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Chamber’s Solution of the Boltzmann Equation*
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It is shown that Chamber’s kinetic integral is an exact solution of the Boltzmann equation in the relaxation

time approximation.

TARTING from a kinetic argument, Chambers! has
suggested that the following is a solution of the
time-independent Boltzmann equation:
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is the energy gain of an electron between time ¢’ and ¢
in the absence of collisions, 7 is the relaxation time,
and fo=exp(—E/kT) is the equilibrium distribution.
Expanding the integrand to first order in E and inte-
grating by parts gives

f= fo—% —;F-V(t’) exp(— /;T(j;))dt'. ©

Equation (2) has been derived from the linearized
Boltzmann equation by Suzuki,> while Heine? has
argued that this is a valid solution to all orders in
applied fields.

It will be shown that (1) is an exact solution of the
Boltzmann equation and that (2) solves only the
linearized equation.*

Let us consider the simple case of a spherical band,
r=7(p) and a constant force field F=FL.. In this case:

V@) =[p+F{ —25)]/m. 3)
Integrating (1) by parts, using (3) and setting ¢/ —t=1,
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4In disagreement with Heine.

The Boltzmann equation in the relaxation time
approximation is simply

F-Vof=—(—fo)/r. ®)
Putting (4) into (5) and noticing that
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we have
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}dy=o. (6)

Integrating the last term of (6) by parts, one finds
an exact cancellation of all terms; thus, (1) is an exact
solution of (5).

We can do a similar thing with (2). In this case, one
finds in place of (6) ‘
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Integrating the last term by parts, one finds that all
terms cancel except

v ds \F-(p—Fy)
exp(—/ﬂ -r(p——Fs)/ mkT @

which is at least a second-order term.
The author wishes to express his sincere thanks to
Professor P. Aigrain for his helpful discussions.
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