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The symmetry properties of wave functions in magnetic crystals are discussed in terms of the irreducible
representations of magnetic space groups. The specific effects of the magnetic ordering on the crystal eigen-
states are found to be of three types: (1) There is a lifting of some eigenfunction degeneracies because the
crystal symmetry is reduced in the magnetic state. (2) New Brillouin zone surfaces are introduced if there
is a reduction in translational symmetry. (3) The symmetry of the energy band in E space may be reduced.
The rutile structure is considered as a specific example, and the space groups of MnF2 and Mn02 in their
magnetic and nonmagnetic states are obtained. A magnetic structure of MnO2 where the Mn'+ spins point
toward the nearest-neighbor oxygens is assumed. The space groups considered are P4&/mam (D4&'4), Pnsm
(D2a"), 142d (D~z"), F42/mam 1', P42'/ranra', and I,42d The theor.y is applied to spin-wave states, and it
is found that the structure of the spin-wave energy bands throughout the Brillouin zone may be obtained.

I. INTRODUCTION generacies of the wave functions of these crystals in
their magnetic state. It is also of interest to determine
specifically what role the magnetic ordering has in the
selection of these symmetries. The eigenstates of the
magnetic lattice are determined partly by the symmetry
of the nonmagnetic lattice, that is by the space group
of the crystal above T„, and partly by magnetic order-
ing which occurs when the crystal temperature is
lowered through T„. It is convenient to think of the
magnetic ordering as producing a perturbation on the
eigenstates of the paramagnetic lattice, even though
this perturbation may not be small. The group theo-
retical results, of course, do not depend on its magni-
tude. Above T„ the crystal is invariant under a group
H of unitary spatial operators, which is what one con-
siders as the space group of the crystal. In the para-
magnetic state the crystal potential is also invariant
under the time-reversal operator 8, and products of 6
with the numbers of B, since we assume that in this
state the crystal possesses a vanishing time-averaged—
magnetic-moment density. The full space group of the
paramagnetic crystal is then G, where G=H+H. 0.
Below T the crystal will no longer be invariant under
all the operations of G. The reduction in symmetry
comes about through the magnetic ordering of the
lattice (introduction of a nonvanishing time-averaged—
magnetic-moment density) and possible magneto-
striction. For example, 8 does not leave the magnetic
crystal unchanged. It, however, will now be invariant
under a group K of unitary operators which turn not
only the lattice but also the magnetic moment density
into itself. In addition, if there exists some spatial opera-
tor vo which takes the crystal into itself but reverses
the sign of the magnetic moment density, then the
magnetic crystal will be invariant under the operation
80= vo 6. Thus its full magnetic space group will be
/=%+K as.' Since the time reversal operator 0 is

' 'HE problem of determining the eigenstates of a
crystal is greatly simplified by the classification

of these states according to the irreducible representa-
tions of the crystal space group. Such a classification
results not only in the selection of the possible state
function symmetries and degeneracies but also in the
determination of the selection rules governing transi-
tions between these states. The use of group theory in
this way first introduced by Bouckaert, Smoluchowski,
and Wigner. ' Since their work many contributions have
added to our understanding of the eAect of the crystal
symmetry on its wave functions. ' Most important to the
present work is the employment of time-reversal sym-
metry by Herring, ' who presented a procedure by which
the additional eigenfunction degeneracies, due to the
invariance of the crystal potential under the reversal
of time, could be determined.

Let us consider a crystal which below some tempera-
ture T„, called the Eeel point temperature, exhibits a
magnetic structure. That is, it becomes either ferro-,
antiferro-, or ferrimagnetic. It is the purpose of this
paper to discuss the symmetry properties and de-

* Supported in part by the Office of Scientific Research, U. S.
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t Based on a thesis presented to the Faculty of the Graduate
School of Yale University in partial fulfillment of the require-
ments for the Ph. D. degree by John O. Dimmock.

$ National Science Predoctoral Fellow. Now at Raytheon Com-
pany, Waltham, Massachusetts.

' L. P. Bouckaert, R. Smoluchowski, and E. signer, Phys. Rev.
50, 58 (1936).This was the first time the irreducible representa-
tions of space groups were used to classify crystal state functions.
The first application of group theory to crystal lattices was given
by H. Bethe, Ann. Physik 3, 133 (1929). He was, however, con-
cerned only with point-group representations. The mathematics
of space-group representations was obtained by F. Seitz, Z. Krist.
88, 433 (1934); 90, 289 (1935); 91) 336 (1935); 94, 100 (1936);
Ann. Math. 37, 17 (1936).

'%e do not attempt a complete reference list since several
review articles exist which contain these references. See, for
example, G. F. Koster, in Solid-State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc. , New York, 1957), Vol. 5,
p. 173. D. F. Johnston, Reports on Progress in Physics (The
Physical Society, London, 1960), Vol. 23, p. 66. A. V. Sokolov and
V. P. Shirokovski, Uspekhi Fiz. Nauk 71, 485 (1960) [translation:
Soviet Phys. -Uspekhi 3, 551 (1961)).' C. Herring, Phys. Rev. . 32, 361 (1937).
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4The symmetry of magnetic crystals has been discussed by
several authors. See for example: L. Landau and E. Lifshitz,
Electrodynamics of Continuous j/Iedia (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1960), p. 116. B. A. Tavger
and V. M. Zaitsev, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 564
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The symmetry properties of the eigenstates of the
paramagnetic crystal are determined by finding the
irreducible representations of the groups of the wave
vector B& for the points and lines of symmetry of the
first Brillouin zone of the nonmagnetic lattice for the
appropriate space group II. The additional degeneracies
of the corresponding representations of G& may be
obtained by the procedure developed by Herring. '
Similarly, the symmetry properties of the eigenstates
of the crystal in its magnetic state are determined by
finding the irreducible representations of the groups of
the wave vector BCk for the points and lines of symmetry
of the first Brillouin zone of the magnetic lattice for the
appropriate unitary space group 3C. The additional de-
generacies of the corresponding representations of gs
may be obtained by the procedure previously de-
veloped. ' This procedure is outlined in Sec, II.

The effect of the magnetic ordering is now seen by
forming the compatibility tables between the repre-
sentations of IIk and 3'.~ for corresponding points in
the nonmagnetic and magnetic Brillouin zones. When
the magnetic and nonmagnetic unit cells of the crystal
are the same, that is, when the translation symmetry is
unchanged by the magnetic ordering, the Brillouin
zones for the two lattices are the same. In this case

(1956) Ltransiation: Soviet Physics —JETP 3, 430 (1956)g.
Y. LeCorre, J. phys. radium 19, 750 (1958).A more complete list
of references is contained in the reference of footnote 5.' J. O. Dimmock and R. G. Wheeler, J. Phys. Chem. Solids
(to be published).

tg

FIG. i. The nonmagnetic unit cell of MnF2, CoF2, FeF2, NiF&,
and Mn02 showing the positions of the ion sites. The fourfold axis
is in the direction t3. ~, magnetic ion; Q, nonmagnetic ion.

antiunitary, and thus ao is antiunitary, the groups G
and g contain both unitary and antiunitary operators.
These groups will be called nonunitary. The groups H
and K are unitary. From the above discussion it is seen
that LI and 3C form the invariant unitary subgroups of
G and g, respectively. Further, g and BC are subgroups
of G and II, respectively. The subgroup relations be-
tween these four groups which characterize the crystal
in its magnetic and nonmagnetic states are expressed
in the following diagram.

Kq will be a subgroup of Hj, and gq will be a subgroup
of G& for corresponding points. The compatibility
tables are thus formed in a straightforward manner.
However, when the magnetic unit cell is some multiple
of the nonmagnetic unit cell the Brillouin zones for the
two lattices will not be the same. In this case the
Brillouin zone of the magnetic lattice will be contained
within that of the nonmagnetic lattice such that for
points common to both, with the exception of those
which are on the surface of the magnetic zone, but not
on the surface of the nonmagnetic zone, the subgroup
relations will hold. The representations for points
within or on the nonmagnetic Brillouin zone, but out-
side the magnetic Brillouin zone, may be found from the
relations X~+K,——3'.q and gs+K, =gs, where I, is a
primitive translation of the magnetic reciprocal lattice.
For these points also the compatibility tables may be
immediately formed. The only points for which a
diS.culty occurs are those which lie on the surface of
the magnetic Brillouin zone where this surface does not
coincide with that of the nonmagnetic zone. If the group
Kq contains operators u={rr~~} where, in the usual
space group notation, e is a point operator and ~ is a
translation operator, such that ok= k+ I, where

K,QO, then Kj, and g~ will not be subgroups of Hq
and Gi„respectively, since B~ and G~ may contain no
such operators, k not being on the surface of the non-
magnetic Brillouin zone. These points will be clarified
in Sec. III where we consider an example of this. How-
ever, even in these cases one may obtain information
concerning the eGects of the magnetic sublattice on the
energy surfaces by a comparison of the representations
of Kk and Hi, .

It might be mentioned here that the group theo-
retical results determine how the introduction of the
magnetic sublattice splits the energy bands of the non-
magnetic crystal. It does not indicate how or to what
extent the bands may be shifted. Furthermore, in the
above case when the magnetic and nonmagnetic lattices
are dissimilar, additional discontinuities in the energy
surfaces (band gaps) will be introduced. This occurs at
the magnetic zone boundary, and it is clear that at this
boundary the energy bands of the magnetic and non-
magnetic materials will be quite different.

Fxo. 2. The magnetic unit cell of MnF2, CoF~, and FeFg
showing the spin orientation of the magnetic ions. The fourfold
axis is in the corection of the spin vectors. The nonmagnetic ions
are not shown.
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FIG. 5. The Brillouin zones for the simple tetragonal and body-
centered tetragonal lattices, with the points and lines of sym-
metry indicated. The tetragonal prism is the Brillouin zone for the
simple lattice defined by the primitive translations ti =af, t2=aj,
and t8=ck. The figure enclosed within the prism is the Brillouin
zone for the body-centered tetragonal lattice defined by the
primitive translations ti+t3, t~ —t~, and t1—t2, provided a)~2c.
For the structures under consideration this requirement is satis-
6ed. The rhombus-shaped plane of which 37 is the center is the
perpendicular bisector of the line FA. The point Ã lies on this line.

III. IRREDUCIBLE REPRESENTATIONS OF MAGNETIC
SPACE GROUPS: THE RUTILE STRUCTURE

In this section the remarks of Secs. I and II are
illustrated by the consideration of some specific groups.
The nonmagnetic space group chosen is that of the
rutile (TiOs) structure. The magnetic materials MnFs,
FeF2, CoF2, NiF2, and MnO2 all have this structure in
their paramagnetic states. The nonmagnetic space
groups 6 and 8' of these compounds are, respectively,
P4s/mern 1' and P4s/mam. The notation is that of
Belov, Neronova, and Smirnova' for the Shubnikov
groups and is based on the international short form
notation. The 1' in the symbol for the group 6 indicates
that the time reversal operator is a member of this
group. Figure 1 shows the unit cell of the rutile struc-
ture. The magnetic space groups g and K for MnFs,
FeFs, and CoFs are P4s'/mtsm' and Pnlm, ' respec-
tively. The nonmagnetic and magnetic unit cells for
these compounds are the same. The spins of the mag-
netic ions are directed along the fourfold axis of the
crystal" as shown in Fig. 2. For NiF2 the chemical and
magnetic unit cells are also the same. Since the analysis
in this case would proceed in the same way as that of
the previous case, we shall not be concerned with this
compound. " The magnetic structure of Mn02 which

N. V. Belov, ¹ N. Neronova, and T. S. Smirnova, Kristal-
logra6ya 2, 315 (1957) Ltranslation: Soviet Phys. —Cryst. 2, 311
(1957)j.' Y. LeCorre, J. phys. radium 19, 750 (1958)."R. A. Erickson, Phys. Rev. 90, 779 (1953).

"The magnetic structure of NiF2 has been recently obtained

we will be considering in this section was originally
suggested by Erickson" as a result of some early neu-
tron diffraction experiments. However, some recent
unpublished neutron diffraction work, also by Erickson,
has been interpreted by Voshimori" in terms of a
screw-type structure. Nevertheless, we will be using
the earlier structure since it is an interesting example
of a case where the magnetic and nonmagnetic cells
are different. Figure 3 shows the orientation of the
magnetic moments, and the magnetic unit cell is shown
in Fig. 4. The magnetic space groups g and X of the
earlier structure of Mn02 are I,42d and I42d, re-
spectively. Notice that this structure has four magnetic
sublattices, whereas the other structure considered has
only two.

In the following three subsections the irreducible
representations of the groups of the wave vector, for
the lines and points of symmetry of the appropriate
Brillouin zones, are obtained for the three space groups
P4s/masm, Ptslm, and I42d. Since we are concerned
with a comparison, through the compatibility relations,
of the representations of these groups for corresponding
points in E space, the operators are defined in the same
way for each group. The point of intersection for all
the rotation axes, and hence the inversion point, is
taken to be one of the magnetic ion sites.

A. Space Group P4,/mnm

This is the space group of the rutile structure shown
in Fig. 1. The primitive translations of the tetragonal
lattice are t~=af, t2=aj, and t3——ck, where f, y, and k
are unit vectors in the x, y, and s directions, respec-
tively. The nonprimitive translation is taken to be
e=s(ti+ts+ts). The reciprocal lattice vectors b, de-
fined by the equation b; t, =2srb;; are bi ——(2sr/a)s,
bs=(2sr/a)j, and bs ——(2sr/c)k. The operators of the
space group P4s/mrsm are defined as follows:

{I.'I0}, the identity operator;
(C4le}, a counterclockwise rotation about the s axis through

90', followed by the translation e;
(C4 'Ie}, a clockwise rotation about the s axis through 90',

followed by the translation c;
(Calo}, a counterclockwise rotation about the s axis through

180'
(Csgl0}, (Cssl0}, counterclockwise rotations through 180' about

the axes a=i+j and b=i—j, respectively;
{Cg,Is}, (Cs„ls},counterclockwise rotations through 180' about

the x axis (y axis) followed by the transIation z;
(I I 0}, the inversion operator;

{s,le} =(c,—Ie} Vlo};
{s I~}={c,le} (Ilo&;
{Oslo} ={C2lo}.(IIO}, reQection in the xy plane;

(~d. lo} =(csslo} Vlo};
(«slO} =(C»IO} {Ilo};
(~.*le} =(Cs*le} Vlo};
{ „„le}=(c»le&. (Ilo}.

by R. A. Alikhanov, Soviet Phys. —JKTP 37 (10), 814 (1960).
See also R. A. Erickson, Phys. Rev. 90, 779 (4953).' R. A. Erickson, Phys. Rev. 85, 365 (1952).

"A. Yoshimori, J. Phys. Soc. (Japan) 14, 807 (1959).
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TABLE I. Character table for the point p(0,0,0) of the group P42/mnm.

{P-lo&

{C4,C4 'I~}
(C4C4 'I&)
(C2, C2(0)

(C2„C2, I s),{C2„,C2„(s}
(C24&C2a I 0}&(C2b)C2b I 0)

(I(0)
{Iio&

(S4 S4 'I &)
(84,84 '(~}
(ab, a 2(0}

fa * a. I~),(a 2 a vl+&

f«armada(0} t(«44rdb I
0 &

Time inv.

r,+ r,+ r,+ r,+ r,+

1 1 1 1 2
1. 1 1 1 2

1 1 —1. —'1 0
1 1 —1 —1 0

1 1 —2

1 —1 1 —1 0
1 —1 —1 1 0
1 1 1 1 2
1 1 1 1 2
1 1 —1 —1 0
1 1 —1 —1 0
1 1 1 1 —2

1 —1 1 —1 0
1 —1 —1 1 0

1 1 1 1 2

1 1 1 1 2

1 1 —1 —1 0
1 1 —1 —1 0
1 1 1 1 —2

—1 1 —1 0
1 —1 —1 1 0

—1 —1 —1 —1 —2
—1 —1 —1 —1 —2

—1 1 1 0
—1 —1 1 1 0
—1 —1 —1 —1 2
—1 1 —1 1 0
—1 1 1 —1 0

2 2 2 2
—2 —2 —2 —2

VZ —v2 V2 —v2
—V2 V2 —V2 v2

0 0 0 0
0 0 0 0
0 0 0 0
2 2 —2 —2

—2 —2 2 2

vT —v2 —v2 v2
—V2 V2 v2 —V2

0 0 0 0
0 0 0 0
0 0 0 0
a a a a

A1 Ag As A4 A5 A6

(C4, C4 '(s}
(C4 C4 '(S)
fC2, C2(0)

(4rv* 4r»l e) (rrvb avwl 2)
f«ada(0)vf«bv«bio)

Tjme inv.

1 1 1 1

1 1 1 1

1 1 1 1

2 2

2 —2

0 o)&2

0 —coV2

—2 0
0 0
0 0

TABLE II. Character table for the point A(0,0,y)
of the group P42/mnm

2
—2
—co@2

GDV2

0
0
0

Also, we have products of the above with the members
(E(R„}and (E(R„}of the translation group, where
R„=mqtr+rbsts+ests (nr, ebs, and es integers). The
space group P42/masm 1' has, in addition to the above
operators, their products with the time reversal opera-
tor 6.

Figure 5 shows the Brillouin zones for the simple and
body-centered tetragonal lattices with the points and
lines of symmetry indicated. The enclosing tetragonal
prism is the appropriate Brillouin zone for the non-
magnetic space groups J'42/mrbm and F42/mrbm 1' and

a cu =exp ()icy), 0 &y &~/c.

TABLE III. Character table for the point A(0,p,0) of
the groups P42/mrbm and Pndbm a. TABLE V. Character table for the points Z(0,0,2r/c) and

df (vr/a, vr/a, vr/c) for the group P42/mnm

ZJ. Z2 Z3 Z4 Z5
A1 A2 A3 A4 Ag

f CsyyC2II I ~)
{ababl0}
(a*a *I&)

F42/mnm time inv.

2
—2

0
0
0

' co =exp(&iaP), 0 &P &x/a.

(&I o)

{C2„C2,(0}
(«,ablo}
{adb,odb I 0)
Time inv.

Z1
$1

Z2
Sg

1
1

—1

1
—1

Zg
S3

1

1

—1

Z4
S4

1

1
—1
—1

1

2
—2

0
0
0

TABLE IV. Character table for the points Z(42,42,0) and
S(n,42,2r/c) for the group P42/mnm

(L(0&
(~(0)
{I-'I tb&

{C4,C4 '(S, S+tb}
{C4,C4 'Is, s+tb}

{c„c,(o)
{C2,C, I t, )

{Cbv,C2v, C22 2C2„(c) v+4)
(C24, C2, (0},{C2b, 2b( 4}
fC2b)C2b(0), (C2„C2, ( 4)

(I lo&, &II t,}
fI(o), (II t )

(S4,S4 'Is, s+tb}
{S4,84 'Ie, S+tb}

{ab,ablo},{ab,abl 4&

(a'vv, avv vrva, avv I
e 'e+4}

f«)(7 (0}av(dtvadb)adb( 0)
(«aivrda I tb), f«b) «4 I 4}

Time inv.

2 2 2

2 2 2
—2 —2 —2
—2 —2 —2

0 0 0
0 0 0
2 2 —2

—2 —2 2

0 0 0
0 0 2

0 0 —2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
2 —2 0

—2 2 0

2 4
2 —4

—2 —4
—2 4

0 0
0 0

—2 0
2 0
0 0

—2 0
2 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

a a a a a

a 0 &a &X/g.
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TAnr. K VI. Character table for the point 3I(&r/&b, &r/&a, 0) of the group P4a/mnm

{RI0)
f&I0&

{C&,C4 'ls)
{C& C4 'ls)
{Ca,Cal0&

fCa* Ca*I&) {Cab Caal&)

f Ca Ca 10) (Cab Cab I o)
{II0)

P'4, 84 'l~)
{8484 'I~)
{«~bio}

(&»&'&&»&' I &);(&v&»&»&& I &)
{&ad&&&&ad&& I 0}&(&rdb&&rdb

I 0)

3III+ SI2+ Jfff3+ 3/I4+ 3II5+ . 3III iV2 IVg M4 M5

2 1 1 1 1 2

2 —$

2 —2

1 1 1 1
0

—2

—$

1
s —$ —$ 'lt

1 1 —1

1 1 1 1
1 1 1 1

—'E $ —$

$ z —$

1 1 1
$ —$

2 1. —1

0 $ —2 —$

0 1 1 —1 —1

2 —1 —1 —1 —1

2 —1 —1 —1

0
0

—2

0 $ $

0 —1 —1 1

2
0
0

—2

0
0

—2
—2

0
0
2

0
0

1 1 1 1 2 1 1

2
—2

i&2
—iV2

0
0
0
2

—2

iV2
—iv2

0
0
0

2
—2
—iv2

iv2
0
0
0
2

—2
—i'
iV2

0
0
0

2
—2

jV2
—i'

0
0
0

—2

2
—i'

iV2

0
0
0

2
—2
—iV2i'

0
0
0

—2

2

iV2
—iv2

0
0
0

Time inv. C C C C C ' C C C C C

TAnr. r VII. Character table for the point R(0,»/&a, &r/c) for the groups P4a/mnm and Pnnm.

R2 R4 Rg

{&I o)
f&I0&

{Ca I 0),{Ca I ta)
{Caf0),{Cal ta)

(C. l~&, {C*l~+t }
{Ca*I&) fCa I&+ta&
{Ca.f&&, fCaal&+ta&
(Ca„ I s), {Ca„I s+4)

{II ta}
(«10&,(~bi ta)

(«10& f~b I ta)

{a.*l &},{&rvz f &+4&
(~-

I &) f~- I &+ta)
(~ al&), f~ al~+ta}
f~" I ~),f~.al ~+ta)
P4a/mnm time inv.

2
2

—2
—2

0
0
0
0
0
0
2
2

—2
—2

0
0
0
0
0
0

2

2
—2
—2

0
0
0
0
0
0

—2
—2

2

2

0
0
0
0
0
0

1 1

1 1

Xg X4

fCal0&, (Cal4&
f Ca I 0},f Ca

f ta}
{Ca„Ca, I s, s+ ta)
{Ca»,Ca»ls, s+ta)

{II0},{Ilt.)
fI I 0),{IIta}
{«,~bl0}
f~b &bl ta)

{&r»&:&&rv&: I e& &+ta)
f&»&»&»a I 4& 'a+fa)

TUne inv.

2
2

—2
—2

0
0
0
0
0
0
2

—2
0
0

2

2
—2
—2

0
0
0
0
0
0

—2
2
0
0

2
—2
—2

2
2i

—2$

0
0
0
0
0
0
0
0

2
—2
—2

2
—2$

2i
0
0
0
0
0
0
0
0

C C

TAnLE VIII. Character table for the point X(0&&r/a, 0)
of the groups F42/mom and I'enm.

TABLE IX. Character table for the point F'(a, vr/u, 0) of
the, groups P4a/mnm and Pnnm

f~.a,~.a I &)
F42/mern, time inv.

a CO =eXp (gina), 0 &n &m ja.

1 1

1 1
1

1 1

1
—1

2
—2

0
0
0
b

for the magnetic sPace grouPs Enlm aud P4a'/mtbm'.

The Brillouin zone for the I42d and I,.42d magnetic
space groups is that of a body-centered tetragonal
lattice and is shown in its proper relative position con-
tained within the prism. We will discuss this in more
detail when considering the group I42d. In Tables I
through XIII we give the characters of the groups of
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TAnLE X. Character table for the point V(s/a, s/bb, p) for the group P4q/m4bm. '

(~ I o)

(C4,« 'I ~)
(C4 C4 'Is}
&Cb, C"bl0}

&c...~.* I
& },&~.b,~.w I &)

(&da)c'da
I
0 }&(&dbyo'db I 0)

Time inv.

Vy

ZQ)

1
ZG)

1

V2

ZQI

—ZQ)

—ZO)

V3

ZOO

ZQ)

—ZM

ZQ7

—Z07

ZCO

2
2
0
0

—2
0
0

2
—2

ZMV2

—ZQ)V2

0
0
0

2
—2
—ZCVV2

ZQ)V2

0
0
0

{zlo}

&L'its)

(Cbl0), {Cbl tb)

(Cbl0), f Cs I 4)
(~ *I&}&~-I&+tb)
(~ *I&) (~ *I&+tb)
(~.mid:} &~.w I&+tb}
(~"I ~),(~"I ~+ tb)
P44/mrbm time inv.

2
2

—2
—2

0
0
0
0
0
0

TV3

—
GO

ZCO

ZCO

—ZQ)

ZCO

C C

—Z

ZGO

ZQI

ZOO

C C

a co =ezp (giyC), 0 &y &~/C.

TABLE XII. Character table for the point U(O, P,s'/c)
of the groups P4q/mrbm and Prbnm

(&Io)
&&I0)

f~bl0), (~bl4)
f4b I 0),fcrb I tb)

&~.* I ~),f ~.*I~+ tb)

{o, v), {o„lv+tb)
(Cbw s} {Cbbl e+tb}
(C» s),{C»le+tb}
P4b/mibm time inv.

2

2
—2
—2

0
0
0
0
0
0

U3

—Z

CO

ZCO

ZK

—ZCO

ZCO

C C

Z67

—ZCO

ZQ)

—ZQ)

C C

a eu =exp (&ipa), 0 &p &~/a.

TAnLz XIII. Character table for the point T(cb,s/a, ~/c)
of the groups P44/mnm and Pnrbm. '

a co =exp (~~inc), 0 &y &~/c.

TABLE XI. Character table for the point W(0,s'/a, 'r)
of the groups P4b/mrbm and Pnibm b. the wave vector for the space group P4s/mrbm. For a

point defined by the vector k the representation of the
operator (El R„) is given by"'

4"'(El R ) =exp(sk R„)A&"(El 0},

whence it is not necessary to include the characters of
these operators in the tables but only give the coordi-
nates of the point considered. The symbol (n,P,&) indi-
cates that k=cri+Pj+yk. Table XIV gives the com-
patibility relations for the irreducible representations.

B. Space Gmuy Pnnm

This is the unitary space group of the compounds
MnF2, FeF2, and CoF~ below their respective Weel
points. The unit cell, primitive translations, reciprocal
lattice vectors, and Brillouin zone are the same as for
the space group P4s/minim. The operators of the space
group Penes are as follows:

(Csl0),

(«I0), (~.*l~}, (~"l~),

with the operators defined as in the group P4s/mtbm,
and products of the above with (P.

l R„}and {ElR„),
where again R„=tbiti+n&ts+tbbts. The nonunitary
magnetic space group of these compounds, P4s'/mnm',
contains in addition to the elements of .Prem the
following,

(Cl ) 8, (C 'I ) 8, (C IO} 8, {C I0} 8,

P'4I~) 8 V'4'l~) 8, (« Io) 8, («bl0) 8

ÃIo)
f&10)

{Eltb)

(0'bl0) (&bl4)
{dbl0},(dbl tb}

(~.wl&) &~.wl&+tb)
(~.el&) (~.ul&+tb)
(c» I

e }if c» I e+ tb)

{C»I&},&c» I&+t,)
P42/mern time inv.

2
2

—2
—2

0
0
0
0
0
0

ZGO

ZQ)

T3

—Z

—Q)

ZCO

ZQ)

T4

ZCO

0—ZCO

C C

and their products with (EIR„) and (EIR„}.The
subgroup diagram (see Sec. I) for this structure is

Nonmagnetic

Magnetic

Nonunitary

P44/mnm 1'

, l
P44'/mrbm'

Unitary

P44/mibm
l

Pnnm

In Tables XV through XX we give the characters of
the groups of the wave vector for the space group
Pnsm for the points F, A, Z, 5, Z, A, 3f, and V. The
additional degeneracies of the corresponding repre-

& co =exp(-;isa), 0 &a &~/a. "G.F. Koster, reference 2.



J. O. DIMMOCK AND R. G. WHEELER

TAnLE XIV. Compatibility tables for the group P4s/mern.

r,+ r2+ r3+ r,+ p+ F2 13 r4- + p+ r7

Aj
Zj

A2
Z2

A3
Z2

A4 A5
Z3+Z4
63+64

A2
Z3

Aj
Z4
Q4

A.4

Z4
Ab

Z j+Z2
~j+~2

A7
Z5

u,+ u,+ u,+ u.+ 352 3I3 314 ~,+ W7+ M6- M7-

Vj

Zj

V2
Y2

V3
Y2
Z2

V4
Yj
Z2

V5
F3+Y4
Z3+Z4

V3
Y3
Z3

V4
F4
Z3

Vj
Y4
Z4

V2
F3
Z4

Vg
Yj+Y2
Zj+Z2

V6
Yg
Z5

V7
Yg
Z5

V6
F5
Z5

V7
Ye
Z5

Zj

Sj+S4
Aj+A4

Uj

S2+S3
A2+A3

Uj

Sj+S3
A5
Uj

S2+S4
As
Uj

2S5
A6+A7

U2+ U3+ U4+ Us

Aj

Sj+S4
Vj+ V2

Tj

S2+S3
V3+ V4

Tj

A3

Sj+S3
V5
Tj

A4

S2+S4
Vf;
Tj

2S5
Ve+ V7

T2+T3+T4+ TQ

Uj
5'j
Tj

U2
5'2
T2

U4
8'4
T4

R5+

U5
8'5
T5

U3
W4
T5

U2
8'5
T4

U5

T3

U4
5'3
T2

8'j
Yj+Y2
~j+~2

8'j
F3+F4
d, 3+64

8'2+8'4
F5

8'3+8"g
F5

TABLE XV. Character table for the point I"(0,0,0}of the group Perm

filo)
{Cm,c'2I0)
{C2*,Cs. I')
{C2u, C2ul &)

VI0)

{~",~r I0)
f *~*I&)
{&vga& eel&)

1
1

—1

1
1
1

—1
—1

1
1

1

1
—1

1

—1

1

—1
—1

1
1
1
1

—1
—1
—1
—1
—1

1
1

—1

—1
—1

1

1

1
1

—1
1

—1
—1
—1

1

1

r4-

1

1
—1

—1

1

—1

2
—2

0
0
0
2

—2

0
0
0

2
—2

0
0
0

—2

2
0
0
0

Time inv. C C

& V0 = )Cg~)0j,

TABLE XVI. Character table for the point A(0,0,&)
of the group Prem. ' TABLE XVII. Character table for the points Z(a,n, 0) and

S(n,n, m/c) of the group Pnnm. '

{E0)
{Q 0}

fc2 C2I0)
f&vzy~ee I &)
f&.u)~~w I &)
Time inv.

1

1
—1

1
1

—1

C C

2
—2

0
0
0

fEI0)
f~~l0)
f~~l0)

Time inv.

Zj
Sj

Z2
S2

1
—1
—1

Z3
S3

Z4
S4

' Vo = (C~uL0), eo =eXp(-,'AC), 0 &y &~/C. a vo = l C2b
~
0 I, 0 &o. &~/a.
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TAELE XVIII. Character table for the points Z(0,0,vr/c)
and A ( /vra, vr/o, sr/c) of the group Pssssm v.

{~lo}
(~lo)
(Z[ tv}

(Cs,Cs[0}
(Cs,Cs l ts)

(Csv, C» I &~ &+tv}
(Csy, Csy l s, s+ ts}

{Il0),{flt, )

(oslo), (ysl ts)
(oslo), {~s[ts)

(~.,p„.l~, ~+ts}
(&vs' yvy I &y 'e+ ts }

Time inv.

Z1
A1

2
2

—2
—2

2
—2

0
0
0
0
0
0
0
0

Z2
A2

2
2

—2
—2
—2

2

0
0
0
0
0
0
0
0

Z3
A3

2
—2
—2

2

0
0
0
0
0
0
2i

—2z

0
0

Z4
A4

2
—2
—2

2

0
0
0
0
0
0

—2z

2i
0
0

a vo =(C2a)0}.

sentations of P4s'/mnm' are indicated in the row labeled
time inv. In each table the operator vo is indicated (see
Sec. II). For the remaining points in the zone the groups
of the wave vector are the same as those of the group
P4s/mnm, and thus we may use the same character
tables. However, no additional degeneracy arises in
these representations since no operator ao exists in
P4s'/mern' such that osk= —k+K„and the groups

Hj„g~, and X~ are identical for the values of k associ-
ated with these points. In Table XXI we give the
compatibility tables between the representations of
Perm for the points I", Z, 3, and 3f. The tables for the
points R and X are obviously the same as those of
P4s/mern.

In Table XXII we give the compatibility relations
for the irreducible representations of the groups of the
wave vector between the groups P4s/mrfm and Plum
for the corresponding points in the Brillouin zone.
Those tables where the groups of the wave vector are
the same are omitted. These also serve as the compati-
bility tables between the groups P4 /sm/sm 1' and
P4s'/mam' when the time reversal invariance is con-
sidered. For the points R, X, 8', Y, T, U, and 6 it is
clear that the introduction of the magnetic sublattice
simply lifts the degeneracy introduced by the fact that
the nonmagnetic lattice is invariant under time reversal.

C. Space Group I42d

The unit cell for this group is shown in Fig. 4 with
the spin directions of the magnetic ions given. It is a
body-centered tetragonal structure with the following
primitive translations: tr+ts, ts —ts, and t& tsv —The
reciprocal lattice vectors b, are

br ——(sr/a) (f+j)+ (sr/c))s,

bs ——(7r/a) (f+j ) (sr/c) E-,
bs ——(m/a) (s j-) (7r—/c) k—,

TABLE XIX. Character table for the point M(vr/a, vr/o, 0) of the group Pssssm v.
(&I0)

{Cs,Cslo)
{Csv,C» l &}
(Csy Csy I e)

Vlo)
{II 0)

(ys,crs
l 0)

{y'vvyy'vv l 'e)

(&vyy&vy I 'e)
Time inv.

3III+ 312+

—Z

—Z —Z

—Z

—Z —Z

—Z

—Z

2
—2

0
0
0
2

—2

0
0
0

2
—2

0
0
0

—2
2
0
0
0

a vo = )C2a t 0}.

{Elo}
{Cs,Cs l0)

{yvv,yvvl&}

(y.y,o.y I &)
Time inv.

VI V2

1 1
1 1
1

—ZO7

Z07

C C

V3

—ZCO

V4

—ZCO

Zco

V5

2
—2

0
0
0

' vo = (Csh [0},0 &y &~/c.

TAELE XX. Character table for the point V(vr/a, vr/o, y)
of the group Pnnm. ' and the Brillouin zone is shown in Fig. 5 enclosed within

the Brillouin zone of the simple tetragonal lattice with
the basis vectors t~, t2, and t3. As mentioned above, the
magnetic sublattice, in those cases where its introduc-
tion increases the size of the unit cell (decreases the
size of the Brillouin zone), creates new discontinuities
in the energy-band surfaces. In the present case these
new discontinuities occur on the eight rhombus-shaped
faces of the magnetic Brillouin zone.
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TAsLz XXI. Compatibility tables for the group Ennns.

F,+

A1

Z1

F+
A2

F3+

A3

Z2

F,+

A4
D4
Z2

A2
D4
Z2

A1

Z2

A4

Z1

A3

Z1

F,+

A5

Z3+Z4

F&-

-A5

Z3+Z4

V1
I"2

V3
V3
Z2

U4
I'4
Z2

V2
I'3
Z2

V1
I'4
Z2

U4
V}
Z1

V3
I'2

V5
Y5

Z3+Z4

V{;
V5

Z3+Z4

A.1+A2

S1+S2
U1

A3+A4
S1+S2

U1

A3
2S3

U2+ U4

Ag
2S4

U3+ Ue

V1+V2
S1+S2

Tl

A2

U3+ U4
S1+S2

Tl

U{;
2S3

T2+ T4

U{;
254

T3+TQ

TABLE XXII. Compatibility tables between the groups P4&/ntnn4 and Pnnn4 for corresponding points.

F,+ F,+ F,+ F,+

F+ F+ r+ r+ F++F+

Jj/I1+ M 2+ 3f3+ 3I4+ Jj/15+

u+ u+ u+ u+ u++u+

F1 F2 F3 F F{.

F,— r; r,-+F;
M1 J{t/I2 31I3 JIt/I4 J))/I5

3f2 3/E1 313 +3I4

F,+ F, F6- F,
F+ F+ F; F,—

316+ 317+ F6—
M7

BED+ 3Eg+ 3/I5 Af 5

Z1 Z2 Z2 Z3+Z4

A1

S1

A2

S1

A3

A2

S2

A2 A3+A4

S5

S3+S4

U1 V3

V2

U4

A3+A4

V5

V3+ U4

U6

V5

TABLE XXIII. Character table for the points F(0,0,0) and A (4r/44, 4r/a, 4r/c) of the group 142d.'

{54I
s—t4), {S4 '

I s)
{S4I~—t, ) {84-&I~)

{Cs,C4 I t4}
{o.„„a.„,I

c t4},{a;„,o„„I
s)—

{Cs Cs. IO) {C»,t'»I t4)
Time inv.

Fl
A1

F2
A2

1

1

1

1
1

—1
—1

F3
A3

1

1
—1

1
1

—1

F4
A4

1

1
—1
—1

1
—1

1

2

2

0
0

—2

0
0

F,
A6

2
—2

v2
—K2

0
0
0

F7
A7

2
—2
—V2

v2

0
0
0

~ vo =(Z)t&l.

TABz,E XXIV. Character table for the point A (0,0,~)
of the group I42d. '

TABLF. XXV. Character table for the point it(O, p, O)
of the group I42d.

{C4,04 I t4}
{a...u,.I ~—t,}

Time inv.

2
—2

0
0
0

{&lo)
{EIo)

{o, I e —t4}
{o,I~—t,}
Time inv.

' vo = f c2{j 0 I, I=exp(/itic), 0 &y &w/c. ' Vo = {C2 ) 0 I, cd =exp (-,'ipa), 0 &p &~ja.
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The space group I42d consists of the following
elements,

{~4I~—ts}, {~4 'I ~},
{CsoIO}, {C2bI t'3}, {o„,I ~ t—s}, {o,„I~}

Also we have products oI the above with the members
{EIR„'}and {EIR„'}of the translation group where
R„'=233(tl+t3)+232(t2 ts)+233(tl t2)s (with 233, 232,

and ns integers). In addition to the operators of I42d,
the group I,42d contains their products with the anti-
translation {EIts} 8.

(EIo)
(Cs. lO)

(Gs. l o)
Time inv.

SI
Z2
S2

1
1

—1

Z3
S3

Z4
S4

~ vo = fcgloI.

TABr,E XXVI. Character table for the point Z(ss,n,o)
and S(ss,n, sr/C) Of the grOup I42d. '

TABLE XXVII. Character table for the points 3f(sr/o, vv/o, o) and Z(0,0,sr/c) of the group I42d

(I-'lo)

(S,l~ —ts} {S4-s
I
~}

(84[~—ts), (Ss-s
( ~}

{Cs,Cs~ 4)
(Ovvtyvv l'2 4}b(Ovylyvyl'2}

f Cyv, CSv~O},{CSb,CSb) ty}
Time inv.

Zl
M2
Z2

M4
Z4

iV5
Z5

2

2

0
0

—2
0
0

M6
Z6

2
—2

iH
—i'

0
0
0

M7
Z7

2
—2
—iV2

iv2
0
0
0

a vo= fBltg).

TABrE XXVIII. Character table for the point X(o,sr/o, o)
of the group I42d. '

TABLE XXX. Character table for the point V(sr/o, y/o»)
of the group I42d. '

fE 0}
(z 0}

{R)ts —ts}
{E~ts —ts)

(Cs)4},{Cs)4}
(Us [ 4},(Cs ) 4)

fo» I
&—4},fovv I

&—4}
(ovv I

e ts}ufo» I
e t—s}—

(o" I ~),(o"I ~+ ts —ts)
(o.y t &),(o.w I ~+4—4}

Time inv.

2
2

—2
—2

0
0
0
0
0
0

X2 X6

1 1
—1 —1

—1
1 1

X4 X5

1 1
—1

—1
1 1

C C

(Qo)
{zlo)

{Cs,Gs I ts}
(ovv&ovy i'2 '4)

(ovtw&ovy I'2}
Time inv.

Vg V2

ZG0

ZG0

—SG0

—
ZG3)

C C

V3

ZG0

—
ZG3)

V4

—Gt)

—$G2)

2
—2

0
0
0

a vo = fc25lOI, G0 =exp(qiyc), 0 &y &~/t...
TABLE XXXI. Character table for the point Y(o,sr/o, o)

of the group I42d. '

f@IO)
fE tg+t3}
(E tj+tg}

f Cs I ts), (~s I ts)
{Gslts),(Csltl)

fo„(S—t,},(o., S+tg}
fo„vI'2 —ts},fo„y '2+ts}
(Ovy I '2},{Ovy I'2+tl —4}
(ovyl&) fovyj&+ti —ts)

RI

2
2

—2
—2

0
0
0
0
0
0

R2 RB

1 1
—1 —1.

R4 R5

1

—1 —1
1 1

~ vo = foal t&J.

TABI,E XXIX. Character table for the point R(o,vr/a, sr/c)
of the group I42d. ' (o.y I ~)

fo.y I &)
Time inv.

(z)o}
(ovv ~

e —ts)
(o„,I'2 —ts}

ZG4)

$G3)

U3 U4

1 1
—1 —1

vo = f C2 [ 0 j, oo =exp (-', isa), 0 &a & /a.

TABLE XXXII. Character table for the point U(o, p, vr/c)
of the group I42d, '

Time inv. C — C C C Time inv. C — C

a vo= fBltg). a Vo = fC2[0), Go =eXp((i/a), 0 &p &~/a.
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TABLE XXXIII. Character table for the point W(o, n/a, y)
of the group I42d. '

TABLE XXXV. Character table for the point ll (~/2a, m/2a, vr/2c)
of the group I42d. '

Wg W2 Ws W4 Ws Ã4

{~1 o)
{~lo)

{&Itg+tm)

{@ltg+ts}
{C&ltb)){C2I tb+tg+tg}
{C2

~
t3 },{C2

~ 4+ tl+ t2)
{~»I &—tb) ~{~~*I—&)
{O'„,I'e —tb},{o„,I —'e)

{~.W I &),{~.W I tb —&)
{~.W I &),{~.W I tb —&)

No time inv.

2
2

—2
—2

0
0
0
0
0
0

1 1

ZM

—SM

—M*

$M

$M

$M

'CM

—ZM

ZM

—ZM

—M

ZM

—'SM

ZM

ZM

—ZM

ZM

1 1 1 1

{P-Io}
{&Io)

{Cbb[4)
{C~bl4}

Time inv.

1
1

—1
—1

.«= felt l.

TABLE XXXVI. Character table for the point N(m/2a, ~/2a, 7r/2c)
of the group P4~/mnm.

=exp()i&c), 0&~ & /:.

TABr.E XXXIV. Character table for the point T(n, w/a, 7r/c) of
the group I42d. '

{~db I O)

1

—1

Ts T4
Time inv.

{zlo)
{~.w I &)
{~.el&)

Time inv.

ZM

—'LM

ZM

ZM

a vo = f C2
~
0 }, co =exp (gina), 0 &n &7r /a,

The subgroup diagram for this structure is

Nonunitary Unitary

Nonmagnetic

Magnetic

P42/mmm I' —& P4b/mrbm

l
I,42d ~ I42d

In Tables XXIII through XXXU we give the char-
acters for the irreducible representations of the groups
of the wave vector for the points of symmetry of the
magnetic and nonmagnetic zones. Table XXXUII gives
the compatibility relations between these representa-
tions, and Table XXXUIII gives the compatibility
relations between the representations of I42d and
F42/mern.

The reciprocal lattice point S is of special interest
because it lies on a rhombus-shaped face of the magnetic
Brillouin zone. Recall that for this point we may not
expect gk and BCq to be subgroups of Gq and H~, re-
spectively. The characters for the representations of 3'.k
are given in Table XXXU with the additional de-
generacies of g& indicated in the usual way. The char-
acter table for Hk is given in Table XXXVI. From
these tables we see that the introduction of the magnetic
lattice has increased the degeneracy of the single-group
representations while lifting the degeneracy of the
double-group representations.

IV. DISCUSSION

In Secs. I and II we have described the procedure by
which one uses the magnetic symmetry of a crystal to
determine the symmetry properties of its eigenstates.
The qualitative changes in the band structure due to the
introduction of the magnetic ordering at the Weel

TABLE XXXVII. Compatibility tables for the group I42d.

r, rs Jff/Ig 312 3Is 3f4

A2 Ay 43+44
~i+~2
&j.+&2

A5
hs+d, 4

Zs+Z4

A5
d,3+64
&3+&4

V2
F2
Zy

V2
F2
Z2

Uy
Fy
Z2

Vs+ U4
Fg+ F2
&i+&2

Ve
Fs+ F4
Zs+Z4

V5
Fs+ Y4
&3+&4

Ag A2 As A4 A5 A6 A7 Z) Z2 Zs Z4 Zs Z7

Vs
T1
Sj.

V4 Vs V4
T2 TJ T2
S2 S2 . SJ,

Vg+ Vg V5
T]+T2 T3+T4
SI+S2 Ss+S4

V5
Ts+ T4
Ss+S4

A4
Uy
Sg

As
U2
Sg

A.s
U2
S2

A4
Uy
S2

h.g+h. 2

U)+ U2
Sg+S2

A5
Us+ U4
Ss+S4

A5
Us+ U4
Ss+S4

Wg
Fg+ F2
~i+~2

W2
F4
A4

Ws
Fs
d, 4

X4

W4
Fs

W5
F4

8'g
UI+ Us
Tj.+T2

W2
U4
Ts

Ws
U4
T4

R;

W4
Us
T4



SYMMETRY PROPERTIES OF WAVE FUNCTIONS

TABLE XXXVIII. Compatibility tables between the groups P4s/mn'&a and I42d for corresponding points.
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r,+ r + r4+

r4

r2

r2

r6+ r7+

r6 r7 r7

r7

M1+ &2+ 3II6+ &4+ F6+ 3f1 M2

3II6 3II4 355 M2 M1

Zl

iV6+ M7+ 3E6- M7-

Z1+Z2 Z3+Z4 Z6+ Z7

R3+

R2 R5 R4

R2

A1+A 4

R2

A6+A7

X1 X2+X4 X3+X5

Z3+Z4

S1

S1

S2

S2

S6

S1

S4

S2 S3+S4

T1+T2

T2

V1

V1

T3

U2

T4

T4 T4

V4

V1

V5

V3+ V4

U1

U1+ U2

63+64

V6

U5

U2

V7

U4

U3 U4

point were found to be of two distinct types. The first
is simply the lifting of certain degeneracies due to the
general reduction of symmetry, while the second is the
introduction of new surfaces of band discontinuity. In
addition to these band structure changes, examples of
which were considered in Sec. III, the following obvious
result may be mentioned. If the group G of the non-
magnetic lattice contains an operator which takes a
given wave vector kr into another wave vector ks,
then it is generally recognized that for every energy
state at kr, E&"(k,), there must be an energy state at
ks, E&&'& (ks) such that E&'& (kt) =Eo'& (ks). In Particular,
since 8 is a member of G and 8 k= —k, E&"(k)
=E&&&(—k). This is a general 'property of energy bands
in nonmagnetic crystals and does not depend on the
spatial symmetry of the lattice. Since the magnetic
group b is a group of lower order than G we see that
the magnetic ordering may reduce the band symmetry
in k space. For example, in those magnetic crystals
lacking inversion symmetry, whose magnetic. space
group g contains 8 only in combination with rotation
operators, the energy bands will not satisfy the relation
E&'&(k)=E&'&(—k) for all values of k. However, in
neither of the two cases considered does any symmetry

reduction occur, as can be seen by an examination of
the operators of each group. A reduction in symmetry
will, however, occur in NiF2 for example.

In a previous work' we considered the irreducible
representations of magnetic point groups. These would
be useful in obtaining the symmetry properties of
localized states in magnetic crystals, as impurity or
single ion states in the tight-binding approximation.
Magnetic space groups as considered here are useful,
on the other hand, in describing nonlocalized states.
Such states would arise in any single-particle or band
approximations which might be attempted. More im-
mediately interesting, however, is the application of
these magnetic groups to the question of spin waves
and their interactions. Since there is much literature on
spin waves, we mention only their transformation
properties, as these are important in our present work. "
If the crystal under consideration has a sublattice
whose direction of magnetization is (, then a spin
wave traveling through this sublattice with wave vector
k will transform in the group of the wave vector k as
Sr iS„, where (, (, and sI fo—rm a right-handed co-

5 See for example, J. Van Kranendonk and J. H. Van Vleck,
Revs. Modern Phys. BO, 1 (1958).
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ordinate system ($=()&z7), and 5r and 5„ transform
as pseudovectors in the direction ( and rl, respectively.
That is, the spin wave transforms as a unit of angular
momentum directed along —(. If the substance in
question possesses more than one magnetic sublattice,
a wave confined to one will not be an eigenstate of the
spin wave Hamiltonian, since in general there is a cou-
pling between sublattices. However, the transformation
properties may be obtained by considering isolated
waves, and in fact the selection of eigenstates and the
determination of degeneracies results from an applica-
tion of the group theory. "

Let us consider our two examples. In the MnF2
'structure at k=0 the spin waves will transform as
5, i5„—and 5,+i5„Th.ese functions belong to the
representations I's+ and I'4+ of the group I'rzrzzrz (see
Table XV) which become degenerate in the group
P4s'/rrzmrN'. Thus in MNFs at k=0 we expect the spin-
wave spectra to be doubly degenerate in the absence of
external fields. This has also been predicted by direct
calculation" and indeed has been observed. " In the

MnOs structure at k=0 the spin waves will tra, nsform
as 5,+iS, „and 5,+i5+„.These functions belong to
the representations F2, F3, and I'5 of the group J42d
(see Table XXIII). Since in this case there is no addi-
tional degeneracy in I,42d, we expect the spin wave
spectra in this structure to be split into three levels,
two nondegenerate and one doubly degenerate, in the
absence of external fields. A similar argument predicts
two nondegenerate spin wave states at k=0 in NiFs as
has been obtained by direct calculation. "This analysis
can, of course, be carried out for any point in the
Brillouin zone such that by using the transformation
properties of spin waves and the character tables one
may obtain the spin-wave band structure throughout
the zone.

emote added irz proof It has .come to the attention of
the authors that the nonmagnetic space group P4s/mrzzzz
has also been considered by K. Olbrychski t Bull. acad.
polon. sci. 9, 537 (1961)]. However, he has omitted
the points Z, A, and M on the zone surface as well as
the time reversal degeneracies.

' Basis functions for the representations contained in this
work have been obtained, and are included in the thesis sub-
mitted to Vale University in partial fulfillment of the require-
ments for the Ph. D. degree, by J. 0. Dimmock. The transforma-
tion properties of the spin-wave states for all points in the Brillouin
zone are contained in these tables.

'r F. KeA'er and C. Kittel, Phys. Rev. 85, 329 (1952).
' F. M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 114,

705 (1959). See also R. C. Ohlmann and M. Tinkham, ibid 123, .
425 (1961).

ACKNOWLEDGMENTS

One of us (J. O. D.) wishes to thank Dr. J. M.
Hastings and Dr. L. M. Corliss of the Brookhaven
National Laboratory for informing him of the more
recent magnetic structure determinations. ""

"T.Moriya, Phys. Rev. 117, 635 (1960).


