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The connection between magnetic structures and the symmetry
of the crystal lattice is investigated in the zero-temperature limit.
It is assumed that the magnetic energy is bilinear in the magnetic
moments and has the full symmetry of the lattice. A standard
group theoretical analysis leads to magnetic configurations be-
longing to irreducible representation of the space group. The re-
quirement that equivalent magnetic moments have equal magni-
tude is treated as a set of subsidiary conditions. When these
conditions can be fulfilled within one irreducible representation,
one gets magnetic structures which are time independent for
symmetry reasons.

It is shown how these structures can be found. The possibilities
for lattices with a single moment per unit cell are discussed in
detail, and the structures on a simple cubic lattice described. For
the general case the extension to lattices with several magnetic
moments per unit cell is discussed, and some general results are
derived.

In general there may also exist additional magnetic structures
which have no simple relationship to the crystal symmetry. Both
the number and the form of such structures depend on the de-
tailed interaction mechanism. This is demonstrated by comparing
two simple examples which can be solved exactly.

I. INTRODUCTION

HE concept of a magnetic structure is essentially
classical. An arrangement of magnetic moments

on a crystal lattice is considered a structure if each of
the moments is pointing in a de6nite direction parallel
to the local field caused by its interactions with all
the other moments and with the crystal lattice. These
are the time independent states of a classical system of
magnetic moments, at zero temperature, and the classi-
cal ground state will be one of them. The energy of the
system is determined uniquely by the arrangement of
the magnetic moments.

For a quantum mechanical system the structure is
de6ned in terms of the expectation values of the indi-
vidual moments and of the local fields. This is equivalent
to the molecular field approximation.

The arrangements of magnetic moments in a crystal
lattice have been discussed extensively in recent years.
Belov eI, al. ' and Tavger et a/. ' have tabulated the mag-
netic space and point groups. These describe the sym-
metry properties of all possible magnetic lattices. As
shown in Indenbom, ' these groups are all isomorphic to
the ordinary space and point groups and can be obtained
from the alternating representations of the latter.

A different approach was adopted in the work of
Villain, Yoshimori, ' Kaplan, ' Berthaut, and many
others. They have discussed the static arrangements
which result when one assumes certain plausible inter-
action mechanisms. Usually only the translational
symmetry of the crystal was taken into account.

The purpose of this work is to see how much informa-
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tion on magnetic structures can be obtained from the
symmetry of the crystal lattice. We assume that the
magnetic energy of the crystal (i.e., the energy associ-
ated with the magnetic structure) is invariant when the
symmetry operations of the nonmagnetic space group'
(NMSG) are applied separately to the crystal lattice or
to the magnetic moments. Any magnetic configuration
is transformed by the symmetry operations of the
NMSG into an equivalent configuration with the same
energy (which may or may not coincide with the original
configuration). This immediately suggests that one try
to describe magnetic structures in terms of the irre-
ducible representations of the NMSG, and apply the
group-theoretical techniques developed for investigating
lattice vibrations and electronic band structures. ' "As
in the case of lattice vibrations one has to restrict oneself
to interactions which are bilinear in the coordinates
(i.e. , in the components of the magnetic moments). One
can then proceed to find the magnetic configurations
which transform like irreducible representations of the
NMSG. For bilinear interactions these can always be
chosen so that they formally describe time-independent
states of the system.

Most of the con6gurations obtained in this way are,
however, not valid solutions of our problem. We have
de6ned a magnetic structure as an arrangement of
magnetic dipoles on a lattice, and all equivalent mag-
netic dipoles must have the same magnitude. This
means that a set of nonlinear subsidiary conditions is
imposed on the problem. Most of the configurations
one 6nds from symmetry considerations are lattice
waves and do not ful611 these conditions. We will refer
to magnetic states on which the subsidiary conditions
have not been imposed as magnetic configurations. The
term magnetic structures will be reserved for states
which fulfill these conditions. For special values of the

Throughout this paper the NMSG is the space group deter-
mined by x rays when the crystal is in the magnetic state.

~ M. Lax, Bell Telephone Laboratories, Lecture notes, 1960—61
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Turnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 174.
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wave vector (i.e., for certain discrete increases of the
unit cell) and for k's in some symmetry directions in
the crystal it is possible to form magnetic structures
which belong to a de6nite irreducible representation of
the NMSG and are time independent. We will show
how these structures can be found.

Our approach is closely related to the spherical model
of I.uttinger and Tisza. " We neglect the subsidiary
conditions on the magnitude of the moments in the
initial symmetry considerations. The configurations
obtained in this way would all be legitimate solutions
within the spherical model. They have to be rejected
when they are not consistent with the fuH subsidiary
conditions on the magnitude of the individual moments.

2. MAGNETIC ENERGY AND STABILITY CONDITIONS

where the T(k) are the 3e-dimensional vectors derived
from the T"(k) and I'(k) is the Fourier transform of G;;
whose submatrices I'&"(k) are defined. as

I Pv(k) —gvk ~ (rv rv) Y . G, lever'k ~ (.Ri—Rr)
V

Equation (7) can be separated further if the T(k) are
written in terms of the eigenvectors of the Hermitian
matrices 1 (k). In the absence of the subsidiary condi-
tions these would be the eigenstates of the magnetic
system. The eigenvectors of F(k) belong to definite
irreducible representations of the NMSG, so that group
theoretical procedures can be used to 6nd them.

Berthaut~ has suggested aphysicallymore illuminating
approach. Consider the equations of motion for an
individual moment which follow from Eq. (1):

The most general expression for the magnetic energy
which is bilinear in the magnetic moments is

E= ', Q (A;;"-~S;" S;~+S;".B;;"~)&$;»

where
d S;"/dt =S,"yh;",

h,"=P(A;;"~$,'+B,,"~&&$,~+ C,,"~ S;~)

(9)

(10)

+$'" C'"" $'") (1)

T"(k)=X—
& P; S,"e'k &R'+"& (3)

where k is a wave vector in the first Brillouin zone of
the reciprocal lattice, R; is a lattice vector, r„gives the
position of v in the unit cell, and the summation is over
all X equivalent sites in the crystal.

From Eq. (2) T"(—k) is the complex conjugate of
T"(k):

T"(k)*=T"(—k).

Using the reverse of Eq. (3),

$.v +—', Q Tv(k)&—v'k (Re+rv)

one can describe any magnetic structure in terms of
the T"(k).

It is convenient to rewrite Eq. (1) as

z=+S; G;;S;,

where S; is the 3N-dimensional vector whose components
are the components of the m $,", and G;, is a 3n-dimen-
sional tensor obtained immediately from Eq. (1). One
can then use Eq. (5) to obtains

where S;" is the magnetic moment at lattice site i and.
site v in the unit cell, A;, "& is a scalar, B;,"& an axial
vector and C;;""a symmetric tensor, and the summa-
tion is over all n sites in the unit cell (v,p) and over
all unit cells in the crystal (i,j)

We will assume that the magnitude of the moments
is absorbed into the interaction constants so that

(S;")'=1.
One can now de6ne~

is the local 6eld at the site i.v. A structure is time inde-
pendent if every S;" is parallel to the local field h;" so
that the rhs of Eq. (9) vanishes. This can be written

where P;" is de6ned as the local 6el.d constant.
Equation (11) is also the equation one obtains if

one uses Lagrange multipliers to minimize the energy
(1) with the subsidiary conditions of Eq. (2)." This
means that the simultaneous solution of Eqs. (11) and
(2) are automatically extrema of the energy. All the
time-independent magnetic structures possible in a
specific case are given by these simultaneous solutions.

Because of the nonlinearity of the normalization con-
ditions t'Eq. (2)$ it is very hard to make any general
statements about the solutions of these equations or
even to determine their number. The only structures
which are always possible are those whose time inde-
pendence is due to the symmetry properties of the
system. We will discuss in detail the structures which
are allowed because of the symmetry of the crystal
(i.e., of the NMSG). It should be remembered, however,
that the magnetic energy may have higher symmetry
(as, e.g. , for purely scalar interactions), which may lead
to additional structures. For the solutions which are
not determined by symmetry the arrangement of the
magnetic moments and the number of solutions both
depend on the detailed values of the interaction param-
eters, and no general information can be obtained.

The general solutions of these equations are discussed
in Appendix A, where two simple examples in which
all solutions can be found are also described.

For further reference it is useful to rewrite our equa-
tions in terms of the T"(k). Equations (11) then become

g=Pk T(—k) r(k) T(k),
"T. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1954).

(7) P, &""(k) T&(k) =P.V(~) T"(r.—k), (12)

"We are grateful to E. I. Blount for pointing this out to us.
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where I'""(k) is defined in Eq. (8), and the summation
on the left is over all n sites (p) in the unit cell and on
the right over all vectors x in the first Brillouin zone, and

V(x) =P; X;"exp(ix R,).
The subsidiary conditions [Eq. (2)7 become

Ps T"(k) T (x"—k) =M(r).

(13)

where 8(r) is the Kronecker delta, the summation is
over the first Brillouin zone in k space, and there is a
separate equation for each x in the zone and for each
site (v) in the unit cell.

The strong spherical model (SSM) used, e.g. , by
Freiser, "which requires

p, (s;")'=x
is equivalent to neglecting all the homogeneous equa-
tions in (14). A weaker restriction would be to require
one condition:

(16a)Q Q(S,")'=eX.
V 'b

that is,

g T"(k).T"(x—k) =Q T(k). T(x—k) =iiX (16b)
7c,v

We will refer to Eq. (16) as the weak spherical model
(WSM). When there is only one magnetic site in the
unit cell the SSM [Eq. (15)7 and the WSM [Eq. (16)7
are obviously equivalent.

3. CONFIGURATIONS CORRESPONDING TO
IRREDUCIBLE REPRESENTATIONS OF

THE SPACE GROUP

For a general element of the space group (n~ v), with
with the point operation o. and the subsequent transla-
tion v, one has

(n~ v)T"(k) =exp[i(n 'k) v7P „U(n)T"(k)
=(T"( -'k))', (»)

where n 'k is the wave vector into which k is trans-
formed by the point operation a ', E„„permutessite v

into site p, in the unit cell, U(n) is the orthogonal
(3-dimensional) matrix representing the point operation
n, and {T&(n 'k))' is the wave at site p after the sym-
metry operation.

It is seen from Eq. (17) that the representation of the
space group in terms of the T"(k) is already reduced to a
large extent. Under pure translations (n= e, the identity
of the point group) all T"(k) transform into themselves
except for a phase factor (e'~ ~). The other operations
of the space group are of two types. Operations for which
nk=k transform T"(k) into a wave of the same k.
Together with the pure translations these operations

» M. T. I reiser, Phys. Rev. 123, 2003 (1961).The SSM leads
to nonlinear equations (Sec. 7). An alternative approach which is
more general than the WSM, but still linear, has been used by
Lyons and Kaplan {second reference 6).

form the group of the vector k (H(k)). The other
operations of the group transform k into some other
wave vectors (e.g. , k'=nk), which can be obtained from
k by the operations of the point group of the crystal.
These operations will transform T"(k) into a wave with
wave vector k'. However, there is only a small number
of vectors k' which are connected with k in this way.
These vectors are defined as the star of k. Any irre-
ducible representation can be assigned to a definite star
in k space. To obtain the irreducible components we will

use the theory of the representations of space groups io
the form developed by Lax. '

All vectors in a star have isomorphous groups with
the same irreducible representations. The operations of
the space group which carry k into some other vector
k' transform the basis vectors of an irreducible repre-
sentation of H(k) into those of a similar representation
of H(k') in a unique way. [This follows from the com-
pleteness of the space group and from the irreducibility
of the representations of H(k). 7 All the vectors obtained
in this way from the representations of H(k) form the
basis for an irreducible representation of the space
group. For a star with r diGerent vectors an s-dimen-
sional representation of H(k) generates an rs-dimen-
sional representation of the space group.

The point operations appearing in H(k) form a point
group G(k). For symmorphic space groups, and for k's
in the interior of the Brillouin zone also for nonsym-
morphic groups, all relevant representations of H(k)
are obtained directly from those of the point group
G(k). For the group characters, one has'

rrisi'L&nl v)7= &"'"«&)'[n7

where Xiii,~&[(n~ v)7 is the character of the element

(n~ v) in the representation p of H(k), and Xgti, ~'[n7
is the character of the point operation a in the corre-
sponding representation of the point group G(k). The
same factor connects the representative matrices. Equa-
tion (18) also holds for most points on the zone boundary
in nonsymmorphic groups. The methods for ending the
representations where (18) fails were investigated in
detail by Lax' and can be applied in a straightforward
way. '4

Equation (18) now enables us to find the magnetic
configurations which transform like the irreducible
representations of the NMSG. These are the 3e-dimen-
sional basis vectors ~,&(k) of the irreducible representa-
tions of H(k), in the 3ii-dimensional space defined by
the 3' components of the e vectors T"(k), together with
the corresponding vectors for the other k's of the star.

In the definition of ~,&(k), p designates the irreducible

"Equation (18) fails only when for some point operations a and
P in the point group G(k), e'(&"—»'"&e'( &—»'&, where u and v
are translations associated with n and P, respectively, in H1kl.
In these cases H(k) has no 1-dimensional representations. It' s
irreducible representations can be found from the multiplier
representation of G(k). The procedures are described in detail
In reference 9
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representation of H(k) to which it belongs, and s
enumerates the different basis vectors for multidimen-
sional representations. The wave vector k indicates the
star to which the irreducible representation belongs and
the specific wave vector to which the basis vector be-
longs. It is convenient to normalize the ~,&(k) so that

n

~.*~(k) ~,p(k)= P v, '~"(k)~,*~"(k) v, ~"(k)~,~"(k),
v=1

n

=2 v *'"(k)v '"(k)=~

(19)

where the 3-dimensional vectors ~,&"(k) are unit vectors
in the direction of the components of ~,&(k) in the sub-
spaces of the respective sites in the unit cell [i.e., of the
T"{k)], and the v, '"(k) are (complex) numbers. It
should be noted that the ~,&"(k) may also be complex.
In that case, they always have perpendicular real
and imaginary parts of equal magnitude. To find the
basis vectors ~,&(k) of the irreducible representations
of H(k), one calculates the characters of representative
elements of the classes of H(k) in the representation of
the T"(k). These characters can then be compared with
those of the irreducible representations of H(k) [Eq.
(18)] in the usual way.

In doing this it is useful to remember that the group
of the vector k has an invariant subgroup Ti, of all
translations for which e'"'"=1. Clearly, all elements of
H(k) which differ by such translations have the same
effect on the T(k) and have identical representations.
It is therefore sufficient to consider representations of
the factor group FI(k)/Ti„which is much smaller
than H(k).

The ~,&(k) span the whole 3e-dimensional space of
T(k) so that T(k) can be expressed as

L= g Q X~(k)g a,~(k)*a,~(k),
stars p k, s

where the first summation is over all stars in k space,
the second is over all the irreducible representations p
belonging to a given star, and the indices k, s designate
the distinct basis vectors of the representation.

The matrices I'(k) are Hermitian and their eigen-
values X are real and coincide with those of the complex
conjugate matrix I (—k). There is therefore an inherent
degeneracy between ~&(k), and z,.&'(—k)=[z,&(k)]~,
even when k and —k do not belong to the same star.
They can always be combined to give real configurations
so that the 3e dimensional moment [in the sense of
Eq. (6)] in the unit cell i for the configuration described
by ~,&(k) [S,(psk)] is

interactions between the configurations of the irreduci-
ble representation p chosen in some arbitrary way. The
detailed form of the eigenvectors (i.e., the configura-
tions) clearly depends on the interactions. We will re-
strict our discussion to those properties of the configura-
tions which follow from their symmetry.

When there is only one magnetic moment per unit
cell, the solutions of (21) are the only time-independent
configurations belonging to the given irreducible repre-
sentation. They correspond to minimizing the energy
within the spherical model. When there are several sites,
Eq. (21) is equivalent to minimizing the energy with
the sole requirement of the WSM [Eq. (16)].When the
symmetry is sufficient, the SSM [Eq. (15)] may follow
automatically. When this does not happen, it may be
convenient to allow some additional freedom and intro-
duce the SSM explicitly into the equations. We will
discuss this possibility in Sec. 7.

Substituting Eq. (20) into the expression for the
energy [Eq. (7)] and using (21), one has

T(k) =P a,~(k)~, ~(k),
ptS S,(p,s,k) = 2 Re[a,&(k) ~,&(k)e'"' (23)

and Eq. (13) can then be written in the representation
of the irreducible basis vectors. Now, from our initial
assumptions it follows that I (k) commutes with the
symmetry operations in H(k) and therefore only con-
nects vectors ~'(k) w, hich transform with the same
irreducible representation of H(k). When an irreducible
representation appears only once, its basis vectors are
eigenvectors of 1"(k) so that

where the rhs is the real part of the bracketed expression.
The energy of such a configuration is, from Eq. (22),

E=2XP(k) Ia, ~(k) I'. (24)

The moments at the distinct sites in the unit cell (i)
are given by the components of S; in the 3-dimensional
subspaces of the S;".In terms of the components T,"(k)
one has, in the notation of Eq. (19),

I (k) ~,~(k) = X~(k) ~,~(k), (21) S "(p s k) =Re[a,p(k)v &"(k)e" '~ &"(k)]. (25)

where X&(k) is the same for all basis vectors of the repre-
sentation p of H(k) and for the related vectors for the
other k's in the star.

For repeated representations the choice of basis
vectors is not determined uniquely by symmetry. To
determine the configurations in Eq. (21), one then has
to diagonalize the matrix I'»(k) which represents the

When the ~,&"(k) are real, this gives a lattice wave of
moments in the direction of ~,&"(k):

S'"(p,s,k) =
I
a "(k)

I I v. '"(k)
I

Xcos[k R,+p '"(k)ylP ~(k)]~ '"(k) (26)

where p. '"(k) and P,&(k) are the phases of v, &"(k) and
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u, '(k), respectively. When ~,&"(k) is complex, one has

[S'"(p,s,k)3a.= I
~.'(k)

I I v. '"(k)
I

&&cos[k R +& (k)+P (k)) (27)

[S*"(p,s,k) li-=- —
I
~.'(k)

I I v. '"(k)
&& sin[k. R;+y, &"(k)+P, '(k) j, (28)

where the subscripts Re and Im indicate the components
of S in the direction of the real and imaginary parts of
z, respectively. These directions are mutually orthogo-
nal. Equations (27) and (28) describe a spiral structure
in which all moments S," with the same i have equal
magnitude. For the magnetic configurations of Eqs.
(26), (27), and (28), it follows from Eq. (21) that

h "(p s k) = Re@,&(k)a.'(k)r '"(k)e" " "'j
=X&(k)S;"(p,s,k),

and the stability conditions (11) are fulfilled. The con-
figurations obtained in this way have the property

4. PERIODIC MAGNETIC STRUCTURES

In Eq. (14) the conditions on the magnitude of the
individual moments were formulated in terms of the
T"(k).

The simplest case is obviously that of structures
belonging to a single k. One then has the two sets of
equations:

~

T"(—k) ~'+] T"(k) ~'=X for L=O,
and

(31)

(T~(k))2+T"(—k) T"(3k)=0 for i~=2k, (32)

with its complex conjugate equations for x= —2k. For
all other values of x the homogeneous equations in (14)
are trivial because we have assumed a single k, i.e.,

tures in small regions in k space (unless they belong to
a single k). This seems to indicate that it is hard to gain
energy by forming mixed structures with conhgurations
which have a large P but do not allow the formation of
structures.

7, '=Xp(l )
T(k') —=0 for k'N &k. (33)

independent of i and v. Clearly any superposition of
such configurations with the same molecular field con-
stant X' will obey Eq. (11).When a magnetic structure
can be formed from degenerate configurations ~,&(k)
(with the same X), it is therefore time independent. This
applies, in particular, to combinations of configurations
belonging to the same irreducible representation of the
NMSG. For purely scalar interactions, it is also true
for all configurations obtained from each other by simul-
taneous rotation of all ~,&" (this was first proved by
Kaplan and Lyons' ).

A second type of combination which is always
possible is that of collinear configurations. In the mag-
netic configurations of Eq. (26) all S,"and h;" at the
same site in the unit cell (u) have the direction of
~,&"(k) and are therefore parallel to each other. When
con6gurations with the same directions [i.e. , with the
same ~,&"(k)j are combined, the local fields and mo-
ments remain parallel to each other so that Eq. (11)
still holds. We will discuss the collinear structures which
can be formed in this way in Sec. 5 and in Appendix B.

When one tries to go beyond these two cases the
situation becomes very complicated, and a description
in terms of the irreducible representations may not be
useful. For example, one can never combine two non-
collinear configurations which are not degenerate. Each
configuration contributes a field in the direction of its
component of the moment, and because the molecular
field constants are different the sum of the local fields
cannot have the direction of the resultant moment. For
the same reason three configurations cannot be com-
bined unless they are coplanar. Moreover, it is fairly
obvious that the ) 's for the different directions in space
have to be distributed around the same value so as to
give the same average in all directions. Since no reason-
@,ble structures can be formed by combinations of struc-

Now when

and when

=0
7

2k= K,

(34a)

(34b)

(T"(k))'+(T"(—k))'= o (36)

which can only be obeyed if T"(k)' is zero or pure
imaginary.

Finally for all other values of k

T(3k) =0,

so that Eq. (32) becomes

(T"(k))'=0.

(37)

(38)

Thus there are four types of structures. T(0) describes
a structure in which all moments (S;") which occupy
sites with the same v are parallel. When there is only one
moment per unit cell this is clearly a ferromagnetic
structure. When k=-,'K,

(39)

for lattice translations in the plane perpendicular to K,
so that all moments at equivalent sites in such a plane
point in the same direction. In the direction of K,

(40)

for odd translations, and successive planes have opposite
directions of magnetization, Thus the moments at

where K is a reciprocal lattice vector, the homogeneous
Eqs. (32) do not appear (because K= 2k is a reciprocal
lattice vector), so that only the strong spherical model
(SSM) [Eq. (31)]has to be obeyed.

Further, when

(35)
Eq. (32) becomes
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[o."(k))s cos2q "(k)=0,

and the only solutions for a nonvanishing o."(k) are

q "(k)= (ea-,')s,

(42)

(43)

with e an integer. When there is only one moment per
unit cell the phase can obviously be chosen so as to
satisfy (43). Otherwise (43) requires a relation between
the phases at diferent sites in the unit cell which may
or may not be consistent with the structure of the basis
vectors.

The collinear structures for k=rsK are somewhat
similar to those for rsK. There are planes of parallel
moments perpendicular to K. In the direction of K one
has successively two planes with moments parallel to
each other and then two planes pointing in the opposite
direction. The choice of phases [Eq. (43)) ensures that
the plane wave T"(k) has equal amplitudes at four
successive lattice points. "

We now come to the solutions of Eq. (38). These
describe spirals. One can always write

T"(k) =a"(k) exp[ip" (k))
&&(u "(k)+p"(k) exp[tV "(k))»"(k)), (44)

where ui"(k) and us"(k) are unit vectors in two orthogo-
nal directions in space, and rr"(k), p"(k), p"(k), and p"(k)
are real numbers. To solve Eq. (35) the square of the
quantity in brackets has to vanish, i.e.,

1+[P"(k))'exp[2'"(k))=0, (45)
so that

and therefore
p"(k) exp[i&"(k))= +i, (46)

T"(k)=n"(k) exp[imp"(k))[u "(k)prius"(k)), (47)

"For scalar interactions with nearest and nn neighbor inter-
action only, the energy of such structures is the same as that of
spiral structures of the same wave vector. Their energy is lower
than that of the corresponding k= 0 and k= K/2 structures in the
same direction, if the next-nearest-neighbor interaction is anti-
ferromagnetic and larger than half the nearest-neighbor inter-
action. When there is a single direction of strong anisotropy they
might be favored over all spirals.

translationally equivalent sites (v) constitute a simple
antiferromagnetic lattice. For these structures the unit
ceil is doubled in one or more directions (depending
on K).

The general solution of Eq. (36) describes structures
which are combinations of a collinear component in one
direction with a spiral of pitch —,K in the plane perpen-
dicular to it. The interesting point is that collinear
structures are possible. This may lead to structures
when the the symmetry is not high enough to allow the
formation of spirals. In the coHinear case one can write

T"(k) =rr" (k)e'&" &~&u"(k) (41)

where n"(k) and q„(k)are real numbers and u"(k) is a
real unit vector. Equation (36) then becomes

which describes spirals of the type discussed in Eqs. (27)
and (28). These are all the structures with a single k.

It is of some interest to discuss the possibilities of
combining configurations belonging to the different k's
in a star (which therefore have the same X) when a single
k does not allow structures. Instead of (38) one then has

(T"(k))'+ Q T"(k') T"(2k—k') =0, (49)

where n is a point operation belonging to the point group
of the crystal G. We are looking for solutions for which
(38) does not hold (i.e. , (T"(k))s/0}. It is then neces-
sary that there be a nonvanishing term in the summa-
tion, i.e.

2k —k'= k"+K, (50)

5. IRREDUCIBLE CONFIGURATIONS WITH
ONE MOMENT PER UNIT CELL

When there is a single magnetic moment per unit cell,
the space group is symmorphic and the configurations
are given immediately by the axial vector representa-
tions of the point group of k.

'6 On the boundary the same argument holds for the component
of k which are not half a reciprocal lattice vector. When 2k&K
there are always such components."T.A. Kaplan, Phys. Rev. 124, 329 (1961l.

at least for one k' of the star with k" a vector of the
star and K a reciprocal lattice vector. As k, k', and k"
all have the same magnitude and k and k' are different

by assumption, K cannot vanish. For points in the
interior of the zone it is moreover true that K cannot
have components larger than an elementary reciprocal
lattice vector, so that there are very few K's available. "
It seems therefore that solutions of Eq. (50) are rather
unusual except for the trivial cases 2k= K and 4k= K.
Moreover, Eq. (50) is only a necessary, and by no means
sufhcient, condition for the existence of structures. In
particular, there are always the additional equations
with T(k)T(k') which may not be consistent with
Eq. (49).

Structures with the same X's (and only such struc-
tures) can be combined if the moments are orthogonal
to each other at each lattice point. Thus one can always
combine a collinear structure with another such struc-
ture with orthogonal directions for the T"(k) even when
the k's are different. The resulting structure is not
necessarily collinear. Similarily, a collinear structure
can be combined with a spriral in the perpendicular
plane to obtain a ferromagnetic spiral with moments
lying on a cone. It is however necessary that the two
structures have the same Vs (i.e., the same energy)
initially, so that for bilinear interactoins nothing can
be gained by such combinations. "

We will see later that mixed collinear structure with
parallel k's are possible for certain point groups G(k).
Structures with two k's are discussed in Appendix B.
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Of the 32 point groups, ' 22 can appear only for points
on the zone boundary and for k=0. All point groups
are possible for k=O. On the boundary the five cubic
groups can appear only in the L111]direction, and the
other 17 groups which transform k into —k are re-
stricted to points for which 2k= K. At all other points
only ten point groups are possible. These are the point
groups Cg, C„.C2,. Cg„C3, C3„,. C4, C4„C6, C6,.

Ci

For directions with no symmetry $G(k)=C&j the
magnetic configurations ~&(k) are determined by the
interactions. In general, only the collinear structures
(k=0, K/2, K/4) are possible (when they occur in
these directions).

C„C2
When the point group is C„klies in the reflection

plane. The component of T(k) perpendicular to the
plane belongs to the identity representation, and the
two components in the plane belong to the second
representation of the group. The configurations in the
plane are therefore not determined by symmetry. The
situation is similar for C2. The wave vector k is in the
direction of the axis, and the longitudinal component
belongs to the identity representation. The other two
components both belong to the same representation and
are therefore not determined.

In both cases only collinear structures can follow
from the symmetry. However, the point group is the
same for all k's in a given direction. For C, one can
therefore form mixed collinear structures in the direction
perpendicular to the plane, and for C2 in the direction
of the axis. The other basis vectors can have different
directions for different k's so that such mixtures may
not be possible.

Cg,

For C2, one has three distinct basis vectors belonging
to different 1-dimensional representations. The three
~'(k) are the longitudinal ~ in the direction of the axis
and the two transverse components along the reAection
planes. These directions are the same for all k along the
axis, so that mixed collinear structures can be formed
for each component.

All the point groups we have considered so far have
only 1-dimensional representations with real characters.

C3, C4) C6

For all three groups, k points in the direction of the
axis. The longitudinal component of T(k) belongs to the
identity representation. For this direction, both single
k and mixed collinear structures are possible. In the
transverse plane there are two 1-dimensional vector
representations with complex characters. The eigen-
vectors are also complex and have the form u~&iu2,

where u~ and u2 are orthogonal unit vectors in the
transverse plane. The two vectors describe right- and
left-handed spiral structures. %hen the point group of
the crystal has an inversion center or a reQection plane
perpendicular to k, the two spirals have the same energy
because of the inversion. In most cases these two repre-
sentations can therefore be regarded as a 2-dimensional
representation.

C3, C4, C6.

The structures allowed by these groups are the same
as those found when only the rotation axis were present.
The only difference is that a 2-dimensional representa-
tion replaces the two 1-dimensional representations in
the transverse plane.

As pointed out previously, the other point groups can
appear only when k= 0 or 2k= K. We have shown in sec-
tion 4 that any basis vector for these values of k auto-
matically describes a magnetic structure. The point
group can help in finding the directions of these struc-
tures but otherwise yields no new information.

All k's in a star have isomorphic point groups and
therefore similar structures. As a rule, there will there-
fore be several structures with the same energy which
are transformed into each other by the symmetry opera-
tions which carry the k's into each other. These are,
however, different structures, and linear combinations
will obey the nonlinear subsidiary conditions only in
special cases.

6. MAGNETIC STRUCTURES IN A
SIMPLE CUBIC LATTICE

As an example we will apply our results to a simple
cubic lattice of magnetic ions.

(a) k=O and k= (-'„-,', -,')
In both cases H(k) is the whole space group with the

point group Oq. The three components of T(k) form the
basis of a representation derived from the 3-dimensional
irreducible representation I'is' of Oq. is For k=0 there
are no phase factors, so that this is immediately the
representation of the space group. This is clearly a ferro-
magnetic structure. The fact that the representation is
3-dimensional is to be interpreted as a complete spatial
isotropy of the direction of magnetization. This isotropy
cannot be removed by bilinear terms in the energy.

For k=(i2, i~, i2) the phase factor is e'~'"=&1. The
minus sign appears whenever R is an odd lattice transla-
tion. The structure has planes of parallel spins, perpen-
dicular to the L111] direction, which alternate in the
direction of magnetization. This is the simple antiferro-
magnetic structure where all nearest neighbors are
antiparallel. Again there is complete isotropy of the
directions of magnetization.

' For notation and character tables of the point groups see
reference 10.
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This breaks up into the 1-dimensional representation
hi' and the 2-dimensional representation 65, which de-
scribe the longitudinal and the two transverse com-
ponents of T(k), respectively.

Because of the sibsidiary conditions, there is only one
purely longitudinal structure, namely that for a=~~.
The 2-dimensional representation 65 allows us to form
transverse spiral structures for all values of a. For
k= (a,0,0) all moments in a ys plane are parallel, and
for k= (a, ', P) nearest neighbors in these planes will be
antiparallel. Otherwise, we have essentially 1-dimen-
sional spirals with a pitch a in the x direction.

The other members of the stars for (a,0,0) and (a,-'„—',)
are (O,a,0), (0,0,a), and. (x2,a, ~~), (~~, ~~,a), respectively.
There are corresponding structures for these k's which
have the same energies. It is interesting to point out
that the conditions (50) for mixing the different k's are
obeyed for the 6rst time on the zone boundary (a=x~)
and therefore give no new structures.

The case of k=(x2P~~, x2) has already been considered.
For k=(~,0,0) the point group is D4q, and we have
the representation M2 for the longitudinal and the
2-dimensional representation Ms for the transverse
components. The star contains three vectors, and com-
binations are possible for different k when the directions
of polarization are perpendicular.

(c) k=(o,a,O) amd k=(a, a, -', )

For a/2 the point group is C2„which has only
1-dimensional representations. The corresponding con-
figurations are the longitudinal component Tll which
transforms like d2, the transverse component in the
direction of a major crystalline axis (63) and the trans-
verse component in the xy plane (d,4). As the representa-
tions are 1-dimensional, only structures for a=4 and
mixed collinear structures are possible. Mixing of differ-
ent k's is possible only for a=4' which gives no new
structures.

When k= (&~, 2,0) the point group is D4q and we have
a 1-dimensional representation for T, and a 2-dimen-
sional representation (M&) for the components in the xy
plane. Because of the special value of k each component
is automatically a structure. These structures can best be
visualized as ferromagnetic lines in the s direction with
nearest neighbors in the xy plane antiparallel. It is then
clear that directions in the plane perpendicular to the
s direction should be equivalent.

There are similar structures for the two other vectors
of the star, and certain combinations are possible.

(b) k=(a,0,0) and k=(a,—,—)

We will first discuss the case a/~. The point group
of k is then C4.. From the operation of the point group
elements on T(k) one obtains the following character
table:

(d) k= (a,o,a) for aN~

The point group is C3,. The longitudinal component
(in the $111j direction) transforms with the 1-dimen-
sional representation A2. The two transverse components
transform with the 2-dimensional representation A3 so
that transverse spiral structures are possible.

(e) general k

All other directions in the crystal have point groups
of lower symmetry which have only 1-dimensional
representations. The only additional pure structures
one gets are of the type k= (-,',—',,0), for which T,(k),
2'„(k)and T,(k) belong to different representations.

O'. STRUCTURES WITH SEVERAL MOMENTS
PER UNIT CELL

In Eq. (21) we are essentially looking for minima of
the energy with the single explicit restriction of the
weak spherical model LEq. (16a)j." When the sym-
metry of H(k) is sufhcient, the SSM )Eq. (15)$ may
follow automatically, and one can then proceed to check
the possibility of forming structures. When this is not
the case the ratio of the amplitudes of the ~&(k) at
different sites will depend on the interaction parameters
and in general will not be consistent with the SSM. It
may then be useful to allow some additional freedom in
the choice of the ) 's and introduce the SSM explicitly
into the equations of motion. " In particular, this may
be useful when there are different types of sites in the
unit cell which are not transformed into each other by
the operations of the NMSG. We can then find con-
6gurations which belong to a definite irreducible repre-
sentation of the NMSG and obey the SSM but are not
solutions of Eq. (21),"because there are different Ys
for different sites. In the notation of Eq. (12), we require

where we are still assuming that X;"=X"is the same in
all unit cellsi, and )"is the same for all sites v for which
the magnitude is equal because of H(k). Instead of
Eq. (21) one can now write the set of equations

where ~,&'(k) is a basis vector for the irreducible repre-
sentation p of the NMSG in the space defined by the
T"(k) of the set of equivalent sites 0., X (k) is the X of
the set, and I' ~(k) is the interaction matrix between the
sets a and P. ~,& (k) can interact only with ~,»(k)
which transform with the same irreducible representa-
tion of H(k). The solutions of Eq. (52) are the extrema

' And therefore with the single Lagrange multiplier ) ~(k).
'0 The solutions of (21) constitute a complete set so that any

structure can be described by them. The structures we are going
to consider can be described as combinations of e,&(k) belonging
to similar (repeated) irreducible representations. Thus it is really
a matter of convenience whether one works with the c,&(k) or
the solutions of the modified equations,
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of the energy in the presence of the subsidiary conditions,
ponents T"(k).

Q(S,")'=zz 1V, (53)

where n is the number of diferent sites in the set o.. If
the simultaneous solutions of (52) and (53) with mini-
mum energy are sturctures, they will be the ground
state structures. It should, however, be noted that the
nonlinear conditions (53) are no longer trivial normali-
zation conditions, so that one has to use a procedure
of the type suggested in Appendix A to obtain the
solutions.

Even for equivalent sites it is probably simplest to
investigate the possibilities in each actual case sepa-
rately. Nevertheless, it seems interesting to see how
much can be said about the structure of the basis vectors
in general, assuming only the equivalence of the mo-
ments under H(k).

The effect of a general operation of the NMSG operat-
ing on a vector T"(k) is described by Eq. (17). It is a
product of a point operation, a translational phase
factor, and a permutation of sites. It can be seen from
Eq. (17) that the operation of such a general element
of the NMSG on the whole vector T(k) can be described
as the product of a spatial part common to all com-
ponents and a permutation P(rr), i.e.,

(n~ v)T(k) =E(a)e"'U(n) T(k), (54)

"See e g., B.L.Van der Waerden, ÃoderNA/gebra 099 (F.Ungar
Publishing Company, New York, 1949), p. 150.

where U(&x) operates separately on each of the com-
ponents T"(k).

Distinct elements of the space group with the same
e can differ only by lattice translations which can cause
no permutations of sites in the unit cell. The permuta-
tions E(n) are thus determined by the point opera-
tion n and obey the algebra of the point group. The
point group of the crystal G is either isomorphic to the
group of the permutations P(n) or homomorphic on it.
In the latter case the identity of the permutation
group is associated with all the elements in an invariant
subgroup of the point group, and the permutation group
is isomorphic to the factor group of G and the invariant
subgroup.

The sites v in a set a are equivalent only if the permu-
tation group is transitive in the sites. The transitive
permutation groups which are consistent with a given
point group can be found by well-known procedures. "
They are isomorphic to the permutations of the cosets
found when the group is expanded in cosets of a sub-

group. The physical interpretation of such an expansion
is that the subgroup contains all operations which leave
one site invariant. All the operations in a coset carry
that site into one definite other site. A certain care is
however required in applying these results, because
some of the permutation groups obtained cannot be

interpreted as permutations of points in space. For non-
symmorphic groups, for example, the identity permuta-
tion group cannot appear. Similarly, for cubic point
groups the permutation groups of three objects cannot
be interpreted as permutations of sites."

When there is only one site per unit cell we have seen
that only the axial vector representations of the point
group appear. This no longer applies in the general case.
All representations can appear, and there are always
repeated representations.

Consider first 1-dimensional representations of H(k)
for sites equivalent under H(k). Then, by Eq. (18),

(n
~
v) ~p(k) =e'"' x&( r)r~&(k);

and applying (17) and using the notation of Eq. (19),
we obtain

x~(n)q»(k) ~»(k) =7~"(k) U(n) ~r"(k); (56)

follows immediately. When the representations at k=0
and k=K/2 are 1-dimensional, this is sufhcient to
ensure the existence of structures. The argument can
clearly be extended to cases where multidimensional
representations of H(k) can be derived from 1-dimen-
sional representations of a subgroup which permutes all
sites. For example, this is always possible for the permu-
tations of e sites with point groups C„,.

When the group does not have such a subgroup, the
SSM cannot in general be satisfied within one irreducible
representation, even when one uses the implicit freedom
in choosing the basis vectors for such representations.
This may mean that symmetric structures with a single
X are not possible even for k=0 and 2k= K. It should,
however, be remembered that the reality of the inter-
action (i.e. , time reversal) may cause additional de-
generacies which may allow the formation of structures.
This can happen when k and —k belong to the same
star, but

pr p (58)

does not belong to the same irreducible representation
as ~,&(k).

As an example we will discuss the basis vectors of the
irreducible representations of the point group Cs„in a
symmorphic space group with three and six distinct
sites in Appendix C.

"These are the permutations of the three crystal axes. Permu-
tations of three objects can only be 6tted into a cubic point group
if the objects are all invariant under the operations of a subgroup
which contains D2. The subgroup leaves at most one point in the
unit cell invariant.

where y&(rr) has magnitude unity, and ~»(k) and
U(n)~&" (k) are unit vectors, so that the SSM require-
ment,

(57)
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8. CONCLUSIONS

Ke have found five types of structures:

(a) Structures without increase in the unit cell (k=0).
(b) Structures where the magnetic unit translation is

twice the crystalline translation in one or several
directions (k= K/2).

(c) Structures with k= K/4.
(d) Spiral structures for special symmetry directions

in the crystal.
(e) Collinear mixed structures for directions with cer-

tain symmetries.

For magnetic lattices with one magnetic ion per unit
cell we have shown in detail how these structures can
be found and that they are indeed time independent.
The extension to the general case is complicated and
may not always be possible. In any case it follows from
the arguments of Secs. 4 and 7 that no new types of
structures appear.

An interesting feature of our analysis is that it applies
to quite general bilinear interactions, so that it can be
applied to cases where tensorial (dipolar) interactions
are important. In particular, it should enable one to
find stable structures of a dipolar lattice.

Finally, we would like to stress the limitations of the
group-theoretical procedure and the initial assumptions.

The number of structures found is fairly small, and
there may exist many other time-independent structures
which have no simple relationship to the symmetry of
the lattice. At best, one can hope that these mixed
solutions are rare.

The assumption of bilinear interactions is probably
good in many cases, but there are important exceptions.
Sometimes it is possible to regard higher order terms as
a perturbation which removes the degeneracy of other-
wise degenerate structures or forces special directions
on structures which are otherwise isotropic. This
happens, for example, for fourth-order anisotropies in
cubic ferromagnets. In other cases this is not possible.

Finally, we have assumed a constant magnitude for
the moments. This is essentially a zero-temperature
approximation. %hen the magnetic structure of lowest
energy is an isolated solution (such as those for k=0 and
k= K/2), it will usually be realistic at all temperatures
below the magnetic transition temperature. %hen there
is a practical continuum of structures, as for spirals, the
situation becomes much more complicated and the
temperature dependence of the average magnitude of
the local magnetization may have to be taken into
account. Such eRects are definitely outside the scope
of this work.
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APPENDIX A

Time-Independent Structures in General

The solutions of the stability Eq. (11) do not neces-
sarily have a constant 'A. Formally, one can eliminate
the S;" from the stability equation and then determine
the X; from the conditions on the magnitude of the
moments LEq. (2)]. One can rewrite Eq. (11) as

D. .o. S. (), . D..o).S (A1)

where the indices i and j designate all magnetic sites
on the lattice according to some counting scheme, and
thus replace the indices i and v we used in the text.
D@ is the interaction tensor between sites i and j.
One can now eliminate the moment at site 1 (i.e., S~)
from its equation,

Sg——Q(&g —Dgg') 'DgP S, (A2)

and substitute in the equations with i& 1:

D,,& S,=(x,—D;p) S,,
jwi; i,j)1

(A3)

where we have defined

D '=$D +D,P(kg —Dgg') —'Dg']= D '(xg). (A4)

Similarily, after e successive substitutions one obtains

2'Qi, i, j&n
D, " S =(x;—D,,-) S; (A5)

.2 (AS)

with the general definition:

D;,-= D;,-(z„.,z„)
D. ,n—1+D. n—1(y D n—1)—1D .m—1 (A6)

Finally, one obtains for the last moment S~

(DAN —XK) ' SR=0, (A7)

where D~~~ ' is a well-defined matrix for any choice
of ) ~, , ) ~ ~ which does not cause singularities in any
() —D „"') '. Equation (A7) is an eigenvalue equa-
tion and determines XN and S~ in terms of the param-
eters 'A~, ~, )~ i which are free so far. One can now
proceed backwards to determine the ); so as to satisfy
the conditions on the magnitude



S. ALEXAN DER

' SN can clearly be chosen so as to satisfy this. For
SN 1 one then has

SN—1= (l1N—1 DN —1 N—1 ) ' DN 1N — ' SN (A9)

known tensor D (e.g. , by expanding Sl in terms of the
eigenvectors of D). One can now proceed to determine
S, and X2' from the stability equation for S2 and the
magnitude of S3, i.e.,

which depends on Xz & both explicitly and through the
dependence of SN on l1N 1. Now

and therefore

D.S,+ D S3——l12Sl,. (A17)

D,,ohio,

D;;O=o,

(A11)

(A12)

Clearly, a moment can only point in the direction of the
principal axes of the tensor D; and therefore has alto-
gether six possible states. The total number of structures
for E moments is therfore 6~.

These are all different structures, and linear combina-
tions of structures are, as a rule, not structures. This is
true in spite of the fact that there are obviously only
3S linearly independent vectors and the degeneracy in
energy is enormous.

A second less trivial case is that of a semi-infinite
linear chain with symmetric nearest-neighbor interac-
tions. One has

and
DSl ——XlS1 (A13)

SN—1 = SN' DN N 1—(llN —1 DN —1 N 1 —)
XDN lN -'SN=1, (A»)

where we have used the fact that D;;" is always the
transposed tensor of D;;" and the quantity in brackets
is therefore a symmetric matrix. Equation (A10) can
be solved for XN 1 (with Xl, ., XN 2 as parameters). It
is, however, a very unpleasant equation, mainly because
of the complicated dependence of the components of the
normalized vector SN on l1N 1. It can be expected to
have a fairly large number of solutions in terms of the

, XN l for each choice of the solution of Eq. (A7).
In principle one can proceed in this way to find all the
possible choices of P; and the corresponding structures.
There seems to exist a tremendous number of structures.
Many of the solutions probably involve complex X's and
are therefore physically meaningless. The number of
real solutions depends on the actual physical situation.
To demonstrate that the number of structures can in-
deed vary, it is illuminating to discuss some simple
examples.

The simplest case is that of noninteracting moments,
i.e.)

S3 l12D
—' S,—S,= [l1,lb 2D '—1j Slp (A1g)

which is linear in P2. In general

S,=); 1D 'S;,—S;,,
and therefore

(A19)

S;2D—'S;,
X; g=2

S; 1 D-'S;, (A22b)

Thus there are altogether 2N structures for each
choice of Sl, if one cuts the chain after X moments and
assumes boundary conditions which ensure the time
independence of the last moment. Altogether there is
of course an infinite number of structures because of
the freedom in choosing Sl.

An interesting feature of the solutions is that there
is really only one structure in which the moments are
all pointing in the direction of the field and which there-
fore can be considered stable. The denominator in
(A22b) is obviously positive definite. Substituting from
(A19) in the numerator:

S; l D 'S;,=X;,S; 2. D 'S;,
—S, , D-l. S, „(A23)

so that
S, 2 D 'S; 1=S, 3 D 'S, 2) (A24)

when one assumes X; &NO and uses Eq. (A21). The
first expression of this kind is obviously

SP=l1; 1'S~l D-'S; 1

—2X; 1S, 2 D 'S, 1+S, 2' ——1)i (A20)

where S; 1 and S 2 have already been determined
previously. Because S; 22=1, Eq. (A20) becomes

hali —1 Si—1' D ' Si—1 2l1i—1Si—2' D Si 10—1 (A21)

with the two solutions

x; g
——o

and

DS;,+ DS;+,=),,S;, iW1, (A14) S, D 'Sl ——4S1 D 'Sl,
where D is a symmetric tensor and Sl is the first moment
on the chain. Now assume an arbitrary direction for Sl.
Equation (A13) then determines S2

S~=)1D 'Si)
and X~ is determined, except for sign, by

(A15)

S2l=llllS, . D—'Sl ——1, (A16)

where Sl. D 'Sl is clearly a positive number which
can be calculated from the assumed value of Sl and the

so that the sign of all X; is that chosen for P ~. As one can
obviously gain energy at each stage by choosing a nega-
tive X, the lowest energy state for a given Sl is obtained
when one chooses X& negative and all subsequent X

di6erent from zero.
It does not seem feasible to extend these arguments

to 3-dimensional lattices or to more than nearest-
neighbor interactions. We have demonstrated, however,
that the number of solutions is not determined by the
general nature of the problem.
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APPENDIX B

Collinear Structures with Two
Different Wave Vectors

It was pointed out in Sec. 3 that for parallel collinear
structures the stability conditions are trivial even for
mixtures of nondegenerate configurations. As an ex-
ample we will discuss structures with two different wave
vectors k and k'. Equation (14) reduces to

2I T(k) I'+2I T(k') I'=1

T(k)2+ T(—k) T(3k)+ T(k') T(2k—k')

+T(—k') T(2k+k') =0, (82a)

'f (k') '+ 'f (—k') 'f (3k')+ T(k) T(2k' —k)
+T(—k) T(2k'+k) =0, (82b)

2T(k) T(k')+ T(—k) T(2k+k')
+T(—k') T(2k'+k) =0, (32c)

2T(k) T(—k')+ T(—k) T(2k —k')

+T(k')T( —2k'+k) =0, (32d)

(81)

with their complex conjugate equations. Because of the
collinearity the T(k) can be regarded as numbers. We
require solutions for which

krak',

T(k) Wo, T(1 ') Wo,

T(k")=0 for k"Wk, k'.

(83a)

(83b)

(83c)

2k= K,

2k= K,

2k= K,

4k= K,

2k'= K',

4k'= K',

6k'= K+2K',

4k'= K+2K',

(84b)

(84c)

(84d)

8k= 2K+ K', 8k'= 2K+3K',

10k=3K+K', 10k'= K—3K',

(84e)

where K and K' are any two reciprocal lattice vectors.
In (84a), (34b), and (34d) both k and k' allow struc-
tures so that nothing is gained by the mixture. For (84f)
the Eqs. (82) are not consistent. The other two solutions

give new structures. One could even construct a model

in which these would be the structures of lowest energy.
However, these are collinear structures with relatively
large periods and could be meaningful only when long-

range interactions are very important.

In each of the Eqs. (82) the first term is, by assump-

tion, nonvanishing. A necessary condition for the exist-
ence of a solution is that there should be at least one
other nonvanishing term in each equation I

consistent
with (83)j.This gives a number of alternative solutions
for k and k', namely:

APPENDIX C

Representations of C3, in Symmorphic
Space Groups

The group has the character table"

8 2Cg 30.
„

1 1
1 1
2 —1

1
10
0

so that A~ appears once, A~ twice, and A3 three times.
For six sites we have the regular representaton of the

group. The character of E is 18, and all other elements
have vanishing characters (because of the permuta-
tions). The sites are those obtained from a general point,
which is not on the axis or in a reRection plane, by the
operations of the group. They divide into two sets of
three, each of which is permuted cyclically by C3. The
two sets are permuted into each other by the reflection
planes. The two 1-dimensional representations (Ai and
A2) each appear three times and the 2-dimensional
representation C3 appears six times.

It is convenient to choose the basis vectors so that
they diagonalize the elements of the invariant subgroup
C3. For a single moment there are three such vectors,
namely: (a) The component along the axis ~, which
transforms with the identity representation, (b) ~,+i~„
which is multiplied by o&= e'"'" by Cs, and (c) (~, i~„)—
which is multiplied by co' by the same operation, where

~„~„,and ~, are unit vectors in the corresponding
directions.

In the larger group C3„~,transforms with the
1-dimensional representation A2, and the two other
vectors transform with the 2-dimensional representation
A3. With three sites one has for the identity representa-

~ This follows from the geometric realization and not from the
properties of the group. The isomorphic group D3 can have two
sites.

~ The geometric interpretation is clearly three sites in a plane
perpendicular to the axis and lying in the reflection planes.

The representations for a single axial vector are Ag

for the component along the axis and A3 for the two
other components. Transitive permutation groups of
two, three, and six objects are possible. The permuta-
tions of two cannot be interpreted as permutatons of
sites." For three sites the permutation group is the
complete permutation group of three objects. The in-
variant subgroup C3 is associated with the cyclic permu-
tations, and the reQection planes each permute two
sites and leave the third one invariant. '4 The character
table of the representa, tion in terms of the T"(k) is
therefore

E 2C3 3a

9 0
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and
&zj &zj &z (C2a)

Im(te(~, +t',~„);ebs(~, +i~„);(~,+i~„)); (C2b)

for k=0 one of them describes a ferromagnetic structure
and the second a Yafet-Kittel25 radial structure. The
proper choice which diagonalizes the energy is obviously
some mixture of these two conhgurations. All these
mixtures obey the SSM because the representation is
T-dimensional. As the two vectors are real, the absolute
phase can be chosen so that Eq. (36) is satisfied at
all sites for k=-', K.

For A3 there are three pairs of solutions, e.g. ,

&zj +&zj &z ) (C3a)

((~.+i~„);(~,+i~„);(~,+i~„)), (C3b)

(ei(~.—i~„);ai'(~.—i~„);(~. s~„))—, (C3c)

"Y.Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).

tion AI the single vector

Re(ei(~.+i~„);ei'(~,+i ~„);(~,+i~„)), (C1)

where the vectors at the three sites are written succes-
sively. This vector is determined uniquely. Equation
(C1) describes a 1-dimensional configuration with three
real vectors ~l'" for the directions at the different sites.
Structures are therefore possible only for k=o, k= K/2
and k = K/4. The SSM is obeyed automatically because
the representation is 1-dimensional and the conditions
for the solutions at K/4 are obeyed.

For A2 the basis vectors can, e.g. , be chosen as

for the first vector and, correspondingly,

&zj + &zj &z (C4a)

(~, i—~» ~, t—',~„;~ i—~„), (C4b)

(a&'(~,+i~„;ei(~.+i~„);~,+i~„), (C4c)

for the second vectors. We have chosen the vectors so
as to diagonalize the rotations. The three vectors (C3)
and (C4) transform under Cs like ~,+i~„and ~, i~„,—
respectively. In general the configurations belonging to
an irreducible representation will be combinations of
these vectors and the right combinations depends on
the interactions. The two vectors can, however, always
be chosen so as to diagonalize C3 and in this form they
obey the SSM. On the other hand, Eqs. (36) and (38)
will only be consistent with this choice in special 'cases.

In general there are, therefore, no structures in the
interior of the zone. When there are additional sym-

metry elements in the NMSG which do not add new

sites, time inversion may cause two of the three repeated
representations A.3 to be degenerate, and this gives

enough freedom to allow one to construct spirals for
arbitrary magnitudes of k.

We will not write down the vectors for six sites. The
sites break up into two sets of three, each of which is

permuted cyclically by the subgroup C3. For the
1-dimensional representations the SSM obviously holds.
For A3 one can again choose to diagonalize C3, and the
vectors will then have the form of the ~' of Eq. (C4)
for each set separately, with different coeflicients and

magnitudes in each set. In general it is not possible to
combine the two vectors belonging to one representation
so as to satisfy the SSM at all sites.
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Phonon-Magnon Interaction in Magnetic Crystals*
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A microscopic theory of phonon-magnon interaction in magnetic crystals is developed from erst principles.
The crystal 6eld oscillations are treated as perturbations which superpose some excited orbital states on the
ground orbital state of the magnetic ions. When use is made of these perturbed states as the starting one-
electron functions in the second quantization representation, the formulation of the Heisenberg-type ex-
change interaction furnishes the relevant phonon-magnon interaction terms. Following the above inter-
actions, the phonon-magnon relaxation times are calculated for the processes involving one-phonon direct
and two-phonon Raman processes. Estimates made for iron, where the excited orbitals are taken to be the
4p and the ground 3' orbitals, yield values for the relaxation time for the one-phonon processes (T p 10
sec at 10'K) in agreement with the suggested results. Two-phonon Raman processes do not seem to be
important at low temperatures.

INTRODUCTION

'HE interaction between spin waves' and lattice
vibrations is known to play an important role in

the relaxation processes occurring in magnetic crystals,
* Communication No. 491 from the National Chemical Labor-

atory, Poona-8, India.
~ F. Bloch, Z. Physik 74, 295 (1932).

particularly at low temperatures. ' The erst theoretical
study was made by Akhiezer' from a microscopic point
of view by expanding the exchange and dipolar terms
in power series with normal coordinates of the lattice

J.Van Kranendonk and J. H. Van Vleck, Revs. Modern Phys.
50, 1 (1958).' A. Akhiezer, J. Phys. (U.S.S.R, ) 10, 217 (1946).


