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neglected those self-energy terms which are also present
in the normal state, i.e., t„and X„. Second, we have
employed the normal state dielectric constant. Third,
the energy gap, i.e., p„, has been approximated by the
constant BCS value ep. The errors in the ratio P„&"'/
F„I'""which have been introduced by making the first
two of these approximations are insigni6cant because
they turn out to be of order (ep/&pii)'. However, a
consideration of the dependence of the gap on the
energy and the resulting modification in the density
of states might give rise to a significant change in this
ratio.

It also would be of great interest, especially with
regard to the theory of thermal conductivity, to see how

the ratio P„p" '/I'„'"" is altered when we go to finite
temperatures. This calculation will be presented as
part of a forthcoming investigation which is based on
an extension of Nambu's self-consistency conditions to
the case of 6nite temperatures.
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A theoretical model is presented with which the critical magnetic fields of thin superconducting films can
be calculated from any theory of superconductivity for which the kernel of the current-vector potential
relationship is known. The model is worked out in detail for the nonlocal theory of Pippard with specular
boundary conditions, and the critical field is shown to be a function of film thickness and the nonlocal
parameters $ and )peal, . The results are compared to critical-field data for pure indium films and are found to
predict very well the observed thickness dependence of critical field. On the basis of reasonable assumptions,
Pp and Xz, (0) are calculated from the indium critical Geld data to be 2600&400 A and 350&30A, respectively.

INTRODUCTION

0 interpret critical magnetic 6eld measurements
on superconducting 61ms, a theory is needed

which includes both strong-field effects and nonlocal
effects—strong-6eld, to describe phenomena occurring
at the critical field; nonlocal to adequately describe
thickness and mean-free-path effects. Such a theory
does not exist at present. It is the purpose of this paper
to show how the critical fields of superconducting films
can be related to the nonlocal microscopic parameters
by the use of the Ginzburg-Landau theory' together
with the nonlocal theories. The general scheme is as
follows: Using the Ginzburg-Landau results, the critical
6eld of a 61m is related to its susceptibility in a weak
magnetic field. Using the nonlocal calculations of
Schrieffer, ' the weak-6eld susceptibility is related to the
nonlocal parameters. Combining the theoretical ex-
pressions, the 61m critical field can be expressed directly
in terms of the nonlocal parameters. The resulting model
is compared to critical 6eld data for pure indium 61ms
and is shown to be in good agreement. Because of the

' V. L. Ginzburg and L. D. Landau, Zhur. Eksp. i Teoret. Fiz.
20, 1064 (1950).' J. R. SchrieÃer, Phys. Rev. 106, 47 (1957).

THEORETICAL MODEL

For 6lms thin enough so that the order parameter
Pp can be considered constant over the thickness of the
film, Eqs. (61) and (62) of Ginzburg-Landau' give the
following expressions for the 61m critical field:

(Ir,/II, )'= fp'(2 —imp')/L1 —(1/rf) tanhr) 1,
and

(h /II )'= L4gp'(fp' —1) cosh'ifj/Li —(1/2r)) sinh2r)j,

(2)
where

rf= /pa/fip. — (3)

The quantity a is the film half-thickness, h, is the
film critical 6eld, H, is the bulk critical held, 'and 80 is
the weak-field penetration parameter. For k./H, )1,
Eqs. (1) and (2) can be solved numerically to obtain a

purity of these films, mean-free-path effects are un-
important and the detailed discussion of the theoretical
model is limited to thickness effects. In a subsequent
paper, mean-free-path effects will be discussed in detail
and the results will be compared to critical-field data
for alloy 6lms.
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relationship between k,/H, and 8p/a, which is of the
form

k,/H. =Z(Sp/u). (4)

The function F(8p/a) is plotted in Fig. 1. For
k,/H, )Q(24/5), Eq. (4) simplifies to

k,/H, = (Q6) bp/a. (5)

From Eq. (66) of Ginzburg-Landau, which relates the
magnetic moment of a thin film to the penetration
parameter of the film, we can obtain an expression
relating the 6lm susceptibility in a weak magnetic field

to the weak-6eld penetration parameter:

K/Kp = 1—(8p/a) tanh(u/hp), (6)

where ~ is the film susceptibility in weak field, and ao is
the bulk susceptibility in weak magnetic field. For very
thin films, i.e., 8p/a)&1, we obtain from Eq. (6)

s/~~(1/3) (~/hp)'

By the simultaneous solution of Eqs. (4) and (6), a
relation can be obtained between the film critical field
and the weak-field susceptibility. This is of the form
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FIG. 2. Relationship between film critical field and film sus-
ceptibility as predicted by the Ginzburg-Landau theory. The
quantity Ii,/H, is the ratio of the film critical field to the bulk
critical iield; the quantity «/«« is the ratio of the film suscepti-
bility in a weak magnetic field to the bulk susceptibility in a
weak magnetic field.

k,/H, =G(ir/Kp), ()
Schrieffer, ' assuming specular reRection at 61m sur-

and is plotted in Fig. 2. From Eqs. (5) and (7), the faces, obtainedfor theweakfieldsusceptibilityof athin
thin-film limit of Eq. (8) is obtained. superconducting film

k,/H, = (ir/2«p)-&.
CO

(x/«p). p..=1——Q t k„'+E(k„)] ',
g2 n=o

(10)
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where k„=(2m+1)ir/2a and K(k„) is the kernel obtained
from the relationship between current density and
vector potential.

It is clear that if Eq. (10) is substituted into Eq. (8),
one obtains a quite general relationship between film
critical 6eld and what ever parameters determine the
kernel E. In particular, for the nonlocal theory of
Plppard)

( / p)«„«..=1—2 P —(2n+1)'
n=o

1.6

where

{L1+n'(2m+1)')
Pn'(2n+1)'

Xarctann(2m+1) —n(2m+1)), (11)

I.2 P=-'arr&pXr, '/a' and n= ',irg/a- (12)
I
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FIG. 1. Relationship between film critical field and weak-field
penetration parameter as predicted by the Ginzburg-Landau
theory. The quantity Ii,/EI, is the ratio of the film critical field
to the bulk critical Geld; the quantity Bo/c is the ratio of the weak-
field penetration parameter to the film half-thickness.

In the Pippard model, $ is an effective coherence
distance, $p is the coherence distance in pure material,
and Xr, is the London penetration depth. If now Eq. (11)
is substituted into Eq. (8), the desired expression re-
lating film critical field to the nonlocal parameters

'A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
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foal. ' and $ is obtained.

(13)

where g is a function which can be numerically evalu-
ated. For very thin films, i.e., P»1, n»1, Eq. (11) can
be expanded into a power series in P ' and a ', and the
resulting expression for the susceptibility is

(x/xo) 0 518' '—0.658P-'n '+ (14)

The substitution of Eq. (14) into Eq. (9) yields an ex-

pression for the critical field in the thin-film limit.

(15)

Thus, in the thin-film limit, the critical field should vary
with thickness as a:.

For the case of random scattering, Schrieffer's ex-
pression for the susceptibility is more dificult to calcu-
late and involves the solution of an integral equation. A
result, valid only in the thin-film limit, is given by
Rogers' as
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FIG. 3. The variation with film thickness of the ratio of 61m
critical Geld to bulk critical Geld. The curves are calculated from
Eq. (13) of the text for various values of fpliro, holding P fixed.

Substitution of Eq. (16) into Eq. (9) gives the critical
field in the thin-film limit to be

(fs,/H, )„„2.31(( X '/a') l. (17)

Comparison of Eq. (17) to Eq. (15) indicates that the
nonlocal calculation is not too sensitive to the type of
surface scattering assumed. Except for the numerical
coefFicient, Eq. (17) is similar to limiting expressions
obtained by Douglass' and Ferrell and Glick. '

DISCUSSION OF RESULTS

In Figs. 3 and 4, are shown plots of critical field vs
film thickness calculated from Eq. (13) on the IBM 7090
computer for various values of the nonlocal parameters
$oXr,' and $. In Fig 3, curv.es A, 8, and C were calculated
for different values of goer, s, holding P Fixed. In the limit
a ~ oo, the curves converge, for in this limit fs,/H, —+ 1.
In the limit a ~ 0, the curves are parallel to one another
and have a slope of —~, as one would expect from the
limiting law of Eq. (15). In Fig. 4, curves A, 8, and C
were calculated for various values of $, holding baal,

s

fixed. Here the curves must converge, not only in the
limit a —+ oo, but also in the limit a —+ 0 Las Eq. (15)
predicts'. Consequently, the calculated value of critical
field is, in general, more sensitive to changes in bXr,
than to changes in $.

In Fig. 5, the theoretical model is compared to experi-
mental data obtained for indium films. The critical-field
data shown were obtained at T=0.9T, and 0.95T,. The

4 K. T. Rogers, Ph.D. thesis, University of Hlinois, 1960
(unpublished).' D. H. Douglass, Jr., Phys. Rev. 124, 735 (1961).' R. A. Ferrell and Arnold J. Glick, Bull. Am. Phys. Soc. 7, 63
(1962}.

7 A. M. Toxen, Phys. Rev. 123, 442 (1961).

best 6t to the data is estimated to be )oXr, '(0.9T,)
=(1.62&008)&&10o (A)', joker, '(095T.)=(3.23&0.16)
X10o (A)', and (=2600&400 A at both temperatures.
In practice, the values for (oXr, ' are largely determined
from the thin-Film critical-field data; the value for $ is
largely determined by the thick-film data. Hence, the
values for Poke,

' and ( are very nearly independently
determined. Residual resistivity measurements made
upon these films~ indicate that the intrinsic electronic
mean free path in the normal state at low temperatures
is greater than 10' A. Hence, it can be assumed that

$o with an error of no more than about 2%. It then
follows that for $o ——2600+400 A, one can calculate from
the above values of eohr, ' the following values for Xr, '.

Xl,(0.9T.)=790%60 A and Xr,(0.95T,) = 1115%90A.
There are several criteria by which we can check

this model.

(1) The observed thickness dependence of critical
field is. in very good agreement with that predicted by
the model.

(2) The fact that P is temperature independent (at
the two temperatures shown) is consistent with the
prediction of the BCS' theory.

(3) The temperature dependence of Xr, obtained from
the data of Fig. 5, t foliz'(0. 95T~)/Polir. '(0.9T.)$'=1.41
is in good agreement with the theoretical calculation of
Muhlschlegel, ' who also obtained

Xl, (0.95T.)/Xr. (0.9T,) =- 1.41.

(4) Using Miihlschlegel's results, Xr, (0) can be
calculated from Xr,(0.95T.) or Xl.(0.9T,) and is Xr, (0)

J. Bardeen, L. N. Cooper, and J. R; Schrieffer, Phys. Rev.
108, 1175 (1957).

9 S. Muhlschlegel, Z. Physi& 155, 313 (1959).
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=350&30 A. From ) c(0) and $s, the bulk penetration
depth at T=O'K, ) (0), can be calculated from either
the Pippard theory or the BCS theory, and the result
can be checked against experiment.

From the Pippard theory,

)00

where

X/) „1+1.1007('h„/$e)" "',

31/6

(f ) 2)1/s

9 (2n-)"'

(18)

Xz,'(0) =m*c'/4rree' (20)

l00

for specular reflection. From Eqs. (18) and (19), X(0)
is 486 A. From BCS, for (s/Xc(0) = 7.4, X(0)/Xc(0)~1.4,
giving for X(0) the value 490 A. These values for X(0)
lie within about 10'Pc of the experimental value reported
by Dheer, "430~20 A, which is good agreement.

Although the bulk penetration depth calculated from

$e and ) c(0) is in good agreement with the measured
value reported by Dheer, the values of $p and Xr, (0)
taken individually are not in very good agreement with
values calculated by Dheer from his normal-state high-
frequency surface impedance measurements. Dheer ob-
tained for these quantities, Xr.(0)= 205 A, and
$p =4400 A, compared to Xl,(0)=350+30 A and
$s

——2600+400 A. From a free-electron model calcula-
tion, it can be shown that the values of Xr.(0) and $p

obtained from the data of Fig. 5 are self-consistent but
imply a value of surface impedance different from that
measured by Dheer. The London penetration depth can
be related to the normal-state free-electron parameters
in the following way":
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FIG. 5. Comparison of the theoretical model to experimental
data. The solid curves are calculated from Eq. (13) of the text
for the values of the nonlocal parameters indicated. The dots and
pluses represent critical-field data for indium films.

where m* is the electronic effective mass, e is the elec-
tronic charge, and e is the density of electrons. The dc
resistivity is given by"

p = rrs*rj g/nc'l, (21)

(0c) =c'pl/4m' F (22)

The expression for the coherence length, $s, is given
by BCS to be

where vp is the Fermi velocity, and / is the electron
mean free path. From Eqs. (20) and (21), one easily
obtains the relation

(s——he p/m ep(0), (23)

where ee(0) is the energy gap at T=O'K. Combining
Eqs. (22) and (23), we obtain

$o) r.'(0) =Ac'pt/4n-'ee(0) (24)

lo
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FIG. 4. The variation with film thickness of the ratio of film
critical 6eld to bulk critical 6eld. The curves are calculated from
Kq. (13) of the text for various values of g, holding /pe, l, fixed.

'e P. N. Dheer, Proc. Roy. Soc. (London) A260, 333 (1961)."F.London, SNperfllids (John Wiley 8z Sons, Inc. , New York,
1950), Vol. 1, p. 60.

which relates bXr, '(0) to two measurable quantities:
ee(0), which has been measured in several ways for
indium;"" and p/, which can be obtained by high-
frequency surface impedance measurements, such as
those made on indium by Dheer and Roberts. '5 From
Eqs. (2, 11, 3), (2, 11, 8), and (11, 7, 18) of Ziman, "we
can relate vp to pl and to y, the coefficient of electronic
specific heat in the normal state.

=( '&'/ ')(1/ ~). (25)

"A. H. Wilson, Theory of Metals (Cambridge University Press,
New York, 1953), p. 248."R. W. Morse and H. V. Sohm, Phys. Rev. 108, 1094 (1957).

r41. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961)."D. C. Roberts (unpublished). See T. E. Faber, Proc. Roy.
Soc. (London) A241, 531 (1957).

J. M. Ziman, E&lectrons and Phonons (Oxford University
Press, New York, 1960).
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From Eqs. (23), (24), and (25), we obtain the desired
relationship between (p and )phr, '(0) for $p and Xr, (0)7:

$p= Aspsks/4rre ep (0)y)pXr, (0) (26)

If we substitute into Eq. (26), gpXr, '(0) =0.319
&(10P (A)', obtained by extrapolating to T=O'K, the
measured values for $pXr, ep(0) = 1.75k T„where
T,=3.41'K; and y=1.7 mJ/mole-degs, which is the
average of calorimetric values obtained by Clement and
Quinnell, ' and Bryant and Keeson, " we obtain
ps =2800 A, in remarkable agreement with 2600&400 A
obtained by curve-fitting. From Eq. (24), we obtain
pl=0. 98&(10 "0-cm' for the above values of (per, '(0)
and ep(0). This value for pl is quite a bit larger than the
value of 0.57)&10 "0-cm' reported by Dheer, but
agrees reasonably well with the value of 0.89&10 "
0-cm' obtained by Roberts.

Although thickness effects have been emphasized in

"J.R. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953).
'8 C. A. Bryant and P. H. Keesom, Phys. Rev. I.etters 4, 460

(&960'.

this paper, impurity effects can also be calculated
through their effect upon $ and this will be the subject
of a subsequent paper. For according to the Pippard
theory,

1/& = 1/&p+1/l (2&)

In addition, this model can be extended to properties
of films other than the critical fields. For through
Eqs. (6) and (10), nonlocal equations for 5p may easily
be obtained. From these, nonlocal relations for surface
energy, critical current, etc. , might be obtained and
compared with experiment. Finally, it is clear that
although only the Pippard kernel has been discussed in
this paper, calculations could be carried out for other
kernels.
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Considerations of the thermodynamics pertaining to the critical field of small superconducting samples of
various shapes results in an explicit relation for the ratio of the critical field of small samples to that of bulk
in terms of the magnetic moment. The magnetic moment has been calculated using Miller's modification
of the Bardeen-Cooper-Schrieffer kernel which includes mean free path. The critical-field ratios of various
shapes in decreasing order are sphere, cylinder in parallel field, cylinder in transverse field, and plate in
parallel field. The findings are compatible with the fact that dislocations (cylinder like) may be the filaments
responsible for hard superconductivity. Under certain conditions the filaments could be numerous and large
enough for an appreciable fraction of the sample to appear superconducting in a specific heat measurement.
The size of the Blaments would also account for the lack of latent heat observed in hard superconductors.
Because of the relative orientation of dislocations with respect to the applied field, not all dislocations will
serve equally as filaments, thus explaining the current density vs critical-field curve and accounting for an
anisotropic critical Beld when there is a preferred orientation of dislocations.

I. INTRODUCTION

'HE problem under consideration is the calculation
of the stabilization, with respect to transition to

normal state in a magnetic field, of a superconducting
sample of small size. The transition of a material in a
magnetic field is the result of the competition of two ef-
fects; the lower Gibbs free energy of electrons in the
superconducting state, and the increase in free energy
caused by the Meissner effect. %hen the sample is small,
however, a nonvanishing fraction of the sample is pene-
trated by the magnetic field so that field exclusion is
not as strong a destabilization factor.

In this paper, some of the thermodynamics involved
in the problem will be reviewed. The relations for the

critical fields will be derived in terms of the London and
Bardeen-Cooper-SchrieGer (BCS) theories. Finally,
explicit re'suits will be obtained for several specimen
shapes, and examined with reference to filaments as
the possible explanation of hard superconductivity.

II. THERMODYNAMICS

The Gibbs free energy for a superconductor may be
expressed as

&G= —R tlHp,

where K is the total magnetic moment of the sample,
and Ho is the externally applied field.

In order to find the difference between a super-


