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There are two electromagnetic modes in a plasma-beam system:
the unstable "hybrid" mode characterized by the occurrence of a
longitudinal component of the electric intensity K, and the trans-
verse mode which does not show an instability and is characterized
by the occurrence of a longitudinal component of the magnetic
induction B. The behavior of this system is described in terms of
macroscopic quantities such as the electric displacement 9 and
the magnetic intensity H. The unstable hybrid mode in a plasma-
beam medium is compared to related hybrid instabilities produced
by a beam in a medium comprising harmonic oscillators. It is thus
shown that the hybrid instability produced in a plasma is of type
"l,"as defined in Part I. Applying the appropriate criterion, it is
found that the hybrid instability and the associated longitudinal
instability are convective for 8&0, where 8 is the angle formed by
the direction of the beam and the direction of the growing waves
resulting from these instabilities. For s approaching v/2 the insta-
bility produced by the beam becomes aperiodic. The plasma-beam

system is electromagnetically anisotropic and its anisotropy is in-
vestigated with reference to transverse and hybrid waves, For
transverse waves the anisotropy is described in terms of a de-
pendence between p and 0, where p is the angle formed by the
vectors H and B.For hybrid waves the anisotropy is investigated
in the "region of transparency" and in the "region of instability. "
In the region of transparency there is a dependence between p~

and 8, where f is the angle formed by the vectors 9 and E. In the
region of instability there is a similar angular dependence and also
a phase difference between the longitudinal and transverse com-
ponents of the electric intensity E. Some of the eGects produced by
a beam in a thermal plasma are investigated in hydrodynamic
representation. A formal analogy is established between the
Vavilov-Cherenkov effect produced by a single partic1e passing
through a thermal plasma and the longitudinal instability pro-
duced by a beam having the same velocity as the particle. This
analogy does not apply to hybrid waves.

INTRODUCTION

N electron beam passing through a plasma
produces an instability which may be either

"electrostatic" or "electromagnetic. " The electrostatic
("longitudinal" ) instability (due to the collective effect
of Coulomb forces) has been extensively discussed in
the literature. ' The electromagnetic instability reported
by Xeufeld and Doyle' is characterized by growing
waves in which the electric intensity E has a component
in the direction of the wave vector k. This instability
is designated as "hybrid, " i.e., it is neither "longi-
tudinal" nor "transverse. " The plasma-beam medium
comprises also a transverse mode in which E is per-
pendicular to k. This mode does not exhibit an
instability. '

Part I of this investigation deals with properties of a
medium in which an electron beam passes through a
cold plasma. This part is essentially a continuation of
the work reported by Neufeld and Doyle' (referred to
hereafter as paper I), by Neufeld' (referred to as
paper II), and by Neufeld and Wright' (referred to as
paper III).

The behavior of the plasma-beam medium is de-
scribed phenomenologically in terms of macroscopic
field quantities such as the electric displacement D and
the magnetic field strength H. The phenomenological

~ Operated by Union Carbide Corporation for the U. S. Atomic
Energy Commission.

' See, for instance, A. I. Akhiezer and IA. B. Fainberg, Zhur.
Eksp. i Teoret. Fiz. 21, 1262 (1951);A. V. Haeff, Phys. Rev. 74,
1532 (1948); J. R. Pierce, J. Appl. Phys. 20, 1060 (1940); D.
Bohm and E. P. Gross, Phys. Rev. 75, 1851; 1864 (1949); 79,
992 (1950).' Jacob Neufeld and P. H. Doyle, Phys. Rev. 121, 654 (1961).

~ See, for instance, S. A. Bludman, K. M. Watson, and M. N.
Rosenbluth, Phys. Fluids 3, 747 (1960), or reference 2.

4 Jacob Neufeld, Phys. Rev. 123, 1 (1961).' Jacob Neufeld and Harvel Wright, Phys. Rev. 124, 1 (1961).
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representation is of interest since in current literature
these macroscopic field quantities have not been defined
in accordance with the theories of Maxwell and Lorentz.
There exists at present a difference of opinion as to
what constitutes an "electric displacement" or a
"magnetic-field intensity" in a gaseous medium char-
acterized by a nonisotropic velocity distribution.
According to paper II, such commonly used concepts
as the "electric displacement" or the "dielectric con--
stant" do not designate a purely electrical entity since
they are intrinsically related to the magnetic properties
of the medium. In the present investigation magnetic
properties of a structurally nonisotropic medium have
been taken into account, and the macroscopic field
quantities such as D and H have been redefined in
accordance with the formulation given in paper II.

The phenomenological representation is particularly
adapted to the study of electromagnetic anisotropies.
Various angular relationships are established between
vectors representing the macroscopic quantities D and
H and the corresponding vectors representing micro-
scopic quantities R and the magnetic induction B.

An investigation is made of the hybrid instability
produced in a plasma by a beam. This instability is
compared with similar instabilities produced in a
medium containing harmonic oscillators.

Part II of this investigation deals with properties of
a medium in which an electron beam interacts with a
thermal plasma. Particular attention is directed to a
similarity between the instability in a beam passing
through a thermal plasma and the Vavilov-Cherenkov
effect produced by a particle moving in the plasma
with the same velocity as the beam. This similarity is
investigated with reference to an appropriate formula-
tion of the "beam problem" and of the "particle
problem. " It is shown that if the intensity of the
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beam tends to zero, or if the velocity of the beam
approaches the velocity of light, the parameter rep-
resenting the growth of the longitudinal instability
decreases, and in the limit the wave representing
this instability becomes identical with the Vavilov-
Cherenkov wave. The longitudinal instability may,
therefore, be considered as an "extension" of the
Vavilov-Cherenkov effect. A similar situation does not
apply to the hybrid instability.

1. INTERACTION OF A BEAM WITH A COLD PLASMA

1. Electromagnetic Waves in a
Plasma-Beam Medium

(a) Gerterat Properties of a PLasma Beam-Medilm

Some of the most general properties of nonisotropic
dispersive media were investigated by Tellegen, ' who
assumed that the electric polarization P may be
caused not only by the electric field but also by the
magnetic field. He also assumed that the magnetic
polarization M may be caused not only by the magnetic
field but also by the electric field. Thus, in such a
medium one has

electrons in the plasma. One has then

e—=e, (~)= 1—~12/~2

Consider a rectangular x, y, s coordinate system in
which the s axis is aligned in the direction of k, and $
is contained in the plane formed by the s and x axes.
Thus, P,=P1=P sin8; P„=P2 0;——P, =P8 Pc——os8; k,
=k~——0, k„=02=0; k, =k3 ——k. Using the formulation
of paper II, one can express the components of the
tensor y, as follows:

COO g
(X.)»=—e—1+

(p1—ckP cos8)' &p(&p —ckP cos8)

1 &ppsgp2 sin8 cos8
(X.)18=-

42r (rp —CkP COS8)'

Mo g
(X.)22=—e—1—

4r — rp(rp —ckP cos8)

1 cppsgP2 Sin8 COS8 pipsgekP Sin8
(X;)81=-

42r (rp —ckP cos8)' cp(pi —ekP cos8)'

and
P =x,E+n.B,

M =X,„E+a,„B, (2)

1 COO g
(X,)88

———e—1+ (P' COS'8 —1)
48r (p1—CkP COS8)'

where x„n„x,„, and e,„are appropriate tensors.
This investigation deals with a dispersive medium in

which an electron beam passes with velocity V= pc
through a substance having capacitivity c. Such a
medium may be considered from a phenomenological
point of view as a special case of "Tellegen's medium"
in which e,=o..„=o. Therefore, the behavior of this
medium may be described in terms of an electric
susceptibility

(3)X.=—X.(~,k)

and an "electromagnetic susceptibility"

X..—=X..(~,k), (4)

where ~ designates the frequency.
The expressions (3) and (4) depend on the char-

acteristics of the beam and also on the characteristics
of the substance traversed by the beam. The sub-
stance traversed by the beam may comprise harmonic
oscillators of binding frequency ~ uniformly distributed
with density m. In such case the capacitivity of this
substance is expressed as

e= es(rp) = 1 1pi /(rp Cp&P),

where
(pi ——(42rrsie'/m) l.

On the other hand, the substance traversed by the
beam may be a stationary and charge-equilibrated
plasma and in such case e& represents the density of

' B. D. H. Tellegen, Philips Research Repts. 8, 81 (1948).

(Xe)12 (X8)21 (Xe)28 (Xe) 82

where
g= (1—p')',

rd p
——(42rispes/m) -', (10)

and eo represents the electron density in the beam.
The components of the tensor y,„are as follows:

1 ppp gp cos8
(X.,)»= ——

42r p&(cp —CkP COS8)

1 rppsgp cos8 &ppsgckps sin'8—
(X.s)»=-

42r -rp(o& —ekP cos8) rp(p& —ekP cos8)'

cp p'gP sin81
(X")28=-

42r (rd —ckP cos8)'

1 Q)p gp S1118

(X..)82=-
42r pi(cp —ckP cos8)

(X s)11 (X s)18 (X s)22 (X s)81 (X s)88

I D=o,

k B=o,
(12)

(13)

It is assumed that the electromagnetic field varies
with time and space as expi(k r &vt)—

Consider a plane electromagnetic wave passing
through the medium described by the parameters (8)
and (11).The wave satisfies Maxwell's equations,
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~(t) D(t)

of the plasma-beam medium, i.e.,

&nb=1+4~X'

Eliminating B from (14) and (15), one obtains

(16)

(c/ar) kX (kXe„b-'D) —4s.kX~,„e,b—'D

+ (or/c) D =0. (17)

Combining (8), (11), and (16) with (17), one obtains

FIG. 1. System of vectors representing a transverse wave.
where

'R/ST 0
0 W/S
0 0

U/ST Dg
0 D2 ——0,

D3
(18)

and, consequently, kJ D and kJ.B. Using the two
other Maxwell equations, it will be shown that BJ D
and, therefore that B, D, and k are mutually per-
pendicular. Figures 1 and 2 show two systems of
vectors which represent, respectively, two types of
electromagnetic waves that may be transmitted through
such a medium. In the rectangular system of Fig. 1
the vector g is contained in the plane formed by B and
k, whereas in the rectangular system of Fig. 2 the
vector g is contained in the plane formed by D and k.
It will be shown that an electromagnetic wave rep-
resented in Fig. 1 is transverse, i.e., E is perpendicular
to k. Various field quantities associated with this wave
will be designated by a superscript "t." An electro-
magnetic wave represented in Fig. 2 is hybrid, i.e., E
has nonzero components in the direction of k and in the
direction perpendicular to k. Various 6eld quantities
associated with a hybrid wave shall be designated by a
superscript "h."There also exists a third type of wave
motion which is represented by a longitudinal wave
and is characterized by a vector E aligned along the k
direction. The longitudinal wave represents a particular
case of the vector system shown in Fig. 2 in which D,
B, and H shrink to zero and E becomes parallel to k.

T= e—coo'g'/(co —ckP cosH)',

coo'gekP sinH (u p'g'ckP sinH

~(&u —ckP cosH)' oP(~—ckP cosH)'

(20)

W =C k /Ql e+M p g/M &

S= e—(Oo g/M(Q7 ekP cosH).

coo'gek'P' sinH cosH
(21)

ar'(cu —ckP cos8)'

(22)

(23)

Expression (18) is equivalent to the following three
equations:

(W/S)D2=0,

(1/ST) (RDg UD, ) =0, —

D3——0.

Substituting (26) in (25), one obtains

(25)

(26)

c'k' Q) gR= e e +
(~—ckP cosH)'

t e'k2P' sin'8 e'k2
X &I 1—P'+ ——(1—P' cos'8), (19)

M M

(k) Dispersioe Equation

The dispersion equation for a plasma-beam medium
is given in the form of an expression operating on the
vector D (instead of the previous formulation' ' in
which a corresponding expression was operating on the
vector E). This is done in order to point out explicitly
the relationship between the vector D and other quanti-
ties characterizing the electromagnetic Geld (see Figs.
1 and 2).

One can express Maxwell's equations in terms of B
and D as follows:

(R/ST)Dg=0.

X

(27)

kXE= ((u/c)B,

kXB—4skXXs„ebb 'D= —((o/e)D.

(14)

(15)

The expression e~b in (15) represents the capacitivity Fn. 2. System of vectors representing a hybrid wave.
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The expression (24) describes a wave in which the
electric displacement vector D is aligned along the y
axis. This is shown in Fig. 1. Using relationship (16),
one obtains the corresponding electric intensity which
is also aligned along the y axis. Therefore, this wave is
transverse and its dispersion equation is expressed as

8'=0.
The expression (2'7) describes a wave in which the

electric displacement vector D is aligned along the x
axis. This is shown in Fig. 2. Using the relationship
D= (1+ay,)E, one obtains the corresponding electric
6eld strength E which has components in the direction
of k and in the direction perpendicular to k. Therefore,
this wave is hybrid and its dispersion equation is
represented as

(xm(s)i

)Im (8)t

HYBRID

INSTABILITY'7

OF TYPE

TRANSVERSE
IN STABILITY

HYBR
IN STABILlT
OF TYPE

LONGITUDINAL
INSTABILITY

8=0. (29)

The expression (29) was obtained in nonrelativistic
form in paper I.

2. Longitudinal and Hybrid Instability

(a) Comparison of Instabilities in a Plasma with Those
Occtsrring in a Dielectric Ssibstance Comprising

Harmonic Osci Qators

HYBRID
INSTAB ILLT'g
OF TYPE I

)Ze tb)t

TRANSVERSE
INSTABILITY

HYBR
INSTABIt4T
OF T.YPK I

LONGITIOINAL
IN STABII.ITY

(b)

In the study of instabilities produced by a beam, it
is convenient to use the "small ~ approximation. "'
This approximation is valid when

.=~sgf((l ~ I. (3o)

The solution of the dispersion equation is represented
then in the form HYBRID

INSTABILITY
LO N G I TUB IN AL
IN STAB ILI TY

CV =GJ+ b, (31)
(c)

where the "characteristic frequency" c™ois expressed as

~=cd cos8. (32)

The term 6 represents the "frequency increment" due
to the presence of the beam. One has

[3( —+0 when z-+ 0. (33)

The instability occurs when 5 is complex and the term
Im(5), when positive, represents the "excitation
co eflicient. "

Figure 3(a) describes the behavior of a dielectric
substance comprising harmonic oscillators and it
illustrates graphically various instabilities produced in
such a substance as a result of its interaction with the
beam. 5 The beam produces two instability centers and
there are two nonoverlapping frequency ranges com-
prising hybrid instabilities. Thus a distinction is made
between a hybrid instability of type "l" and a hybrid
instability of type "t." The hybrid instability of type"l" represents the "continuation" of the longitudinal
(electrostatic) instability, and the hybrid instability of
type "t" represents the "continuation" of the trans-
verse (Vavilov-Cherenkov) instability. There are two

Fro. 3.Dependence between
~
Im(b)

~
and ts; (a) for waves resulting

from the passage of a beam through a dielectric substance (co, is
relatively large); (b) for waves resulting from the passage of a
beam through a dielectric substance (co, is relatively large); (c) in
a plasma-beam system.

significant frequency ranges: JG and Ml. . The lower
frequency range JG contains the transverse instability
and the hybrid instability of type "t." The upper
frequency range Ml. contains the longitudinal in-
stability and the hybrid instability of type "l."

The occurrence of a transverse instability in the
frequency range EG is directly related to the presence
of harmonic oscillators in the dielectric medium. In a
plasma the electrons are free and, therefore, such an
instability does not occur. One has only a longitudinal
instability and a hybrid instability. A question arises
as to the proper identification of the hybrid instability
in a plasma and its relationship to the two hybrid
instabilities shown in Fig. 3(a).

In order to resolve this question and to investigate
the behavior of instabilities produced in a plasma by a
beam, a graphical representation is used. This rep-
resentation is given in Figs. 3(a), 3(b), and 3(c), and
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Fio. 4. "co—k" diagram for hybrid and longitudinal oscillations
in a plasma-beam system (8&0).

it illustrates a "transition" from a dielectric comprising
harmonic oscillators to a plasma. In such a "transition"
the binding frequency gradually decreases, and for
oi, —+0 the expression (5) becomes identical with the
expression (7) representing the capacitivity of a plasma.
In Fig. 3(a) the binding frequency oi, is relatively
large, whereas in Fig. 3(b) it is smaller, and in Fig. 3(c),
o~, =0. Comparing Figs. 3(a) and 3(b), it is noted that
in Fig. 3(b) the region JG comprising the transverse
and the related hybrid instability is shifted toward
lower frequencies and occupies a considerably narrower
range. The limiting case of oi,=0 shown in Fig. 3(c)
represents the instability resulting from the interaction
of a beam with a plasma. The region JG vanished and
the region 3II. comprising the longitudinal and the
hybrid waves of type "l"occupies a considerably wider
frequency range than in Fig. 3(a) or 3(b). The only
hybrid instability that remains in a plasma is, therefore,
of type "l." This instability extends from co=0 into
higher frequencies and gradually changes into a longi-
tudinal instability. The slope of the curve shown in
Fig. 3(c) is positive, i.e. , the excitation coeflicient for
the hybrid instability increases with c™v.

Both longitudinal and transverse instabilities are
centered in the immediate neighborhood of the cor-
responding resonance frequencies. The frequency range
occupied by each of these two instabilities is a function
of ~ which tends to zero with f(.. For small values of f(:

such a frequency range is relatively small when com-
pared to the frequency range of the corresponding
hybrid instability. In the graphical representation, the
widths of the frequency ranges for the longitudinal and
the hybrid instabilities are, for the sake of clarity,
considerably enlarged.

(b) Convective and Aperiodic Instabilities

According to Sturrock, ' one can ascertain from the
behavior of the dispersion equation in the co—k plane

~ P. A. Sturrock, Phys. Rev. 112, 1488 (1958).

whether an instability is convective or nonconvective.
In a convective instability, a disturbance increases as
it is carried along the system and remains finite at each
point. In a nonconvective instability, a disturbance
which originated in a limited region of space at any
instant of time grows indefinitely for 3 —+ ~ in this
region. It was pointed out in several recent publica-
tions' " that the longitudinal instability produced by
a beam in a plasma is convective. It is of interest to
determine whether or not a hybrid instability is con-
vective. This can be done by means of an appropriate
diagram, shown in Fig. 4. Figure 4 illustrates graphically
the dispersion equation for a plasma-beam system
when the growing wave is aligned at angle |I/O with
respect to the direction of the beam. Hy applying the
criterion formulated by Sturrock, one can ascertain
that both the longitudinal instability occurring within
the frequency region EJ and the hybrid instability
occurring within the frequency region OE are convec-
tive. This "convective" feature is associated with the
branch of the co—k diagram designated in Fig. 4 as "E."

The excitation coeKcient has diAerent orders of
magnitude for a hybrid and a longitudinal instability. '
The hybrid instability is relatively weak and thus

fIm(8) f- faf=O(.), (34)

t't cos8»s*/cP. (37)

The o)—k diagram of Fig. 4 is applicable to the
values of 8 that are not in the neighborhood of rr/2. For
8=m/2, the dispersion equation (29) yields solutions
for u which satisfy u~(0. Therefore, the frequencies
are represented by pure imaginary numbers. ' Con-
sequently, an initial disturbance which at )=Owas
distributed in space in accordance with a function

J. E. Drummond and D. B. Chang, Bull. Am. Phys. Soc. 6,
411 (1958}.

P. A. Sturrock, Phys. Rev. 117, 1426 (1960}.' I. F. Kharchenko, IA. B. Fainberg, P. M. Nikolayev, E. A.
Kornilov, E. A. Lutzenko, and N. S. Pedenko, Proceedings of the
Fourth international Conference on Ionisotion Phenomena in
Gasses, Lrppsato, Sweden (North-Holland Publishing Company,
Amsterdam, 1960)."R. A. Demirkhanov, A. K. Gevorkov, and A. F. Popov,
Abstract CN-10/235/A, IAE Conference on Plasma Physics and
Controlled Nuclear Fusion Research, Salzburg, Austria, 1961
(unpubhshed).

whereas the longitudinal instability is relatively intense
and one has

fIm(8) f-fbf =O(.~). (35)

Using the relationship
f
8f((re and the equalities (32)

and (34), one finds that for a hybrid instability, the
small I(. approximation applies to those values of 0 which
satisfy the inequality

k cos8» ir/cP. (36)

Similarly, using the relationship
f
5 f((co and equalities

(32) and (35), one finds that for a longitudinal in-
stability one needs an inequality
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The electromagnetic anisotropy of the plasma-beam
medium will be considered with reference to transverse
and hybrid waves.

Fio. 5. Perspective view of ~Im(e)
~
=p(k, e).

(a) Tralsverse Waves

A vector system representing various Geld quantities
associated with a transverse wave is shown in Fig. 1.
Let 1», 12, and l~ designate unit vectors aligned along the
positive x, y, and s directions, respectively. Using
Maxwell's equations and the macroscopic parameters

and y,„, one obtains for transverse waves the
following relationships:

M (r) will not oscillate and will progressively in-
crease with time in accordance with a function M(r)
Xexp

~
Im(&u) t

t. The terms "convective" and "absolute"
instability are generally applied to an oscillatory
motion. For 8=ir/2 the instability is nonoscillatory
and following the terminology of Vvedenov, Velikhov,
and Sagdeev, "it is designated as "aperiodic. "

(c) Three Dimensi-orbal RePresert, tali o&s of
Instabilities As a P/asmu

D"' = lgD„,

E'"= lsDv/[1+47r (X,)„],
B&'& = —1tckD„/co [1+47r (X,).„j,

1, M~o= (X,„)„D„/[1+4ir(X,)„],
ls M "& = (X,„)ssD„/[1+47r(X,.),sj,

(3g)

(39)

(40)

(41)

(42)

Figure 5 illustrates diagrammatically an instability
for 040 in the small I(: approximation. The vertical
coordinate represents the excitation coefficient

~
Im(8) ~,

and the horizontal plane contains rectangular co-
ordinates 0 and k. The three-dimensional surface shown
in this figure is characterized by a "longitudinal
instability ridge" which divides the surface into two
regions; the region of "hybrid instability" and the
"transparency region. " The ridge slopes gradually in
the hybrid instability region and has a very steep
slope into the transparency region. In the region of
transparency Im(8) =0 and therefore the electro-
magnetic waves in this region neither grow nor decay.

3. Electromagnetic Anisotropy in a
Plasma-Beam Medium

Consider a charge-equilibrated gaseous medium
characterized by an electron-velocity distribution f(v).
In describing such a medium one may differentiate
between a structural and an electromagnetic (optical)
anisotropy. ' A medium is structurally isotropic if f(v)
is spherically symmetrical. On the other hand, it is
electromagnetically isotropic if one has D~~E and H~~B
for all directions of k. Otherwise, the medium is electro-
magnetically nonisotropic. A structurally isotropic
medium may be electromagnetically nonisotropic.

The plasma-beam medium is both structurally and
electromagnetically nonisotropic. Its electrical ani-
sotropy is expressed by two functions: &=F&(8) and
Q=Fs(8). The angle P is formed by the vectors H and
B, and the angle it is formed by the vectors D and E.

[ck+4~(v (X,„)„jD„
li H"~=-

co[1+4m (X,)„] (43)

l, H ' = —4ir(X,„),sD„/[1+4ir(X,)„). (44)

Using Eqs. (43) and (44), one can express the angle p
between B"& and Ht" as follows:

l H'"
tang =

1 H'"

kr (X,„),ste

ck 4% co (Xgp) tQ

(45)

Substituting in (45) the expressions for (X,„)ts and
(X,„)ss as given in (11), one obtains

~')3 sin8
tanQ=-

ck (to —co)+z'P cos8

The quantities co and k should satisfy the dispersion
equation (28) for transverse waves.

The above expressions describe the magnetic behavior
of transverse waves. The term "transverse" refers to
the relationship between E and k, i.e. , the wave is
transverse with respect to E. In one special case when
k is parallel to Il (i.e., 8=0), the wave is also transverse
with respect to H, i.e., H is perpendicular to h. For
all other directions of k the wave is hybrid with respect
to H, i.e., there is a longitudinal and a transverse
component of H. In some instances the transverse wave
may be purely longitudinal with respect to II and in
such case there is no transverse component of the
magnetic intensity. This occurs when

"A. A. Vvedenov, E. P. Velikhov, and R. Z. Sagdeev, Uspekhi
I iz. Nauk. 73, 701 (1961). P cos8=c4)/(c'k' —u)') (co=(o). (47)
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If co is in the neighborhood of the characteristic
frequency ~, one obtains p —0.

Consider small values of ~ that satisfy for ar)or~ the
inequality where

2K2)p sin8 Se
, (5o)

(2S—K') [2coS**—(2S—K')P cos0j—K2P cos0

K2«2 (~2—~12) (4g) S=co- —
Q&y . (51)

U'sing the binomial expansion and retaining the erst
two terms, one obtains from the dispersion equation (28) (f)) Hybrid Wanes

k —[2 ((g2 (F12) K2$/2e(~2 (@12)e

and substituting (49) in (46), one obtains

(49) A vector system representing various field quantities
associated with a hybrid wave is shown in I'ig. 2. One
obtains for hybrid waves the following relationships:

D(")=11D„

[1+43r(x,)33jD,
11.E(&) =

[1+43r(X,)„$[1+43r(Xe)33)—163r2(Xe)13(X,)31

(52)

(53)

E(h)
4m(x, )31D*

[1+4~(x )»j[1+4~(x.)33j—1«'(X.)»(x.)»
(54)

Therefore,

12ck[1+43r(X,)33)D,
(A)—

~[1+43r (x,)11][1+43r (x,)33]—163r'(x,)13(x,)31

l2j (X 3)21[1+43r(Xe)33j 43r(Xep)23(Xe)31}De
(&) =

[1+43r(xe)11j[1+43r(xe)33$—163r'(xe)13(x,)31

ck
12 ——42r(Xe„)21 [1+4r(X,)33j+163r'(Xe„)23(X,)31 D,

(55)

(56)

L1+4 (x) j[1+4 (x.)33j—16 '(x) (x)»

Using Eqs. (53) and (54), one can express the angle

f between E(") and D(") as follows:
There is an instability if F is negative, and

consequently

tang =Re'3

a=iK fF f-*'. (63)
tan&/ =13 E3/11 Ei———43r (X,)31/[1+43r (X,)33j. (5g)

Substituting (63) in (59), one can express tang in the

Substituting the expression (8) for (X,)31 ancl (X,)33
in (58), one obtains (64)

K2(eP sin0 (ck —(eP cos0)
tant/ = (59)

(oP—cu ') ((u —33)'—K'(o2(1 —p' cos'0)

The quantities co and ~ in the above expressions should
satisfy the dispersion Eq. (29) for hybrid waves. Putting
in (59) cv=~+8 subject to the condition f8f&«u, one
obtains

K'P'c'k' sin8 cos0(1—P' cos'8)
tang =

((e)2 ~ 2)$2 K2~2(1 i12 COS20)

The quantity 8 may be expressed as'

The terms R and $ may be expressed a,s:
[(A1C1+B1S1)'+(A 151—B1C1)'7&

(C '+S ')

(A 1S1 B1C1)/(A1C1+B1S1)

Ai ——sin8(P' cos'8 —1)/ f
F

f cos8,

Bi——K sin8/fF f&cv cos8,

Ci =1—(oP/co'+ (1—P' cos'0)/
f
F f,

S,=2~12KfF f&/(d3.

(65)

(66)

(67)

(6g)

(69)

(70)

where

[1—c,((e)P'7 (1—P' cos'8)
p=

e„((e)[1—e, ((0)P2 COS'0j E3——REJ,e'&. (71)

Using equalities (58) and (64), one can express the
relationship between the longitudinal component E3
and the transverse component E& of a hybrid wave in

(62) the following form:
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This relationship is applicable within the region of
instability, and it shows the existence of a phase dis-
placement $ between the components of electrical
intensity that are, respectively, perpendicular and
parallel to k.

Consider now hybrid waves in the region in which
there is no growth or decay. The quantity F is positive,
and one has

(th) p (77)

and the rela, tionship between p and E is expressed as

In the present investigation the macroscopic parame-
ters of a thermal plasma are formulated in accordance
with the theory outlined in paper II. Thus the electro-
magnetic susceptibility,

(72) P xthE (78)
Substituting (72) in (60), one obtains

cv'(1 —P' cos'0) tang
tang =

(u'(P 1+$2 cos'0) —Ps)P
(73)

where X,'" is the electric-susceptibility tensor of a
thermal plasma. Using the x, y, s representation shown
in Fig. 1, one can formulate the relationship (78) as
follows:

II. INTERACTION OF A BEAM WITH A
THERMAL PLASMA

1. Description of a Thermal Plasma

Consider a charge-equilibrated medium in which a
beam of electrons interacts with a thermal plasma.
The beam is described in terms of its Langmuir fre-
quency ~0 and its velocity V=Ilc. The plasma is
described by its Langmuir frequency oui and by its
temperature T. Instead of the temperature, one may
use the mean thermal velocity s which is related to the
temperature as follows:

Z, ((x,), 0 iZ
P2 i, 0 (x.)t) E3

(79)

The terms (x,), and (x,)& represent, respectively, the
"transverse" and the "longitudinal" components of the
electric-susceptibility tensor. A relativistic formulation
of these terms in gas kinetic representation is given in

paper II. The gas kinetic representation depends
explicitly on an expression representing the electron
velocity distribution in the plasma.

Using relationships (77) and (78), one can express
the dispersion equation for a plasma as follows:

P„=—F„(co,k) = ed)(c'k'/(o') —e,i =0,

e)—= e(((o,k) = Iy4~(x.)(,

eg
—=e, (cu, k) =1+4+(x,),.

(80)s = (3' T/m) l, (74)
where

(81)

In the subsequent discussion the behavior of a thermal
plasma will be formulated in hydrodynamic representa-
tion. The hydrodynamical representation is based on
Euler's equations of motion together with Maxwell's
equations. In this representation the terms e~ and e~

may be expressed as:
(75)

In the other formulation" '5 the thermal plasma is
assumed to be magnetic. The relationship between the
magnetic field and the magnetic induction is represented
in the form

(83)Cg 1 (Mp/M ) i

(84)Gi= 1—--
aP —k'(S'/3)H= L1/p((o, k) jB,

where Eg is the Boltzmann constant.
There are two formulations of the problem dealing

with response of a thermal plasma to an electromagnetic
field. In one formulation the plasma is assumed to be
nonmagnetic" '4 (i.e., the magnetic permeability p, = 1).
Consequently, when an electromagnetic field is im-
pressed on the plasma, one has

where p(&u, k) is an appropriate scalar function of
s) and k.

The above situation involves two diferent assump-
tions that are contradictory. It is also confusing,
particularly in view of recent results obtained in paper
II. According to these results a plasma which is not in
thermal equilibrium is magnetically polarizable, whereas
a thermal plasma is not magnetically polarizable. A
brief discussion on this subject is given in Appendix A.

"J.Linhard, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
28, No. 8 (1954).' M. E. Gertzenshtein, Zhur. Eksp. i Yeor. Fiz. 22, 303 (1952)."A. A. Rukhadze and V. P. Silin, Uspekhi Fiz. Nauk. 74, 223
(1961);75, 79 (1962).

(see Appendix B.)
The hydrodynamic representation fails to bring out

some of the essential features of the plasma-beam
medium such as the occurrence of Landau damping.
However, the hydrodynamic representation formulates
very clearly the e6ectiveness of the beam in producing
instabilities as a result of its interaction with plasma.

2. "Particle Effect" and "Beam Effect"

The formulation of plasma-beam instabilities is
related to the formulation of another problem which
deals with the passage of a single particle through
plasma. There is a very extensive literature dealing
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with the behavior of a single particle. " Among the
early publications on this subject, those of Vlasov have
pointed out the occurrence of a longitudinal Vavilov-
Cherenkov effect produced by a particle moving
through a plasma. Thus, when the velocity of the
particle V„=I1pc exceeds the mean thermal velocity of
plasma, i.e., when

p„c))s, (85)

the particle radiates longitudinal (electrostatic) waves.
These waves exist only within the Mach (Cherenkov)
cone given by the angle 0 for which

sine =s/ppc. (86)

When the plasma temperature is zero (s=0), the cone
degenerates into a straight line and one obtains a
series of oscillators aligned along the particle track. "

The passage of a beam through a thermal plasma
was studied by Akhiezer and Fainberg, " under the
assumption that the growing wave resulting from the
instability is aligned in the direction of the beam.
Under these conditions the interaction is electrostatic,
i.e., the wave is longitudinal. When the velocity of the
beam V= Ilc is below the thermal velocity s, the
instability is relatively weak. It becomes relatively
intense when

pc))s. (87)

When comparing expressions (85) and (87) one sees
that there is a formal analogy between the Vavilov-
Cherenkov effect and the plasma-beam instability,
provided

pp-p (88)

Such an analogy was pointed out in a remark made by
Kharchenko, Fainberg, Nikolaiev, Kornilov, Lutzenko,
and Pedenko. "This remark needs, perhaps, clarifica-
tion. One should point out that there are distinctive
features that differentiate the Vavilov-Cherenkov effect
from the plasma-beam instability. In the conventional
formulation of the Vavilov-Cherenkov effect the wave
radiated by the particle neither grows nor decays and
the radiation is associated with the occurrence of a
nonzero Poynting vector directed outwardly from the
particle track at infinite lateral distances from the
track. On the other hand, the conventional formulation
of the plasma-beam interaction is based on stability
considerations and the "beam eGect" is expressed by

"A number of investigations dealing with the passage of a
charged particle through plasma and published prior to 1955 are
listed in a paper by J. Neufeld and R. H. Ritchie, Phys. Rev. 98,
1632 (1955). Of particular signi6cance are investigations by
A. Vlasov, Teoriu 3Enogikh Chastits (Moscow, 1950), pp. 309—318,
and by A. T. Akhiezer and A. G. Sitenko, Zhur. Eksp. i Teor. Fiz.
23, 161 (1959).Results similar to those of Vlasov and of Akhiezer
and Sitenko were obtained more recently by S. K. Majumdar-
Proc. Phys. Soc. (London) 76, 657 (1960), and by M. H. Cohen,
Phys. Rev. 123, 711 (1961).

"A. Bohr, Kgl. Danske. Videnskab. Selskab, Mat, -fys. Medd.
24, No. 19 (1948).

"A. I. Akhiezer and IA. B. Fainberg, Zhur. Eksp. i Teor. Fiz.
21, 1262 (1951).

the existence of a wave having an amplitude that
grows indefinitely with time.

The subsequent discussion will deal with a more
precise formulation of the analogy between the "beam
effect" and the "particle effect. " One needs to as-
certain whether this analogy applies to the longitudinal
instability, to the hybrid instability, or to both
instabilities.

'vp g =Gl/k. (90)

A concurrent wave moves slower than the particle.
The velocity of the concurrent wave is the same as the
velocity of the component of the particle velocity
along the direction of propagation of the wave.

It is noted from (89) and (90) that the frequency of
a concurrent wave can be expressed as rd=ckP cosg.
Therefore, using the terminology applied to the
plasma-beam system, one has co=co, i.e., a concurrent
wave has the "characteristic frequency" that is
associated with a plasma-beam instability.

A concurrent wave is not necessarily a Vavilov-
Cherenkov wave. The equalities (89) and (90) represent
a necessary but not a su%.cient condition for the
occurrence of Vavilov —Cherenkov effect. A Vavilov-
Cherenkov wave must also satisfy the dispersion
equation F„=O as given by (80). Therefore, combining
the equalities (89), (90), and (80), one obtains the
necessary and sufficient condition for a Vavilov-
Cherenkov wave. One obtains then

(Fp)~=m=0. (91)

Using (80), one can represent (91) in the form of two
equalities. One of these has the form

(c'k'/ro') —(e,)~ =a =0, (92)

and it represents the necessary and su%cient condition
for the occurrence of a transverse Vavilov —Cherenkov
wave. The other equality has the form

(93)

and it represents the corresponding condition for the
occurrence of a longitudinal Vavilov —Cherenkov wave.
The equality (92) cannot be satisfied for P(1, and

3. Waves "Concurrent with a Partic1e"

Some of the characteristic features of the Vavilov-
Cherenkov radiation may, perhaps, be clarified by
introducing the concept of waves that are "concurrent
with a particle. " The velocity of a concurrent wave is
maintained at a fixed relationship to the velocity of
the particle. Wave vectors associated with concurrent
waves are aligned along a conical surface forming with
the particle track an angle 0 such that

'vph=cpp cosO.

The quantity v~h designates the phase velocity of the
wave and can be represented as
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therefore there is no transverse Vavilov —Cherenkov
effect."The only Vavilov —Cherenkov effect in a plasma
appears in the form of longitudinal waves and is
expressed by the equality (93).

a) =(v+6, (96)

4. Dispersion Equation

Consider the interaction of a beam with a thermal
plasma. Applying the procedure outlined in paper III
and taking into account the electromagnetic anisotropy
of a thermal plasma, one obtains the following dispersion
equation:

F» =—F„t,(~,k,8) =F~ L~'/—(~—Co)']Ft, ——0 (94)

where F„=F~(co,k—,e) is given by the expression (80) and

Fb =Fb ((0)k) 9) = Le~p sin'8 (c'k —oP)/oP

+g&(1 P2 cos2g) (g2k2/~2) (1 P2 cos 8)]. (95)

Expression (94) represents a generalized form of the
dispersion equation (28). The equalities (94) and (28)
are identical for ~ = c~ = ~g.

The dispersion Eq. (94) is investigated in the usual
manner by assigning real values to k and finding the
corresponding roots for ~. The expressions for ~ may be
represented in one of the follovving two forms:

be complex and consequently concurrent waves may
show an instability.

(Fyb)~ w=(Fy)~ w
——0. (100)

It is seen from (100) that the quantity W satisfies
the dispersion equation for a thermal plasma in the
absence of a beam. In the hydrodynamic representation
the thermal plasma is "transparent, " i.e., the waves
that are transmitted through the plasma neither grow
nor decay. Consequently, W is a real number.

Consider now the expression &u=W+5 for 6&0 but
small, and substitute this expression in (94). Applying
Taylor's expansion to Ii „in the neighborhood of co= W'

and retaining the first two terms, one obtains

(F„)„=(F„) +8(BF /8 )„. (101)

A similar expression is obtained for Taylor's expansion
of Fi,. These two expressions are applied to (94) which
is thus formulated as an equation of the first degree in
6; one obtains

where
8=M/E,

M = Lz'/(W —C&)'](Fp).=g —(F,).=g,

(102)

(103)

5. Nonconcurrent Waves

Substitute &u=W+8 in (94) and assume that a —+0.
Consequently, 6 —+ 0, and one obtains in the limit

(o=W+8,

f
W —cv f))B.

(97)

(98)

and

E= (BF„/B(u). g $z'/(W —o)'](BFg—/8(u). g (104).

In formulating the expressions (96) and (97), no
assumptions are made as to whether the quantities 8'
and 8 are real, imaginary, or complex. However, one
has ~=ckP cos8 and, therefore, the quantity ~ is real by
definition. The term 5 represents a small quantity that
depends on z and one has

f6f -+0 for ~ —&0. (99)

In the absence of an instability, i.e., when 6 is real,
the wave (96) is designated as a "stationary concurrent
wave. "When the instability occurs, i.e. , when Im(8) )0,
the expression (96) represents an "excited concurrent
wave. " The wave (97) is "nonconcurrent with the
beam. "

In studying the plasma-beam interaction, one
generally ignores solutions of type (97) and considers
only solutions of type (96). It will be shown that such
a procedure is justified since both 8' and 6 in the
expression (97) are real. Therefore, nonconcurrent
waves neither grow nor decay and are of no interest
from the standpoint of stability considerations. On the
other hand, in the expression (96) ~ is real but 8 may

"The effect of temperature on the transverse held produced by
a particle passing through a plasma is discussed in the gas kinetic
representation by A. I. Akhiezer and A. G. Sitenko, Zhur. Eksp. i
Teor. Fiz. 23, 161 (1959), and by Jacob Xeufeld, Phys. Rev. 116,
1 (1959).

The expression (102) for 5 is always real. Con-
sequently, the waves that are nonconcurrent with the
beam neither grow nor decay.

6. Stationary and Excited Concurrent Waves

Waves represented by the expression (96) may show
significant instabilities and, therefore, in investigating
the plasma-beam interaction, they are often the only
ones that are considered.

The possible occurrence of instabilities in the waves
(96) may be shown by applying the same arguments
that lead to the conclusion that the waves cu=W+6
are of no interest. Thus, substituting &u=G&+8 in (94)
and using Taylor's expansion for Ii~ and F& in the
neighborhood of ~, one obtains the following equation
from (94):

(BF,/B(u) =-P+(F„) = P
—~'(aF&/aa)) =a5—z'(Fp) =-=0. (105)

This equation is of third degree and therefore the
solution for 5 may be complex. Consequently, there
may be an instability. The solutions expressing an
instability would represent excited concurrent waves.

The occurrence of an instability depends on the co-
eKcients of the cubic equation (105) and these are
determined by the particular numerical value that one
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chooses to assign to the characteristic frequency. This
frequency may have any value from 0 to ck cosH. It is
expressed as cu=ckP cos8, and, therefore, for a beam of
given velocity it depends on the values of k and H.

Consider the inequality

One can then neglect the second term of (109) when
compared with the first and obtain the solution

F~
6=i~**

(8F„/8(v) =~I

(8P„/8~)
(106)

Since h=O(z:) one sees that for sufficiently small
values of ~ the assumption (110) is valid. The solution
(111)yields an instability and can be written

This inequality is satisfied for values of ~ in the region
of longitudinal oscillation

( Im(B) )
=a'i'(v3/2'i3)coP'(1 —s'/3c'P' cos'8)'~'

X (1—49' cos~8)'~', (112)
M f(d +k S /37'

and also in two other regions

(107) Re (8)= —K'"(1/2'") M ''3 (1—s'/3c'P' cos'8)'"
X (1—P' cos'8)' '. (113)

The expressions (112) and (113)represent a generali-
zation of the results obtained by Akhiezer and Fainberg
and in paper I.

If the inequality (108) is satisfied, the first term of
(105) may be neglected and one obtains

~-ks/v3 and (u~ (c'k'+(oi2) '*

(F ) = h' ~'(8p-i,/Ao) = 8~'(Fi,)-=-=0. (114)(8F„/8'

P,
(108)

If one also assumes

which are of no interest here.
If co is not close to one of the three values listed

above, then for sufficiently small values of ~ the
inequality

will hold.
Assuming (106) holds, one may neglect the second

term of (105) when added to the first and obtain

(8F /8~)„„-p—„2(8F~/8~)~ „-8—q2(F~)„„-=0 (]09) the solution of (114) may be written as

Assume now that

(115)

i~'(8pi, /8') =-
i

i
5'(8P„/Bc') =

(110)
Again, since 6=0(ii) the inequality (115) is satis6ed for
suSciently small values of a.

The solution (116) can be written

L1—eig&)P' cos'8 —ci(au)P' sin'8j(1 —P' cos'8)

c (iM)$1 E (co)P cos 8g
(117)

The expression (1.17) represents in a generalized
form the excitation coefficient for hybrid waves ob-
tained in paper I. For s=0, one has ~i ——ei ——1—coP/sP
and the above expression agrees for P((1 with the
corresponding expression obtained in paper I.

V. Comparison of Excited Concurrent Waves with
those which are Concurrent with a Particle

Waves concurrent with a particle have a frequency
represented by a real quantity co. Therefore, these
waves neither grow nor decay. On the other hand,
excited concurrent waves show an instability which is
characterized by an excitation coefFicient Im(&)) 0.

Consider now the behavior of instabilities in a
plasma-beam system when ~ tends to zero. Since the
quantity 8 tends to zero, the frequency of an excited
concurrent wave approaches the limiting value co=co.
Consequently, the closer one gets to the limit, the
smaller is the difference between an excited concurrent

wave and the wave concurrent with a particle. One is
interested in selecting the waves concurrent with a
particle that satisfy the Vavilov —Cherenkov criterion
and in determining those excited waves which for
~ ~ 0 approach the Vavilov —Cherenkov waves.

The dispersion equation for a plasma-beam system
has the form F»=0 and it depends on the quantity ~.
It is of interest to determine the limiting form of the
equation F~~=O for ~~ 0 and compare it with the
dispersion equation (91) for Vavilov —Cherenkov waves.
Consider in that connection the expression

lim F„g.

It will be shown that the form of this limiting expression
is diGerent for longitudinal and for hybrid instabilities.

The liyniting form of the dispersion equation F„~——0
for the longitudinal instability is obtained by sub-
stituting &u =co+5 in (94) where 5 is given by (111)and
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assumlug K ~ 0. Thusq

lim (F„t,) =-=(F,) --.

tion, one has:

where
k=k+n,

k= &a/(v coso).

(120)

(121)

Therefore, when f~: is small the dispersion equation for
the longitudinal instability in a plasma-beam system
differs very little from the dispersion equation for a
thermal plasma (in the absence of a beam). For « —+ 0
the difference tends to zero and in the limit both
dispersion equations become identical. It is noted that
the dispersion equation (F~)~ =m= 0 expresses the
necessary condition for the occurrence of a Vavilov-
Cherenkov wave. Consequently, those waves con-
current with the beam which represent the longitudinal
instability become in the limit Vavilov —Cherenkov
waves.

Consider hybrid waves. Substituting in (94) &=m+8
where 8 is given by (116), one obtains

lim (F b) = W(F ) = . (119)

Consequently, when ~~ 0 the dispersion equation for
hybrid waves does not tend to a limiting form which
expresses the necessary condition for a Vavilov-
Cherenkov wave.

One may conclude, therefore, that when the intensity
of the beam tends to zero, or if the velocity of the
beam approaches the velocity of light («-+0), the
parameter representing the growth of a longitudinal
instability decreases, and in the limit the longitudinal
wave becomes identical with a Vavilov —Cherenkov
wave. Consequently, the longitudinal instability may
be considered an "extension" of the Vavilov —Cherenkov
effect. The hybrid instability is not as directly related
to the Vavilov —Cherenkov effect.

The transition from an unstable longitudinal wave
into the Vavilov —Cherenkov wave for decreasing I~:, or
the opposite transition for increasing I(: is characterized
by a change in the phase velocity of the wave. The
growing wave becomes retarded with respect to the
Vavilov —Cherenkov wave. This change in the phase
velocity is expressed by a quantity Re(8)/co, where
Re(8) is given by (113).

In accordance with the other formulation, one has

where

Furthermore,

k=E+n,

fZ —5/»n.

n —+0 for ~~0.

(122)

(123)

(124)

&o'= ck'p cosg. (126)

Thus, an instability occurs if for cv'=c™othe equation
(105) yields complex roots for 8 in which Im(b))0.
This instability is convective if for k =k Eq. (125)
gives complex roots for n in which Im(n)&0. The
instability is, however, nonconvective if for k'=k the
roots of Eq. (125) are real.

Applying a method similar to the one that led to
Eqs. (100) and (102), it can be shown that both E and
n are real, and, therefore, the wave (122) neither grows
nor decays with respect to space coordinates. A signi-
ficant situation may occur in a wave of type (120)
when Im(n) &0. In such case the term Im(n) is desig-
nated as the ampli6cation coefficient and the wave
(120) will be referred to as "an amplified concurrent
wave. " In order to determine the possible occurrence
of such a wave, one substitutes k=k+n in (94) and
using Taylor's expansion for F„and Fq in the neighbor-
hood of k, one obtains the following equation for n ..
(BF~/cjk)n'p'c' cos'8+ (F )n'p'c' cos'0

—«'(crF g/Bk)n —«'(F g) =0, (125)

where the terms in parentheses are evaluated at k=k.
The character of the roots of the above equation

depends on the numerical value of k. For those values
of k for which n is real, the waves are stationary and
concurrent. For those values of k for which e is complex
the waves corresponding to Im(n) &0 are "amplified
and concurrent. "

Using the formulations (105) and (125), one can
determine the stability condition for any particular
value of co' and k' satisfying the relationship,

8. Amyli6ed Concurrent Waves

The presence of an excited concurrent wave indicates
that the plasma-beam system is unstable. However, it
does not indicate whether the instability is convective
or non-convective. In order to resolve this question, it
may be useful to introduce the concept of an "amplified
concurrent wave. " In that connection one can use the
following procedure:

Assign real values to co in the dispersion equation
(94) and assume that the quantity k may be expressed
in two different forms. In accordance with one formula-

APPENDIX A

The phenomenological macroscopic parameters of a
structurally isotropic plasma were formulated in-
dependently by Gertzenshtein'4 and by I.inhard. "
Both investigators pointed out, apparently for the
first time, the occurrence of space dispersion in a
plasma. There are at present two formulations of the
macroscopic parameters of a thermal plasma. In
one formulation the plasma is assumed to be "non-
magnetic, " i.e., @=1,whereas in the other formulation
it is assumed to be "magnetic. " In the "nonmagnetic



JACOB NEUFELD

Therefore, if the plasma is described in terms of an
electron-velocity distribution f(v), one obtains

c'k'

(k v) f(v)dv

(ce—k v)'
(A2)

The formulation of the "nonmagnetic plasma" was
given both by Gertzenshtein and by Linhard, whereas
the formulation of the "magnetic plasma" was intro-
duced by Linhard. These two formulations have been
investigated further by Rukhadze and Silin."

Therefore, there are two alternative descriptions of
a plasma in terms of its macroscopic parameters. In
accordance with one description, the magnetic intensity
H and the electric displacement D are expressed in
terms of the microscopic field quantities 8 and E as
follows:

(A3)

Dr (0 ei) Ei
(A4)

(The transverse components of E and D are designated
as E~ and D~ and the corresponding longitudinal com-
ponents are E~ and Dt.) In accordance with the other
description, one can write

formulation" the properties of plasma may be accounted
for by means of two functions: e, (00k) and e&(&e,k).
The expression e~(&e,k) represents the "transverse
capacitivity" of plasma and the expression ei(a&, k)
represents the "longitudinal capacitivity. " In the
"magnetic formulation" one uses also two functions:
e(0e,k) and ts(re, k). The function e(&e,k) is identical
with e&(0e,k) and represents the capacitivity of plasma.
The function ts(0e, k) represents the magnetic perme-
ability and can be expressed as

1/ts (0e,k) = 1—(00'/c'0') Le, (re,k) —ei(0e,k)1. (A1)

depend on the mathematical formulation but on the
fundamental physical assumptions. A plasma is con-
sidered as "magnetically polarizable" if an electro-
magnetic field induces a magnetic polarization and
conversely, a plasma is not "magnetically polarizable"
if there is no magnetic polarization in presence of an
electromagnetic field. This problem was discussed in
paper II. It was found that when a plasma is not in
thermal equilibrium there is a magnetic polarization
induced by an electromagnetic field. On the other hand,
when a thermal equilibrium is established, there is no
magnetic polarization,

(d/dt) v'+ (1/mÃ) grad p'+ (e/m) E'= 0,

curlE'= —(1/c) r)8'/alt,

curlB'= (1/c)aE'/at+ (4sr/c) j',

divB'= 0,

divE'= —40rst'e,

j'= —Eev',

(Bn'/Bt)+ divÃv' =0.

(81)

(82)

(83)

(84)

(85)

(86)

(87)

The density of plasma is 1V+n' where 1V is the un-
perturbed term and m' represents the perturbation due
to the electromagnetic field E', 8'. Other small terms
representing the disturbance are as follows: v' is the
velocity; P' represents the pressure, and j' is the
electric current. The quantity p' may be expressed as

p'= n'KeT,

where E~ is the Soltzmann constant. The electro-
magnetic field has the form of a plane wave

APPENDIX 3
Equations describing the behavior of a charge

equilibrated electron plasma having temperature T
may be represented in hydrodynamic form as follows":

H= L1/ts(re, k) jB,

D= e(re, k)E.

E'=E expi(k r rat); 8'=—8 expi(k r ret). —

(A6) The terms representing the perturbation are:

Linhard was concerned primarily with the fact that
one can apply to plasma parameters two different for-
mulations. The physical nature of plasma was not
considered and the question as to whether plasma is
"magnetic" or "nonmagnetic" was not discussed. On
the other hand, Rukhadze and Silin assumed that a
thermal plasma is magnetic (tsW1).

Under certain conditions both formulations give
similar results. Thus, one can describe the propagation
of a transverse wave by assuming that plasma is either
magnetic or nonmagnetic. However, there are instances
when the knowledge of the magnetic behavior of
plasma is essential. One faces then a difFicult choice as
-to which one of the two formulations represents the
physical reality. The appropriate decision does not

n,'=g expi(k r —cet), v'=v expi(k r—eat),

p'=p expi(k r —0et).

Equation (81) can be expressed as

irev+ (p—/mN) k+ (e/m) E=0.

One obtains from (87)
n= (cV/00)(k V).

(89)

(810)

Taking into account (88) and (810), Eq. (81) can be
expressed as

iasv+ Ls'Krs T (k v)k/mre)+—(e/m) E=0 (811).
'0 See, for instance, J. F. Denisse and J. I. Delcroix, Theoric

des Ondes dans les Plasneas (Dunod, Paris, 1961).
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One has the relationship"

j'= —1Av'= c curlM'+ (BP'/R), (812)

where P' and M' represent the electric and magnetic
polarization. Since the plasma is nonmagnetic, one has
M' =0. Using the relationship P'= P expi(k r ~t),—one
can express the equality (812) as follows:

Combining (811) and (813), one obtains

(~'/1Ve) P—PE~T(k P)k//em]+ (e/nz) E=0. (814)

Using the relationship (74), Eq. (814) can be
expressed as

(aP/Ne) P—$s'(k P)k/31Ve)+ (e/m) E=0, (815)
or

v = (iso/1lt e)P. (813)
cu'P —(s'/3) (k P)k+ (co t2/4~) E=0, (816)

"See, for instance, W. K. H. Panofsky and Melba Phillips,
Classical L~lectricity and 3fagnet7'sm (Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1955).

where &uP =4vrlVe'/m.
Equation (816) leads directly to the relationships

(79), (83), and (84) given in the text.
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Phase Transition in Elastic Disks*

B, J. ALDER AND T. E. WAINWRIGHT
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The study of a two-dimensional system consisting of 870 hard-disk particles in the phase-transition
region has shown that the isotherm has a van der Waals-like loop. The density change across the transition
is about 4 j& and the corresponding entropy change is small.

A STUDY has been made of a two-dimensional
system consisting of 870 hard-disk particles.

Simultaneous motions of the particles have been calcu-
lated by means of an electronic computer as d.escribed
previously. The disks were again placed in a periodi-
cally repeated rectangular array. The computer program
has been improved such that about 200000 collisions
per hour can be calculated by the LARC computer
regardless of the number of particles in the system.
This speed made it possible to follow large systems for
several million collisions.

It became necessary to study larger systems in the
phase transition region when for smaller ones in three
dimensions, it did not seem to be possible for the two
phases to exist together in equilibrium. ' ' Even in the
largest three-dimensional system investigated with the
improved program (500 hard spheres), the particles
were either all in the Quid phase or all in the crystalline
phase. The system would typically remain in one phase
for many collisions. The occasional shift from one phase
to the other would be accompanied by a change of
pressure. The equation of state was represented by two
disconnected branches overlapping in the density range
of the transition, since with the limited number of phase

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

B. J. Alder and T. E. Wainwright, J. Chem. Phys. M, 459
(1959).' B. J. Alder and T. E. Wainwright, J. Chem. Phys. N, 1439
(1960).' W. W. Wood, R. R. Parker, and J. P. Jacobson, Suppl. Nuovo
cimento 9, 133 (1958).

interchanges it was not possible to average the two
branches.

Two-dimensional systems were then studied, since
the number of particles required to form clusters of
particles of one phase of any given diameter is less than
in three dimensions. Thus, an 870 hard-disk system is
effectively much larger than a 500 hard-sphere system.
First, however, it was necessary to establish that small
two-dimensional systems behave analogously to the
three-dimensional systems. This is illustrated in Fig. 1
by the two disconnected branches drawn lightly through
the triangular points for a 72-particle system. In that
Qgure, the reduced pressure pA o/ATkT is plotted against
the reduced area A/Ao, where Ae is the area of the
system at close packing. In the region of A/A 0 from 1.33
to 1.35 the system Quctuated infrequently between a
high-pressure Quid branch and a low-pressure crystalline
branch, while at A/Ao of 1.31 and higher densities the
solid phase was always stable.

For the larger 870-particle system, however, the two
phases exist side by side. One piece of evidence for this
coexistence is the cathode-ray tube pictures described
earlier (see Fig. 2). The trajectories of the particles
plotted on the oscilloscope show regions where the
particles are localized (crystallites) in between regions
of mobile particles (Quid). Further evidence is the
characteristically large pressure fluctuations in the
phase transition region where two states can exist with

aim, ost equal probability. The extent of the Auctuations
in a typical run of about 10 million collisions is obtained


