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Renormalizability of Gauge Theories*
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By generalization of methods developed by Kamefuchi, O'Raifeartaigh, and Salam, conditions for renor-
malizability of general gauge theories of massive vector mesons are derived. These conditions are stated ex-
plicitly in Eqs. (39) and (40) of the text. It is shown that all theories based on simple Lie groups (with
the one exception of the neutral vector meson theory in interaction with a conserved current) are unrenor-
malizable.

1. INTRODUCTION

A NUMBER of recent investigations' have dis-
cussed and established the nonrenormalizability

of massive vector meson theories of Yang-Mills type.
The purpose of this paper is twofold: 6rst, to clarify
the essentially simple structure of these proofs and to
extend it to all other gauge theories; secondly, to
suggest that one can indeed secure renormalizability
of vector meson theories if no bare meson mass terms
occur in the Lagrangian. Nonzero physical masses can,
however, be computed in a self-consistent manner
employing, for example, the techniques used previously
by Nambu. '

2. NEUTRAL PSEUDOVECTOR THEORY;
THE ys GAUGE

We find
U„=A„+(1/ )s(r)B/rfx„). (6)

L „.„= (1/2)$(r)—„A„)'+s'A s7

—(1/2)P(f)„B)'+ B)r7s+ (1/2) (f)„A„+)rB)s (7).

One imposes the subsidiary condition

(B„A„+)rB}'"14)=0.
With

(A „' A „' )+=8„,A p,

(BinBin)

the S matrix equals

(1) The first step is to replace U„by the Stueckelberg
combination,

1n

P= gf'= exp( iysgB/)r)P—',

All ingredients required for the investigation of
renormalizability of gauge theories are present in the g ax„$
simple theory of a single neutral pseudovector meson
U„ interacting with a nucleon. Write the Lagrangian, (2) The next step is make a change of variables lb

L=Li+Ls+L „, , (1)
to lb':

f c)

Li= 0v. l

—ig—vsUs 14',
&ax„ I '

Ls= —riz~,

so that L(Q,A„,B) changes to

'gal+ )P

where
8

U„— U„.
&v

For the (ys gauge) transformations,

P=SP'= exp/( iysg)B/ir7&'—,

L1 is form-invariant, but 12 is not.

(3)

8
+mg" exp( —2',g

—4' +1. . (A„,s) o2).
The new variables P' have been defined in such a way
that after the transformation the 8 field disappears
from the combination Py„(i)/i)x„igA„igf)B/rfx—„+. —
This is always possible because of the basic gauge
structure of the theory. Further the variable change
(11) implies (as can be seen by an adiabatic switching
off of g) that

(13)

*A report of this work was presented at the La Jolla Conference
on Strong and Weak Interactions, 1961 (unpublished).' A. Komar and A. Salam, Nuclear Phys. 21, 624 (1960); S.
Kamefuchi and H. Umezawa ibid 23, 399 (1961); S. . Kamefuchi,
L. O'Raifeartaigh, and A. Salam, ibid. (to be published).' Y. Nambu, Phys. Rev. 122, 345 (1961).' ' A. Salam, Nuclear Phys. 18, 681 (1960); S. Kamefuchi, ibid.
18, 691 (1960).

Thus the work of Chisholm, 4 Kamefuchi, O'Raifear-
taigh, and Salam, ' or the more rigorous theorems proved
by Borchers' guarantee the intuitive result that the
S matrix (10) set up using the original interaction is

' Y. Chisholm, Nuclear Phys. 26, 469 (1961).' H. J. Borchers, Nuovo cimento 15, '784 (1960).
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identical with the S matrix

exp z 111
gy py Q lfl ill

+~A" E~xp( —»7 rs'"/ ) —Gk"') ), («)

character is given by'

U '=S '—U„S+(i/g)S '-(BS/Bx„)

This can be inferred from the relation,

(B/Bx„ig
—U„)x=, S(B/Bx„igU—„')X',

which is necessary in order that

(19)

(20)

which is based on the transformed Lagrangian (12).
The possible nonrenormalizability of the theory had
its origin so far as the original S matrix is concerned
in the derivative term containing BB'"/Bx„In. the
expression (14) this shows itself (more conclusively)
in the exponential factor containing 8' which has
made its appearance in the interaction Lagrangian.
Further the expression (14) shows clearly that the
nonrenormalizability is associated with the non-gauge-
invariant part of the Lagrangian (i.e., the nucleon
mass term). If m=O the theory would be renormalizable.

3. GENERAL GAUGE THEORIES

In this section we brieQy review the structure of
gauge theories.

Consider a set of Hermitian fields x with the linear
kinetic energy terms,

(15)

P„are matrices characteristic of the spin of the
particles. '

We assume that (15) is invariant for the trans-
formation

x=Sx',
where

Xp„(B/Bx„ig U—„)X=X'p„(B/Bx„igU—„')X'. (21)

Defining

F„,= (B/Bx„ig—U„)U„(B—/Bx„ig—U„)U„,

it is easy to verify, from (19), that

P„,'=S 'F„,S. (22)

Thus the Lagrangian for the vector fields, if it must also
be gauge invariant, should have' the form

—(1/4) TrF„„F„„. (23)

Summarizing, a gauge-invariant theory is given by

Z=) xP„(B/Bx—„igU„)x —ttsxx ', —TrF„„F—„„-j (24)

and this theory is invariant for the transformations

y=Sx
U„=SU„'S—'—(i/g) (BS/Bx )S '. (25)

Tr (1/2)a'U—„U„.

4. RENORMALIZABILITY

(26)

To study renormalizability the erst step (as in Sec.
2) is to introduce the Stueckelberg fields,

A noninvariant meson mass term 2, may be added
to (24), where

S=expig (T'b') (17) U„=A „+(1/lr) BB/Bx„ (27)

and b"s are constants. Here T' are a set of m Hermitian
matrices (which of course commute with P„) and which
satisfy~

PT', T'$= Cs"Ts.

If now S depends on x„, to preserve invariance B/Bx„
must be replaced in the well-known manner by the
combination (B/Bx„igU„) Here—U„=T.'U„' and U„'
are a set of &z vector fields whose transformation

6 For stating the gauge principle it seems desirable to start with
(Dirac type) linear (rather than the Klein-Gordon type quad-
ratic) Geld equations for all Gelds, in the manner suggested by
Schwinger in his action principle papers. This is because a re-
striction to linear (rather than quadratic) derivatives in free
Lagrangihns leaves less scope for ambiguity in the speciGcation of
the Lagrangians. This in turn avoids ambiguities in the interaction
terms of gauge theories which are generated by the principle of
replacing 8/Bx„by combinations like (8/Bx„igU„)—

7 The structure constants are required further to satisfy the
relations CI,'&= —C/, &" C~' C &'~+CI, 2 C ~'+C~~ C '&'=0.

Here also A„=A '(x)T' and B=B'(x)T' The second
step is to change the variables x to y' and U„ to U„'

' If S=exp(gX), then

, BS f)IX g' BX g' BXS- —=g——' X,—+—', X, X,—
0$fg 8$bi 2 . 8$bt 3 I BSP,

BX 8X BX g' BXS'—S=——g X—+—X X—
Bgbi BXfg OS' 2 .

, BXfg

If X=ib'T', from (18) it is clear that S '(BS/Bx„) must have the
form B T.

It is worth remarking that irrespective of any particular rep-
resentation for the generating matrices T', the transformation
properties of the vector Gelds U„' depend only on the structure
constants of the group. Thus inGnitesimally (19) is equivalent to

U„'= U„+PU„&gX)+(i/s)BX/dx„,
I.e.f U„'= U„'+igC sU„&'b"—(1/z)Bb'/Bx„.

9According to our earlier prescription, one should write a
linearized version of {23).This will have the form

TrI —(1/2)F„,(B„U, B.U„igU„U„i—g U„U„)—(1/2)F—„,F„,.I—
For convenience of exposition, however, we continue to work with
(23).
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~' r)S r)S ' (r)8'
Z"(A' 8'")=—- Tr-

g' c)x, r)x„& r)x„
S=exp(igB/a),

and g' and U„' are defined as in (25). Clearly, from
gauge invariance,

—2k BS BB'"-
in S—1

g 8' Bsp

——Tr1
2 (36)

(29)
withwhile

mass= —
2 T«'U„U„

S=exp (igB'"/i~)

It is easy to satisfy oneself that no nonrenormalizable
infinities arise from the terms contained in 2'(x', A„'").
However, 2"(A„'",8'") has exponential terms from the
explicit occurrence of S(x) and these will produce
horrible in6nities unless either

K' BS BS'
= ——', Tr «'U„'U„'+

g Bxp Bsp

2iK 85—
U„'S-&

g 8$p, K=O,
or

where, " as in Sec. 2, the transformation matrix 5 has and
the form

f 1 88)s= —-,'Tr ssI U„'+
~ clx„j

K' BS BS ' 88

-g Bsp Bxp Bsp

and

i~s c)S c)S-' (r)8'" '
Tr =0,

g' ax„ax„k ax„

BS r)8"a)'
Tr A '" S-' —sg

~

=0.ax„ax„)

(39)

(40)

2is r)S c)8 )U„' S ' —ig
~

. (30)
g ax„ax„)

One may now set up the 5 matrix for the theory based
on Z(y', U„')+2, „,(U„',8) and-use x' and U„' va-
riables. "Now

Thus, the problem of finding renormalizable massive
vector meson gauge theories is the problem of 6nding
those gauge transformations (and the corresponding
matrices 2') which satisfy (39) and (40). These condi-
tions are the major results of this paper.

(1) For a massive neutral vector meson interacting
for example with a nucleon

so that

Therefore

also

i BS 1 88-S- = —— +O(g),
g 8$p, K 8$p

U„'= A„+O(g).

U'I in g in ~

(31) S=exp(igB/i~).

(41)TrTsTj=0

Thus, both (39) and (40) are satisfied, and the theory
is renormalizable.

(2) In general, (39) and (40) can be satisfied,

(33} provided

~~in ~in

The new 5 matrix equals

T expi 2'(A„'" x'")+2"(A„'"8'")

34
Now as remarked earlier (footnote 8) the matrix repre-
sentations of T' appropriate to the fields U„' are given
by the structure constants C,~~ themselves. For simple
Lie groups, Ionides and Gell-Mann and Glashow" have
shown that for such matrices

where
g&(A in xin) g(A in xin)

TrT'T~'= M'~' (42)

minus the free I.agrangians

x.'"P. x'"——~x'"x'"——
8$p, 4 clx, clx„ i

'0 The change of variables U„ to U„' is necessary in the general
case treated above because here U„' (as well as x) are "source"
fields. In the neutral pseudovector meson case of Sec. 2 the meson
field vras not a source field and did not itself undergo a trans-
formation involving S.

"That Borcher's results can be extended to the case of vector
meso ns has been proved by S. Kamefuchi (private
communication).

so that (39) and (40) can not be satisfied.
The only non-gauge-invariant term in the above work

was the vector meson mass term. Clearly any other
noninvariant interaction term L(y) will get trans-
formed into L(Sg') and the exponentials of the 8 field
contained in S will inevitably produce nonrenor-
malizable inanities in the same way as those arising
from the transformation of the nucleon term (m~)
to mf' exp( 2iysgB/ir)P in —Sec. 2.

"P.Ionides, Nuclear Phys. (to be published); S. Glashow and
Gell-Mann, Ann. Phys. (New York) IS, 439 (1961).
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instead of
'U„=J„,

8 8 8
U„— U„=J„.

~&v -~&v ~&p

(43)

(44)

Notice that BJ„/Bx„=0 (from the gauge invariance of
the theory) as before, so that

'BU„/Bx„=0

One may now impose on one space-like surface

(BU./Bx.) I +)= (BIBt)(BU./Bx.) I +)=0

so that from (45) it follows that

BU„/Bx„)e)=0 (46)

for all physical states at all times. We are now ready to
set up a self-consistent scheme for computation of the
physical mass. We follow identically the lines of
Nambu's' calculation of electron self-mass in a y5-
invariant theory, where one rewrites the Lagrangian
of the theory Pp„(B/Bx„)P+ietP&„A„Q in the form
P(y„(B/Bx„)+m)P+[iegy„i'„m~] Th—e first .part
iP(y„(B/Bx„)+m)iP is treated as the free Lagrangian in
an interaction representation while the rest is the
interaction term containing, as usual, the self-mass
part mfa The self-ma. ss Bm (=m) is computed as the
sum of the usual proper self-energy graphs whose
contributions are calculated using the electron propa-
gator 1/(P+m). Thus, to the second order in e, this
self-consistent method gives m= 4snm ln(A'/m') as the
equation determining m (A. is a cutoff mass). Besides
the trivial solution m=0, there is the second solution

5. RENORMALIZABLE VECTOR MESON THEORIES

The only way to make gauge theories renormalizable
seems to be to take the bare mass ~=0. One may then
hope to compute the physical mass in a self-consistent
manner as follows: Replace

', (B—U-„/Bx„BU—„/Bx„)'

in the free-meson Lagrangian by the non-gauge-invari-
ant term —zi (BU„/Bx„)'.This is quite similar to the cor-
responding procedure in electrodynamics. The equations
of motion now read (z=0)

for m given by 1=4sn ln(A'/m'). More generally, m is
the solution of the relation

A2/m2

xpi(x') dx'=
A2/m2

ps(x') dx',

where p~ and p2 are Lehmann's spectral function.
For the vector meson case, the procedure is similar;

one adds —(1/2) AU„U„ to the meson Lagrangian and
subtracts the same term from the interaction terms.
Equation (46) is unaltered so that the unwanted
negative energy components of the vector field do not
appear in the physical states as a result of the subsidiary
condition. This, of course, is much weaker than the
usual operator equation BU„'"/Bx„=0 which normally
holds for massive vector mesons and eliminates the
zero-spin negative-energy particles from the theory.
The. meson propagator in the 5 matrix comes from the
free-meson Lagrangian

and therefore has the form 6„„/(p'—tzs). This ensures
that all calculations in such a theory are similar to
those in electrodynamics so far as the degree of di-
vergence of S-matrix elements is concerned. Thus, the
theory is renormalizable.

A proof of nonrenormalizability of general massive
vector meson theories was first given by Ionides, "
following the lines of the original proof of Kamefuchi
and Umezawa, by constructing an explicit unitary
transformation to eliminate the 8 field. A proof similar
to that of Ionides" has also been given recently. " In
our work, we have found the construction of such uni-
tary transformations unnecessary.

Note added irt proof. It is likely that the theory de-
scribed in this section, like all self-consistent theories,
contains zero mass particles; see J. Goldston, Abdus
Salam, and S. Weinberg, Phys. Rev. (to be published).
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