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From Eqs. (23), (24), and (25), we obtain the desired
relationship between (p and )phr, '(0) for $p and Xr, (0)7:

$p= Aspsks/4rre ep (0)y)pXr, (0) (26)

If we substitute into Eq. (26), gpXr, '(0) =0.319
&(10P (A)', obtained by extrapolating to T=O'K, the
measured values for $pXr, ep(0) = 1.75k T„where
T,=3.41'K; and y=1.7 mJ/mole-degs, which is the
average of calorimetric values obtained by Clement and
Quinnell, ' and Bryant and Keeson, " we obtain
ps =2800 A, in remarkable agreement with 2600&400 A
obtained by curve-fitting. From Eq. (24), we obtain
pl=0. 98&(10 "0-cm' for the above values of (per, '(0)
and ep(0). This value for pl is quite a bit larger than the
value of 0.57)&10 "0-cm' reported by Dheer, but
agrees reasonably well with the value of 0.89&10 "
0-cm' obtained by Roberts.

Although thickness effects have been emphasized in

"J.R. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953).
'8 C. A. Bryant and P. H. Keesom, Phys. Rev. I.etters 4, 460

(&960'.

this paper, impurity effects can also be calculated
through their effect upon $ and this will be the subject
of a subsequent paper. For according to the Pippard
theory,

1/& = 1/&p+1/l (2&)

In addition, this model can be extended to properties
of films other than the critical fields. For through
Eqs. (6) and (10), nonlocal equations for 5p may easily
be obtained. From these, nonlocal relations for surface
energy, critical current, etc. , might be obtained and
compared with experiment. Finally, it is clear that
although only the Pippard kernel has been discussed in
this paper, calculations could be carried out for other
kernels.
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Considerations of the thermodynamics pertaining to the critical field of small superconducting samples of
various shapes results in an explicit relation for the ratio of the critical field of small samples to that of bulk
in terms of the magnetic moment. The magnetic moment has been calculated using Miller's modification
of the Bardeen-Cooper-Schrieffer kernel which includes mean free path. The critical-field ratios of various
shapes in decreasing order are sphere, cylinder in parallel field, cylinder in transverse field, and plate in
parallel field. The findings are compatible with the fact that dislocations (cylinder like) may be the filaments
responsible for hard superconductivity. Under certain conditions the filaments could be numerous and large
enough for an appreciable fraction of the sample to appear superconducting in a specific heat measurement.
The size of the Blaments would also account for the lack of latent heat observed in hard superconductors.
Because of the relative orientation of dislocations with respect to the applied field, not all dislocations will
serve equally as filaments, thus explaining the current density vs critical-field curve and accounting for an
anisotropic critical Beld when there is a preferred orientation of dislocations.

I. INTRODUCTION

'HE problem under consideration is the calculation
of the stabilization, with respect to transition to

normal state in a magnetic field, of a superconducting
sample of small size. The transition of a material in a
magnetic field is the result of the competition of two ef-
fects; the lower Gibbs free energy of electrons in the
superconducting state, and the increase in free energy
caused by the Meissner effect. %hen the sample is small,
however, a nonvanishing fraction of the sample is pene-
trated by the magnetic field so that field exclusion is
not as strong a destabilization factor.

In this paper, some of the thermodynamics involved
in the problem will be reviewed. The relations for the

critical fields will be derived in terms of the London and
Bardeen-Cooper-SchrieGer (BCS) theories. Finally,
explicit re'suits will be obtained for several specimen
shapes, and examined with reference to filaments as
the possible explanation of hard superconductivity.

II. THERMODYNAMICS

The Gibbs free energy for a superconductor may be
expressed as

&G= —R tlHp,

where K is the total magnetic moment of the sample,
and Ho is the externally applied field.

In order to find the difference between a super-
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conducting and a normal small sample in a magnetic
field Hp, Eq. (1) may be integrated along the following
path (n= normal, s= superconducting, sm= small

sample, b =bulk sample, II,=bulk critical field,
V = sample volume):

(a) n(Hp, sm) ~ n(Hp, b),

(b) n (Hp, b) —+ n(H„b),

(c) n (H„b) —+ s(H„b),

(d) s(H„b) —+ s(0,b),

(e) s(0,b) ~ s(0,sm,),
(f) s(0,sm) ~ s(Hp, sm),

SG=~G,„„;
KG=0.
KG=0.

AG= HP V—/Sir;

aG=-SG,„,&,

DG= —K Hp/2.

Hd, = —UH '/4m (3)

where H~ is the critical field of a sample of characteristic
distance d. This result is equivalent to that used by other
authors.

Relation (3) excludes possible nonlinearities as con-
tained, for example, in the Ginzburg-I. andau theory. '

However, the free-energy difference between super-
conducting and normal states can be formulated as
Ginzburg' has shown in his Eq. (2.2) by

G, —Gi, ————,'% H, —VHP /Srr+ (VH '/Spr) (4 '—1)'

where 4'ps=%'/4'„' is the order parameter. The extra
term represents the additional surface free energy of
the Ginzburg-Landau theory. For very thin samples,
when %0 can be considered as constant, the magnetic
moment is calculated in the same way as in the London

' V. L. Ginzburg and L. D. Landau, J. Exptl. Theoret. Phys.
{U.S.S.R.) 20, 1064 {1950).

~ V. L. Ginzburg, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 113
1(958); Ltranslation: Soviet Phys. —JETP 7, 78 (1958)g.

The free-energy change of step (b) is zero because the
field self-energy has not been included in G, and %=0.
By definition of equilibrium, (c) has AG equal to zero.
The free-energy change of (d) is obtained by substitut-
ing 9R= —HpV/4ir in Eq. (1).In (e), it is assumed that
there is no difference between the surface free energies
or normal and field-free super conducting material.
Finally, (f) is obtained from Eq. (1) using the propor-
tionality between gg and Hp. Equation (1) integrates to

G,—G = —(1/2)gg Hp —VII '/Sm (2)

The normal state has been chosen as reference, so
that the term —VHP/87r represents the stabilization
associated with superconductivity, while —(1/2) II Hp
represents the destabilization due to the Meissner
effect.

It is not generally correct to study transitions ex-
clusively by Eq. (2), since an intermediate state could
have a lower free energy than either pure phase. Never-
theless, for small samples where the 8 field is more or
less uniform over the sample one can expect the range
of intermediate state to be narrow, and the transition
to occur when G,—G =0; i.e., when

where k is a proportionality constant depending on the
shape. In the weak-field limit, when%'p~1, Hd/H, = kh, /d
but in the strong-field limit, when +p —+0, Hz/H,
=kv2X/d. In other words, the nonlinearities may be
taken into account for thin samples by introducing a
factor of 2 in the right-hand side of Eq. (3), replacing
it by

Hs = —VHP/2irK. (3')

III. LONDON THEORY

Equation (3) may be applied to various shapes. The
resulting critical 6elds can be compared with that ob-
tained by London' for a thin film of thickness d with a
magnetic field parallel to the plane of the film

Hd/H, = [1—2X/d tanh (d/2X) 1 '.

When d/2X«1, Eq. (4) reduces to

Hg/H, =&3/x,

where x=d/2)t and X is the London penetration depth.
In the strong-field limit,

Hd/H, =+6/x.

The field outside a cylinder of radius R in a transverse
magnetic field is generally given by

B=[Hp(1 aR'/r') cos8je, —
—[Hp(1+aR'/r') sino]ep, (6)

where u is related to the magnetic moment per unit
length of the cylinder by

K= —1/2 (R'aHp). (7)

By solving the London equation for this geometry,

' F. London, SNPerglids (John Wiley R Son, Inc., New York,
1950), Vol. 1.

theory except that the penetration depth X which ap-
pears in K should be replaced by X/4'p. In the weak-field
limit, where +p is approximately unity, Eq. (2) is
recovered.

On the other hand, in studying critical fields one must
employ the strong-fieM approximation, where Eq. (3)
is replaced by

%ps (2 4'ps) 1

4~—(mt/V) H, H:
For very thin shapes, one may make an expansion of

K in terms of 4'p, which shall be shown below to start
with a quadratic term of the form:

K/ V = —(k'+p'd'/4~X') Hp.

Therefore, the transition will occur when

H 2/HP —k2[@ 2(2 @ 2)) 2/+ sdsj
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Schafroth4 finds

a= 1—2)tIi (R/)t)/Mp (R/)~), (8)

When x«1, relation (13) reduces to

IId/H, = (+10)/x,

and if one takes into account the correction for inter-
mediate state

wht:re Ip and IJ are, respectively, zero- and first-order
modified Bessel functions. Substituting (7) into Eq. (3)
yields

(14')

One is aware of the fact that the London theory is
not a proper description of the problem. Schafroth'
has formulated the magnetic moment of a slab and cylin-
der in parallel field in terms of an arbitrary kernel. The
BCS kernel E(q) is defined by the equation

(10)Hd/H. =2/x;

and in the strong-field limit,

H,/H, = I,2P 2I, (*—)/xI (*)j}—'- (9)
H~/H. = f(V'10)/xhD —(x'/30)).

where x=R/X. As x tends to infinity, Hq/H 1/K2.
In the strong-field limit,

This artifact, at first surprising, may be considered to Hg/H, = (+20)/x.
be the result of averaging the B field on the surface of
the cylinder. If instead, one considers the local field at IV. NONLOCAL THEORY
0=pr/2 and r=R, then B= 2H pe—p and the intermediate
state sets in when Hq=II, /2.

When x«1, relation (9) reduces to

Hd/H, = (g8)/x. (10') j (tl) = —(~/4~)&(q) a(q), (15)

One might question the exact validity of relation (10)
on the basis that an intermediate state could develop
at a slightly lower critical field if one considered local
rather than average magnetic induction. Referring to
relation (6)

(B(&=~/2 i r=R)
i
=2HpLIi(x)/xIp(x) —1j,

which is equal to —2Hp, when x is large. When x(&,1,
however,

~
B

~

=Hp(1+ srxp) and the value actually used
in relation (10) was ~B~ =Hp. Therefore, the maximum
deviation from the externally applied field IIp is only
gx Hp and intermediate state would set in when

Hg/H, = (2/x) L1—
srx'$.

Consequently, relation (10) is quite accurate for small

enough cylinders.
The critical field of a small cylinder in a parallel field

is found, in the same manner, to be

Hp/H. = L1 —2Ii(x)/xIp(x)7 —1;

)t (q) = —E'(q)/4irq'. (17)

In the limit of small q, i.e., the London limit, E(q) =XI.
and consequently x(q) = —(4irq9 &') '.

In the large-q limit, one can use a modification of
the BCS kernel introduced by Miller' which takes into
account the mean free path, L Therefore, when 7rq)p))1,
ql))1,

y, (q) = — 1— 1n(irqgp) —,(18)
16q9,1,'(T) $p x'q$p ~q$

where j(il) and a(q) are, respectively, the Fourier
transforms of the supercurrent and the vector potential.
The Schafroth' kernel g(q) is defined by the relation
between the Fourier transforms of the magnetization
and the induction

M(a) =x(q)B(q). (16)

With the use of the equation j= cV'X M one can easily
show that, for bulk,

and when x«1, relation (11) reduces to

Hg/H, = (+8)/x;
and in the strong-field limit,

Hd/H, =4/x.

(12)

(12')

where )tr, (T) is the London penetration depth at T'K.,
and Pp is the coherence distance. Following a theory
developed by May and Schafroth, r B and PQ are ex-
panded in terms of a complete orthonormal set u~,
such that

(19)
Finally, this calculation can be applied to the case

of a sphere where'

R= —1/2 (HpR') L1—(3/x) cothx+ (3/x') $.

Substitution of this moment in relation (3) yields

Hq/H, = (ss t 1—(3/x) cothx+ (3/x') j}—'. (13)

Again as x approaches infinity, Hp/H ~Q(2/3), as a
result of the averaging of 8 on the surface of the sphere.

4 M. R. Schafroth, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1960), Vol. 10.

(20)

(u, )~~=0 on Z. (21)

Here, (us)~~ denotes the tangential components of ui
on the surface Z of the superconductor.

P The strong-field limits given in relations (5'), (10'), (12'),
and (14') have been derived in a different fashion by V. P. Silin
fJ. Exptl. Theoret. Phys. (U.S.S.R.) 21, 1330 (1951)j.' P. B. Miller, Phys. Rev. 113, 1209 (1959).

7 R. M. May and M. R. Schafroth, Proc. Phys. Soc. (London)
74, 158 (1959}.
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In the case of a plane slab, where —oo(y, s(+ oo

and 0 &x&d, Schafroth4 has shown that

us ——(2/V)& sin(orkx/d)e„ (22)

where e, is a unit vector along the s axis, V =dL' is the
volume of the slab, L is the periodicity length along the

y and 3 axes, and k= 1, 2, 3,
It then follows that

For the cylinder in a transverse field, the same ap-
proach is used as the one developed by May and Schaf-
roth' for the case of the sphere. The sl, 's are now the
solutions of Jr(s)/s —Jp(s)=0 and the total magnetic
moment is given by

1 4s-X(so/R)

R'H, —2K s=r (ss' —1) 1—47rx(so/R)
Ms= $(8V)&/prk]HQX(qs)/$1 —4pr&(qs)], k odd, (23)

Substituting relation (29) into Eq. (3 ) and following
k k even,

the same technique as before yields
where qs ——hark/d. The total magnetic moment K, in
the case of specular reQection, can be obtained using

M(r) = PsMoug, (r),

2.52
H&/H = L1+0.14(R/$o) +0 35(R/l)] (30)

x(R/(o) -'

Hs/H, = f1+—0.0825(d/$o)+0. 2(d/l)], (25)
x(d/2&p):

where x=d/2Xr, .'
For the cylinder in parallel field, the total magnetic

moment as given by Schafroth' is

4IIO V x(ss/R)

o ss' 1—4rrx(ss/R)
(27)

where V =xR'L is the volume of the period of the cylin-
der. The sj,'s must be chosen so that the boundary condi-
tion (21) is satisfied, and consequently are the roots of
the equation Jp(s)=0. Using the BCS-Miller kernel
(18) in Eq. (22) and summing numerically yields, after
substitution in Eq. (3'),

4.05
Hd/H. = [1+0.1(R/$o)+0. 25(R/l)], (28)

x(R/4)'*

where x=R/Xr, .
s Since our calculation, a formula for Hs/H, in the case of a

thin 61m has been reported by R. A. Ferrell and A. J. Glick at
the American Physical Society, New York Meeting, January,
1962 LBull. Am. Phys. Soc. 7, 63 (1962)j. They (and, inde-
pendently, A. M. Yoxen) obtain the same functional dependence
in d, go, and Xz, as Eq. (25).

M= dsr M(r) (Hp/Ho)

X(qs)=Zs.ss Ho (24)
( k) 1—4 X(q,)

Substituting (24) into Eq. (3) will yield the critical
field of a slab for any chosen kernel. If one chooses the
London kernel of Eq. (17), the summation in Eq. (24)
may be evaluated by contour integration, and one 6nds
again the result described by Eq. (4). If, however, one
substitutes in Eq. (24) the BCS-Miller kernel of Eq.
(18), the summation can only be performed numerically.
After some algebra and substitution in Eq. (3'), one
finds

In the case of the sphere where May and Schafroth'
calculated the susceptibility using a Hogoliubov kernel,
one obtains, using instead the BCS-Miller kernel:

4.87
Hd/H = L1+0.085R/$p+0. 21(R/lr)]. (31)

x(R/Pp) '*

V. DISCUSSION

If defects such as dislocations are indeed the filaments
responsible for the phenomenon of hard superconduc-
tivity, one may be able to approximate qualitatively
these dislocations by circular cylinders. The small
cylinder is a more stable shape with respect to transi-
tions in a magnetic field than a thin film of comparable
thickness, as may be seen by comparing the numerical
coefficients of Eq. (5), (10), and (12) for Hs/H, ac-
cording to the London theory. The greater penetration
which one finds in the nonlocal theories enhances this
difference, as may be seen from Eqs. (25), (28), and (30).

It is true, however, that the calculations madeprevi-
ously apply only to thin shapes in vacuum. The cylinders
that are now considered are eventually surrounded by
normal material. One is aware of the fact that the super-
conducting properties of a thin film are a6ected by the
presence of normal metal in contact with it, as discussed
theoretically by Cooper' and shown experimentally
by Meissner" and later on by Smith and his co-workers. "
However, some doubt is still present in such experi-
ments, as conceivably the effect could be due to dif-
fusion as pointed out by Rose-Innes and Serin."Fur-
thermore, all these experiments were conducted on soft
superconductors. In a hard superconductor, where the
theory of dirty superconductors is more likely to apply,
the superconductivity associated with a dislocation
could conceivably be so strongly localized by the strain

L. N. Cooper, Phys. Rev. Letters 6, 689 t', 1961).
' H. Meissner, Phys. Rev. 117, 672 (1960)."P.H. Smith, S. Shapiro, J.L. Miles, and J. Nicol, Phys. Rev.

Letters 6, 686 (1961).
"A. C. Rose-Innes and B. Qzrpn, Phys. Rev. Letters 7, 278

(1961).
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field of that defect, that the surrounding normal ma-
terial would not inAuence it appreciably.

In order to obtain an order of magnitude estimate of
the effective size of the filaments take Ha/H, =30,
which is a typical figure for hard superconductors,
)tr, ——5X10 ' cm and fo 2——.5X10 ' cm. For the most
favorable orientation of filaments, i.e., parallel to
the field, the first term of Eq. (28) yields E 2X10 '
cm. Thus, for a well deformed sample or for an inhomo-
geneous intermetallic compound, the density of dislo-
cations could be as high as 4)(10" per cm, which
corresponds to a mean separation of 5&10 ' cm,
approximately the diameter of the filaments calculated
above. This may explain why at 70 kG Morin etc/. "have
found that the electronic specific heat corresponds to a
large fraction of the electrons still being superconduct-
ing. In the case of niobium it was found" that the bulk
critical field is approximately 1 kG at 4.2'K while the
ultimate critical field under zero current, probably due
to the best filaments, is about 12 kG. For an Ha/H, ratio
of 12, using the same penetration depth and coherence
length as before, one finds an effective radius of 4)(10 '
cm. Morin has conducted specific heat measurements
on samples which were only deformed by tension, and
consequently may be expected to have a mean disloca-
tion separation of the order of 10 4 cm. An overwhelm-

ing fraction of the material is therefore bulk, and Morin"
Ands predominantly normal electronic specific heat
curves in 6elds exceeding the bulk critical field.

The concept of filaments also predicts the absence
of a latent heat for the superconducting to normal tran-
sition in hard superconductors, such as V3Ga, where the
6laments are nearly overlapping. On the basis of the

"F.J. Morin et at , Bull. Ain.. Phys. Soc. 7, 190 (1962)."J.J. Hauser and E. Buehler, Phys. Rev. 125, 142 (1962).

Ginzburg-Landau theory, Gjnzburg" and Douglass"
have shown that for small samples, of characteristic
distance less than (+5))%,, the energy gap goes continu-
ously to zero as the critical field is approached, so that
the transition is second order. The filaments definitely
satisfy this size condition so that they will not release
any latent heat when they turn normal.

Comparison of relations (28) and (29) for cylinders
in parallel and transverse field indicates that cylindrical
filaments will have a di6erent critical field depending on
their relative orientation with respect to the externally
applied field. Consequently, not all dislocations will
have the same stability with respect to transition in the
field, and the current will tend finally to run in the dis-
locations closest to the direction of the applied field. A
preferred alignment of dislocations resulting from some
mechanical treatment would, therefore, lead to anisot-
ropic properties of the critical fields such as the one
reported by LeBlanc and Little as well as by Berlin-
court, Hake, and Leslie" on Nb-Zr alloys. The anisot-
ropy in critical Geld as related to anisotropy in plastic
deformation has actually been observed by Hauser" on
Re single crystals which can be deformed predominantly
on one slip system.
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