+Eq„—Ey)dridr, (3.12)

2m 2' ~T A'~s Ea'
Q =—— S'L f (R/, )7' a' q(k/, 'q' cos'8/, q).V T' 2/IA (2m)' (gal q//GT 1—) (/ED, /kr 1)(ggqp/ar ] )

where
d7 y= ky dky slngydgydpg,

d7 g= g dg sln0qdoqlpq.

For integrating (3.14), we follow closely the method
suggested earlier, ' and find the values for the limiting
cases of low and high temperatures.

In proceeding further we make use of the 8-function
relation,

Low-Temperature Limit (II))1)

with

E!/ q+Eqp E/, 0, — ——

Og)

2kyqO~ka = cosO/, q+ =0.
2k' 20,kp, a

(3.13)

29' 3E A aT T6

Mk T2 e~2e,4

&&exp( —P/4)5't ~f (R/, )j' (3.16)

OD = FW,/ka

Making use of the conditions

cos'8/, +cos'8,+f' 2f cosO/, co—sO, & 1,
where

and
r/= Ei/k T=O,a'k/, 2/T,

(=Eq„/kT= aOr/q/T.

Q=D
0

,(5+0)'
dq t4

5+0 (4P

where

X (3.14)
(~" ' —1) (~"—1)(~' —1)

4Ã A aT T8
~'P.f (&,)l',/ Mk T2e~60, 2

P=On'/O. T. (3.15)
"R. D. Mattuck and M. W. P. Strandburg, Phys. Rev. 119,

1204 (1960).

which follows simply from (3.13), we integrate over the
angular variables utilizing the 8-function property .

The final result is written in terms of the variables

The exponential decrease of energy transfer with
decreasing temperature in (3.16) is the same as that
obtained by Akhierzer' and others'; however, there are
important differences in other factors.

2X A y On~'
Q= I» —

~

~'L f(A)]'.
3~' SIkl 8') (3.17)

It may be noted that Q in the higher temperature
limit becomes independent or temperature in our
mechanism.

Two-Phonon Process

The second term in (2.17) constitutes the two-phonon
interaction Hamiltonian. In this, however, the terms
representing the creation or annihilation of two phonons
are relatively unimportant. " Accordingly, these are
neglected. We consider the other two terms which
represent the Raman processes involving phonons.
Thus the energy transfer owing to the two-phonon

"l.%aller, Z. Physik 79, 370 {1932).

High-Temperature Limit (g-+0)

In integrating (3.14) for this case, the upper limit
for $ is taken as OD/T and in the final expression the
terms in (OD/T) higher than two are neglected. We get
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Raman process can be taken as

QE= 2 &~qp(&»p)

2'=—2 &~apIZ C'~a»""'I'[(u~-» —a+1)(u~)(&a.+1)(&-")
q y, q' p' hh'

—(u.-»-a)(u. +1)(~'qp)P-» p+1)j8%~-a-»+~a —L~ ~ a) -(3»)
As before, we define AT= T,—T&= T—T& and, making use of the Taylor series expansion, we get for &= A'

2'
QE=—P

k &«'

a'~ZT ~(&&+8—gal a) l&~—
I

—-IZ c'~-""I' q. (~q.—-")
Ta $ (eE)L q q //"—T —]) (eE/JkT 1) (eEqp/kT ]) (eE q'p'—/kT —1)

&&~(~~ a a+&-ap-&~ &—'p —) -(3 19)

The explicit form for P/, &« ""can be obtained by expanding the second term of (2.17) up to fourth order, i.e.,

[.Z'(Z—d)+-e J(R/, ")+2-J,(Rd)]X a[k), qq cos8«i —kyq q cos8/, aa
—k),qq cos8&,a

1V M (4a»„4a a„)'
+2k/, 'qq' cos8&a cos8&a —2kzq'q' cos8&a cos8,»

—2kzqq" cos8&; cos8«.$. (3.20)

4. RELAXATION TIME FOR EQUILIBRATION

We now proceed to calculate the relaxation time for
the establishment of equilibrium between the magnon
and phonon systems owing to the one-phonon and two-
phonon processes discussed in the preceding sections.
The relevant expression is given by~

Q(1/C. +1/«)
(4.1)

One can change from summation to integration;
however, a rigorous integration is hopelessly complicated
owing to the occurrence of several angle variables in the
8 function as well as IQEC/, «'"I'. One can at best
attempt to give an order-of-magnitude estimate for
certain specific conditions. We estimate (3.19) for the
condition when a high-energy magnon is almost
completely annihilated, creating a high-energy phonon
and a very low energy magnon as the result of a
collision with a very low energy phonon. The only sig-
nificant term in the square bracket in (3.20) then is of
the type kzqq" cose&, kzqq".

We get, apart from numerical factors,

1 EA' DT T "/T '1
R —5'JE', (3.21)

ar'M'k' T' 8r (8, 8n
where J.=—["J'(~E')+- J(~/')+2-~t/(~4')]. (3.22)

Likewise, when we consider an interaction which
involves a small transfer of energy between the phonon
and magnon system, i.e., for the term k&2qq'cos0«
~k&2qq', we get

~re~T T~o T»2~—S2Jg2. 3.23
C

where r,„ is the relaxation time; C, and C~ are the
specific heats of the spin and lattice systems, respec-
tively. The following explicit forms for these are taken' "
for the low-temperature limit:

15 1 T3l2

C,=——kE —;CE=
C

k.!V —. 4.2

Using the expressions for the Q's in the preceeding
section, the various relaxation times are given by:

One-Phonon Process

(i) Low Temjerature -Limit (P))1)

1 3&(2»( A T4 8, *! P' ~
I
11+

EMk' 8 '84 T E 234)7 sg)

Xexp[—P/4)S'[ &(&/')g', (4.3)

(ii) High TemPerature Lim-it (P—+0)

In the high-temperature limit, the specific heat of
the lattice reduces to the well-known expression 3%k.
For the spin system, however, the analogous expression
has not been suggested so far. The expression for C,
given in (4.2) is valid only at low temperature. As in the
case of crystal lattice vibrations, if we take the upper
limit of the magnon wave vectors as 1/a, then for the
high-temperature limit one arrives at the expression for
the specific heat of the spin system as C,=Wk/6n',
which is much smaller than the lattice speci6c heat at
high temperatures. It is interesting to note that the
characteristic temperature for the spin system implicit
in the above assumption is the same as the temperature

"C. Kittel, Solid-State Physics (John Wiley @ Sons, Inc. ,
Net York, 1.956), 2nd ed.
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8,. Thus, (4.1) becomes, neglecting, 1/C~,

1 A 0D'
g2 aJ go 2 (4.4)

where Eo is the distance of the neighbor from the central
ion, r is the coordinate of the electron referred to the
central ion, and +

~
Ze~ is the charge of the ion. For an

odd vibration of the unit chosen, the first and second
derivatives of the potential are

Two-Phonon Process

Corresponding to the two cases implied in equations
(3.21) and (3.23) the relaxation times for the two-
phonon processes at low temperatures are given by

X&'&z' (4.5)

X&'&a'. (4.6)

The corresponding expressions for the high-ternpera-
ture limit can be obtained from (3.21) and (3.23) on
dividing them by ATNk/6m'.

S. ESTIMATES AND DISCUSSION

In the expressions for the various relaxation times
derived in the previous section, most of the factors are
easily determined except those involving J(Rz') and
J~ Lcf. (2.13) and (3.22)]. A knowledge of these will

require the calculation of the exchange integrals involv-
ing excited orbitals as well as the matrix elements of
the various derivatives of the crystal field potentials
with respect to excited and ground state orbitals. We
consider an order-of-magnitude estimate of these
quantities for a body-centered cubic system such as
iron. The excited orbitals for iron are taken to be the
4p empty orbitals. Thus, the transitions involved are
3d to 4p, which for the cubic symmetry of the systems
can be achieved owing to odd vibrations of the surround-
ing ions with respect to the ion in question. For the
actual estimate, we consider a collinear system of three
ions lying on the body diagonal of the unit cell. The
potential energy of an electron at the central ion in the
field of the two diagonally opposite nearest neighbors
at the equilibrium position can be taken as"

( Ze' Ze'
+

kR,—r R +r)
(5.1)

which is independent of temperature. This point has
not been noted before; however, one must bear in mind
that the spin-wave approximation breaks down in the
high-temperature regions and there may not be any
physical significance in calculations pertaining to the
high-temperature limit.

~

V"
~

= (8V/BRq) 0 4——Ze'r/Ro',

)
V""~ = ((PV/(jR ) =6ZPr/R04.

(5 2)

(5 3)

"C. Mande, Ann. phys. (Paris) 15, 1559 (1960)."S.Koide, K. P. Sinha, and Y. Tanabe, Prog. Theoret. Physics
(Kyoto) 22, 647 (1959).

'7 R. K. Nesbet, Phys. Rev. 119, 658 (1960).' N. Bloembergen and R. W. Damon, Phys. Rev. 85, 699
(1952).

Thus, the matrix elements required have the approx-
imate values

(P„. )
V"~P4,.)-4Z.~.,/R. ,

(P . )
V""~P „.)-6Ze'r, /R, ', (5.5)

with ro standing for the radius of the ion. For iron the
charge of the ion core is taken for the ion without the
4s electrons, i.e., +2

~

e ~, and the radius ro 1A.
Thus with R0=2.5A the value of (|P3~,2~ V"~|P4~,) 1.25
X10 ' dyn. Likewise the value of (5.6) is 0.75X10'
dyn/cm.

The energy denominator Dh =h —Eo is taken to
be the difference in 4p and 3d bands for iron-series
metals. This is estimated from x-ray spectroscopy data"
as AE =5 eV. A reasonable range will be 5 to 10 eV;
however, to be on the safe side we shall use the value
DE~ „10 eV. For an estimate of the exchange
integrals of the type ($4„' $3d ~g12~$3d $3d ') we
make use of the calculations of similar integrals in
certain other magnetic studies. "'~ The value is of
the order of 0.01 atomic unit (0.27 eV). We use the
value of 0.1 ev in our estimate.

Thus for iron, at T=10'K, 0,=1000'K, and 0~
=500'K, we get the estimate of (1/r, „) 2.5X10'
sec ', i.e.,

T y 10 'sec,

for the one-phonon process with S=1 Lcf. Eq. (4.3)].
This estimate seems to be of the right order of rnagni-
tude as can be seen by comparing with the values
suggested earlier. ' ' For the high-temperature limit
Lcf. Eq. (4.4)], we get the value (1/~.„)=5X10' sec ',
i.e., the relaxation time r,„ is of the order of 10 "sec.
This value may be taken to be the limiting value since
(1/~,„) in this limit becomes independent of tempera-
ture. From this it is reasonable to expect that at room
temperature r,„will be around 10 ' to 10 ' sec in.
agreement with that suggested by Bloembergen and
Damon. "

The estimates of (1/r, „)~, and (1/r.,~)~, Lcf. (4.5)
and (4.6)] arising out of two-phonon processes, follow-

ing the above procedure, show that the values at low
temperature are extremely small. Hence, these processes
are unimportant compared to one-phonon processes
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discussed above. They may, however, become apprecia-
ble at higher temperatures.

The foregoing analysis shows that the mechanism
suggested here is of importance in the relaxation
processes involving the ordered spin and lattice systems.
Although the estimates have been made for iron, the
process may have wider validity for other systems, such
as the ferrites and the garnets. That such mixing of
excited states with ground states owing to certain types
of vibrations does occur is vindicated by the absorption
spectra study of systems containing the transition
metal ions."

We briefly discuss the mechanism in this paper in
relation to those suggested earlier. " The coupling
terms arising out of the expansion of exchange interac-
tion energy in powers of displacements' or strain tensors7
do not provide an unambiguous atomistic picture of
the physical process and the terms are dificult to
evaluate from first principles. On the other hand, the
interaction terms in the present paper stem from a
change in electron-lattice potential energy due to
crystal field oscillations which in turn leads to

~(«-) =(0-0- I g sly-It&(4- I
~"14 t&/(&- «), —

and thus determines the strength of the phonon-
magnon interactions. Such factors occurring in (4.3)
can be calculated explicitly in principle. Also, they
furnish a clear physical picture of the microscopic
processes involved.

Further, the one-phonon process in the phenomeno-

"D. S. McClure, Solid-State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1959), Vol. 9.

logical theory is written as

8M; BM)
u„,d V,

&I ~&m

where the M S are the components of the vector
density of the magnetic moment of the whole crystal,

ls a coupling constant, and ter, = s (r)ztr/r)sc~

+c)u,/Bx„) is the strain tensor, u being the displace-
ment vector. Since such interaction terms may be
considered as the expansion of the exchange energy in
power of strain tensors, the expression Le.g. , Eq. (25)
of reference 7j contains an additional wave-vector
factor compared to our expression Lcf. (3.11)$. Thus,
at low temperatures the mechanism considered in the
present work would seem to be more effective. A more
explicit comparison between the two approaches is,
however, not possible in that it does not seem approp-
priate to express the present mechanism in terms of the
phenomenological concepts.

The motivation behind our study is more towards
understanding the exchange of energy between the
phonon and magnon systems in relation to certain
physical properties such as thermal conductivity and
absorption of sound rather than to the microwave
absorption. The details of the calculations for such
studies including the spin-orbit interaction, anharmonic
coupling of lattice vibrations, etc., will be considered
in another paper.
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The Curie point of n-Fe203 is found by differential thermal analysis (DTA) to be at 725'C, rather than
the value of 675'C known from magnetic measurements. Of the theories on the origin of the weak ferro-
magnetism in this material, only that of Dzialoshinskii can account for all the experimental data. The 675'C
is argued to be a point at which the basal plane anisotropy (assumed nonsymmetric) changes sign.

""" KMATITE, n-Fe203, is a rhombohedral natural.... crystal having the symmetry R3 2/c with'
@=5.4243 A and n= 55'17.5'. It contains four iron ions
per unit cell, which are located along the L111) direc-
tion. The material is, to a first approximation, antiferro-
magnetic. Below 250'K, the magnetization of the sub-

' F. Bertaut, Compt. rend. 246, 3335 (1958),

lattices is parallel to 1111],while above 250'K it is in
the (111)plane. '

It is known' that a weak ferromagnetism is superim-
posed on the antiferromagnetism of this material and
this is most pronounced in the (111)plane, and in the

2 G. G. Shull, %. A. Strauser, and E. D. VVollan, Phys. Rev.
83, 333 (1951).' L. Neel, Revs. Modern Phys. 25, 58 (1953).


