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Non-Abelian Gauge Fields. Relativistic Invariance
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A simple criterion for Lorentz invariance in quantum field theory is stated as a commutator condition
relating the energy density to the momentum density. %'ith its aid a relativistically invariant radiation-
gauge formulation is devised for a non-Abelian vector-gauge field coupled to a spin--, Fermi field.

INTRODUCTION
' 'T has been the historical role of gauge-variant field
& - systems to pose the greatest challenge to relativistic
quantum-field theory. From the first beginnings of a
general quantum electrodynamics in the hands of
Heisenberg and Pauli, difhculties were encountered,
owing to the absence in the Lagrange function of the
time derivative of some of the field variables, which
frustrated the application of the simplest canonical
quantization scheme. Two general responses to this
situation can be distinguished. In the first of these, the
physical system is accepted for what it is: the gauge
variance of the Geld is interpreted to mean that not all
the field components at a given time are fundamental
dynamical variables, and the latter are identified. Ke
shall describe this view point as the method of the
radiation gauge. ' It can be characterized by the desire
to clarify the quantum nature of the system, be it at
the expense of manifest Lorentz invariance. The second
approach reverses this order of priority. Although
there are several versions, all share the feature that the
physical system is modified in order to restrict the
group of gauge transformations and thereby extend the
status of fundamental dynamical variable to all field
components. The states of physical interest must then
be related to the states of this larger system. These
devices will be described collectively as the method of
the Lorentz gauge. '

It is usual to assert that the two viewpoints are
equivalent, and that a Lorentz gauge method has the
advantage of calculational simplicity. But, against the
validity of the Lorentz gauge methods as the basis of a
general theory, must be arrayed the body of experience
which indicates that the nature of the quantum vector
space for a system with an indnite number of degrees
of freedom is intimately associated with the dynamics
and that no operator transformation connecting the
states of diferent dynamical systems can be guaranteed
to exist. For this reason, combined with the conviction
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that an intrinsic method is superior in economy of
concept to the artiGce of imbedding the physical system
in another kinematical and dynamical framework, we
reject all Lorentz gauge formulations as unsuited to
the role of providing the fundamental operator founda-
tion for a gauge variant Geld system.

The radiation gauge formulation is three dimensional
in structure, and Lorentz invariance must be verihed
by explicit calculation. In the electromagnetic or
Abelian gauge-field situation one can easily exhibit the
operator gauge transformation that is induced by a
Lorentz transformation. The covariance of all aspects
of the theory can then be checked directly. Such a
program is vastly more complicated for non-Abelian
gauge fields, particularly since the Lagrange function
is ambiguous, in a manner that influences Lorentz
transformation properties. Thus, we are in grave need
of a simple criterion for Lorentz invariance if we are to
select a satisfactory theory from a class of theories
that are acceptable in three dimensions. This is what
we propose to supply in the present paper.

THE COMMUTATOR CONDITION

Consider a field system for which the fundamental
dynamical variables obey equal time commutator or
anticommutator relations of the form

x'= x": Lx(x),x(a') j+——c(x—x'),

where c(x—x') is a numerical matrix function. Let the
system be characterized by Hermitian momentum
density operators T'&(x), k=1, 2, 3, such that the
operators of linear momentum,

Ps (dx) T's (x), ——

and angular momentum,

(dx)Lx, ro, —x,ro,j,

obey the commutation relations appropriate to the
three-dimensional translation-rotation group,

P's, rtj =0,
sP's, A j=5—s I't 5stI', —

&Pst, jm j=4~Jtn —5t~js 4n&t +5tnJ—I ~. —
324
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The significance of these operators as generators of
translations and rotations should also be expressed by

Lx(x) Pal= (1/i)r)sx(x)

[x(x),Ji)g = [xi(1/i) ai—x((1/i) al, +Skijg(x),

where the 6nite-dimensional Hermitian spin matrices
S&& obey the angular-momentum commutation rela-
tions.

Ke now assert, as a sufhcient condition for invariance
under the group of proper, orthochronous Lorentz
transformations, that the Hermitian energy density
operator T's(x) obeys the equal-time commutator
condition4:

—i[T"(x),T"(x')j= —(T'i (x)+T'~ (x'))8"0(x—x'),

at least for the systems now under consideration, in
which only spin values of —,

' and 1 occur. It is also
required, of course, that T '(x) be a three-dimensional
scalar function of the Geld operators at the given time,
with no explicit coordinate dependence.

The latter property implies that the energy operator,

which is the assertion of local energy conservation,

8eT~+ 8pT'~ =0.

A subsequent x integration, including the factor x&,
gives

i[—x'PI, JO—I P'g= — (dx)xI, B&T

i[P—,J'a$ =PI,.

If the additional factor of x~' is included in the x'
integration, the result is

—i[T"(x),x'Pi —J'($= —T'i (x)—r) 1,[x(T's (x)7,

or equivalently

[T"(x),J'~]= [x'(1/i) Bg—x ~ (1/i) 8']T"(x)+2iT'~ (x).

This is an infinitesimal transformation statement about
the tensor character of T""(x). An x integration, with
the factor x&, now yields

P'= (dx) T"(x), —i[J'I,J'if = — (dx) (xi T'i xi T'~) = —JI ~,
—

obeys
[p',pij = [pe,Ai) =0.

Furthermore, the three in6nitesimal generators of
Lorentz transformations,

J'I,= (dx) [x'T'g xI,Toej=x—'PI, (dx) xsT—",

evidently constitute a three-dimensional vector and
thus

In addition,

—i[J'I„P(g= (dx)xj, r)(T"= —81,)P'.

Lacking from the list of commutation relations obeyed
by the ten in6nitesimal generators of the inhomogeneous
Lorentz group,

[P„,P,]=0,
s[P„J.i)=g, ),P—.—g, ,Pi,
&[JpvvAvJ —gpXJvv gvXJpv gpv Jvi+gvt VX v

are the commutators [P,J'&$, [J'&,Js~j; and it is just
these that are supplied by the commutator condition
on the energy density.

On integrating over the three-dimensional domain of
the variable x', the commutator condition becomes

s[T"(x)Psj= —r)r.T'"(x)—
4I am unaward of any similar statement in the literature.

Although the work of P. A. M. Dirac, Phys. Rev. 73, 1092 (1948),
is certainly directly related, the possibility of its application to
the tensor T„,is there speci6cally rejected.

which completes the set of commutation relations
obeyed by the infinitesimal Lorentz generators.

These unitary group properties, combined with the
invariance of the fundamental field commutation
relations under unitary transformations, comprise the
content of the requirement of Lorentz invariance. It
wil] be noted that the energy density commutator
equation could contain additional terms, which do not
contribute to the various three-dimensional integrals.
No such terms will appear, however, for the system we
now examine, ' a non-Abelian vector gauge field coupled
with a spin-~~ field.

THE ENERGY DENSITY OPERATOR

The fundamental dynamical variables of our system
are a sPin-sr Hermitian Fermi field lt (x), and a trans-
verse vector Hermitian Bose field Pq(x), G " (x),
k=1, 2, 3. The former obeys the equal-time anti-
commutation relation,

x'=x": {P(x),lt (x')}=8(x—x'),

as a matrix equation in the four-component spinor
indices. This field also has an additional internal
multiplicity in order to realize the properties that are
represented by e imaginary antisymmetrical matrices
T, which obey the group commutation properties,

This discussion is a continuation of a previous paper, J.
Schwinger, Phys. Rev. 125, 1043 (1962).
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The e-dimensional matrix,
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and therefore

tk = (t.b,),

also obeys this group commutation law.
At a given time, the transverse vector fields commute

with It, and obey the commutation relations

LA(x)A i(x')]= Ã'"'(x),G"'(x')]=0,

i[yk(x), G" (x')]=P'ka(x —x')]r.

These are matrix equations in the e-dimensional
internal space to which the matrices tb refer. We also
employ the fields defined by

f'Gkl= B 4kl BE4k+—& (@kt4 l)

BkG'"—i'gk'. G'k= ho =g TIt
where

+Ok @Ok7

The explicit form of C ~ is given symbolically by

G= LI+Vn, (V —i'tII')]:G' —Vn, ko,

in which

(—V'+i'tII(x)' V) no(x, x') = h(x —x').

We propose the following Hermitian operators as
candidates for the momentum and energy densities of
this system:

T"(*)=8(*)81/)B.—'T0 ( )']It( )
+ ', a'(g (-x)~„It (x)]+@GO™(x)G,„(x).

= T'k(x) ~+T'k (x),
and

T"(x)= -,'It (x) .nk((1/i) Bk—'T@k(x) ']It (x)
-l' S(*)W(*)+lf'HG'"(*))'+l(G"( ))']

+to(x)=To'(x) +T"(x) .

Note that symmetrized and antisymmetrized multipli-
cations are called for in Bose and Fermi terms, respec-
tively. The scalar function to(x) will not be specified
here. Its determination is the essential contribution of
this paper. The Dirac matrices nk and P are real, and
are respectively symmetrical and antisymmetrical. The
spin matrices,

0 ki = (1/2i) Pak, ni],

are imaginary and antisymmetrical.
In order to verify that T'& produces correct three-

dimensional transformation properties we remark that

f'G ~(x).Gk (x) =Go™(x).akim„(x)

yPo(x)yk(x) B LGom(x) yk(x)]

in which a reordering of symmetrized products is
involved. Accordingly,

T"(X)=o4(X) (1/i)B4(X)+oa'C44(X)~ki4(X)]
+Go™(x)Bky„(x) .B)Go™(x—) @k(x)], .

1 1
I'k ——(dx) T'k —— (dx) p. —Bkp-+G'"". Bkp

-2 i

(dx) {-,'iP. Lxk (1/i) Bi—x( (I/i) Bk+-,'o ki]P

+Gom (»ai xiaI )y~+Gokr yi Go T
@ )

from which we derive

g (x),Jki]= fxk(1/i) Bi—xi(1/i) Bk+-,'o kgb (x),

L4 "(x) Ski]=
$xk (1/i) Bi—x~ (I/i) ak]4 "(x)

—iak"yi(x)+i5i"yk(x),

and a similar equation for G' r(x). These properties
ensure the appropriate transformation behavior for P~
and JI,&, and thereby the validity of the commutation
relations for the infinitesimal generators of the three-
dimensional translation-rotation group.

It is worth noting here that a momentum density
must obey equal-time commutation relations of the
form

—iLTok (x),Toi (x')]= —Tok (x')

Bib�

(x—x')
—T'i(x) Bka(x—x')+rki(x, x'),

where

and
rki(x, x') = —rik(x', x)

(dx) rk~ (x,x') = (dx) Lxkri„(x,x') —xirk„(x,x')]=0.

The latter are the conditions demanded by the in6ni-
tesimal transformation equations,

P', (x),f',]= (1li)a,To, (x),

LT'-(*),Jki]= Lxk(1/i)ai —xi(1/i) ak]T'-(*)
—i8k T'i(x)+iai„T'k(x),

which also imply the commutation properties of P& and
Ski. The Hermitian operators rki(x, x') should vanish
at finite

~

x—x'~ but generally are not identically zero
for 6eld systems with spin. Concerning the system
now under discussion we shall only remark that rk&(x, x')
has terms containing no higher than second derivatives
of 8(x—x').

The Fermi 6eld contribution to the energy density
obeys the commutator condition,

—i[Too(x)",Too(x') ~]
= —(T k(x)~+T'k(x') ~)Bka(x —x'),

which exhibits the momentum operator in terms of the
canonical variables. The immediate result is

LX(x),~k]= (I/i)akX(x),

in which x may be P, P&, or G" . Similarly,
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where

It follows that
k.'(x) =-',P(x)u'T.P(x).

—i[T"(x)~)-,'(G"(x'))']= 5(x—x')ki(x). G"(x)

which is a symmetrical function of x and x', and
accordingly

[T00(x)E T00(x&)B]+[TOO(x)B T00(x&)F] 0

Turning to the evaluation of [T'0(x)~,T"(x')~], we
observe that

i[f'G—(ix)),G' (x')]= —[Bi,—i't'ai, (x)']&i &(x—x')

+[Bi—i'@i(x)']Bi, 8(x—x') —i'$G&i(x)'$~(x, x')B™,

as one can easily confirm. In order to evaluate
[T' (x)~,T"(x')~], for example, we first compute
[T"(x)",G"(x')] which divers from zero in virtue of
the commutator

i[y, (x),Go'(x')] = S',B(x—x')
—[Bi—i'yi(x)']S~(x, x') B",

and of the density operators k', contained in G"(x').
The result obtained by combining the two contributions
is simply —i)T"(x) G"(x')]=8(x—x')k'(x),

this calculation:

—[l(G'"(*))',l(G"(*'))']
= —y~(x, x') i.G"(x')+G'"(x) .y~(x', x) i„

in which
f'7 (X,X')"= (&/i)[~4 (x),G'"(*')]

and
t~(x) =~sf' P, Tr[i,B"X)&(x,x)t,BiSq(x,x)].

In this result we recognize the statement that a function
t@(x) exists such that the set ot operators, —,'f'(G'"(x))'
+/q(x) for all x, are commutative.

The intimate relationship that must exist between
the two terms i~f'(G'"(x))' and tq(x) is emphasized by
writing the sum as the positive Hermitian operator,

-'j' P. [G,'"(x)—-', Yrt.B'X)z(x,x)][G."(x)
+2 'rr(.B'~~(x,x)]=-',f'(G" (x))'+t4, (x))

where, it will be remembered, the elements of the
matrices t are imaginary numbers. The possibility of
this rearrangement is equivalent to a statement of the
identity

P, [Trt,B"5)&(x,x),G,oi(x)]
= ——,

' g.YrP.B"ny(x, x)t,B"ny(x, x)]
—-', P. [Trt.B"n~(x, x)]'.

and therefore

—i[-'f'(G~i(x))', G' (x')]
= —G" (x)[Bi,—i'gi, (x)']5(x—x')

since
(Gii(x) tGi, i(x))=0.

Its verification will require the following theorem:

g, Tr[t,B~S~(x,x)t, (Bi&&(x,x)—$&(x,x)B")]
=g, [Trt.B"Sp(x,x)]'.

FIELD TRANSFORMATION PROPERTIES
As a result, Now that we are in possession of the explicit opera-

( /i) [-'f'(Gii(x))' -'f'(GO™(x'))'] tors' for E' and J ~, the equations of motion and the

+ (l/ )[iyg(Gp ( ))2 if2(G ( /))2] Lorentz transformation behavior of the various field
quantities can be derived. Let us begin with the Fermi

" *) + "(*) )& field P(x) and remark that (x'=x")
and the verification of the commutator condition would
be completed, were it known that

Bf (G "(x))~+&,(x) kf (Go (*))+~,(x')]=O.

Let us recall the commutator

g (x),k'(x')] =6(x—x') Tg (x),

which has the consequence

[iP (x),G"(x')]= —B"ny (x',x) Tly (x).

Then we get

of which one important consequence is that where

i[G'"(x),G"(x')]= B"X)g (x,x') .i'tG" (x') '

+ '~ (.) .n, (.,")B', B.O(*)=[a( ),&']='T~'( )' a( )
yn"[(1/i) Bi,—'Tyi, (x)']P(x)—imPP(x),

(G"(x)tG"(x)),

unlike the similar construction with G~~, does not
vanish. Indeed,

(G'~(x)tG'~(x)) = —P, t,B $&(x,x)f, .G'"(x),

where only the 6rst variable of X)~ is to be differentiated.
%e shall now simply record the outcome of computing
[(G'"(x))',(G"(x'))'] and invite the reader to duplicate

qP(x) = f' (dx') K)~(x,x') .B,'G"(x').

'Despite the criticism of Lorentz gauge methods, it seems
reasonable to suppose that no diKculty of a formal nature will
appear in a Lorentz gauge treatment analogous to that given by
Fermi for the electromagnetic Geld, provided one avoids all
reference to state vector norms, for these cannot be Gnite. Ac-
cordingly, it behooves one to show that the elimination of longi-
tudinal modes from the Lorentz gauge formulation reproduces
the energy operator of the radiation gauge method. This I have
succeeded in doing.
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This equation of motion is also expressed by

{ "[B.—i'T'4. (x)')+P~} 4(*)=o,
with

In evaluating the commutator of any Q.eld operator
F(x) with J'py, it is convenient to write the latter as

Joy= xpPi —xyPp+ (dx') (xy —xi) T«(x ),

so that

[F(x),Joy) = [xp(1/i) By—xi(1/i) Bp)F (x)

[y p (x),Jpy) = [xp(1/i) Bi—xi(1/i) Bp)yy, (x)
-'B.~'(*)+[(1/')B.-'~.(*)'7.~ ( ).

Since both sides of the latter equation must be diver-
genceless we learn, incidentally, that

O= Byrd Bo—yy+ (V' i't—P' V)Ay,

which supplies an alternative construction for the
operator gauge function,

Ay(x) = (dx') X)p(x,x') [By.'qP(x') Bp—yy(x')),

+ (&x)(«xy)[F(x)i~«(x)7 as one can verify directly. This version of the gauge
function can be used to rewrite the Lorentz transfor-

hi r re x i mation property of p& in the symbolic formThe result of applying t s p ocedu to It( ) s

Q (x),Jpy) = [xp(1/i) By xy(1 /i)—Bp+-,' opy]P(x)

y'ray(x)'. It (x),
[@y,Jpy) =[1+(V'—i'tIt') Sp|7)i .([xp(1/i)Bi

—xi(1/i) Bp)y"—i8y"yo}
in which

f'BGp = (By i Qp )pyly —(B —i @ —)hgp
0 p~

= —ZQ~.

similar calculation can be performed for the and the result of th's calculation is

densities k (x) with the aid of the equal-time commu- [G (x) J ) [x (1/i)B x (1/i)B )G (x)
tation relation

+ibpyGp„(x) —ib„yGpp(x)+'thy(x)'. Gy.„(x).

which makes explicit the origin of the operator gauge
Ay(x)= f' (dx')Sp(x, x'). Bp'[(xy' —xy)G'"(x')) transformation in the radiation gauge requirement of

transversality. A closely related transformation law is

appears as an operator gauge function. We have also
de6ned

%e And

[koo(x),k,o(x')) =8(x—x')g, k,o(x)t.p, .

Ol

iBoko(x) ='y'(x)'. ko(*)+[(1/i) Bi—'yy(x)')k'(x),

[B.-"te.(*)'7 k"( )=o

and the Lorentz transformation law

[ko(x),Joy)= [xp(1/i) Bi—xy(1/i) Bp)k'(x)
—ik, (x)+'tAy(x)'. k'(x).

A related result is

[k„(x),Jpy) = [xp(1/i) Bi—xi(1/i) Bp)k„(x)
—iB„,ko(x)+'tX, (x)'.k„(*).

Turning to the transverse vector field pp(x), we first
note that

i[pe, (x) -'(G'"(x') )'7 = (By,„B(x—x')
—[By,—i't4 p(x)') X)p(x x')B '}.G'"(x')

in which 8 is still understood to act on the function
to its left. The immediate consequences are

Bga(x) =f'Goo(x)+[Be—i Wp(x) ) 4'o(x)

or equivalently,

PGo =B4. B.4 +(4opVp), —

Thus far the Lorentz transformation properties
present a comparatively simple picture. In addition to
the anticipated geometrical transformations the various
fields are subjected to an operator gauge transformation.
Indeed, this would be a completely valid assertion for
an Abelian gauge field, but it is not true for the time
components of a non-Abelian gauge held. If we consider
the field Go"(x), commutation properties which have
already been employed show that

i[G»(x), roo—(x'))
=G P(x')[B ' —i'ty (x')')E(x—x') —6(x—x')k" (x)

—j'i'tG" (x)'. [X)p(x)x')B".G"(x'))+rp'(x, x'),

where the last two terms appear as an evaluation of

—[G"( ),lf'(G" (*'))'+t ( ')7.

The notation anticipates the structure of the function
rpo(x, x'). lt is again understood that B" acts on the
function to its left. The result of an x' integration is
the equation of motion

BpG" (x) =i'yp(x)' G"(x) [By i'yy(.x)'7G"—(x)—
—k"(x)+rp" (x),

while the additional factor x~' —x~ produces the Lorentz
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transformation formula will 6nally yield zero only in virtue of the implied
property,

Here we have de6ned

ab

ro"(x) = (dx')roo(x, x')
ab

and

[G o (x),Joi]= [xo(1/i) 8 ~
—x~ (1/i) 8o]Go"(x)+iGo

~ (x)
+'t'ai(x)'. Go"(x)+iron~(x). [8o i—'tpo(x)']roo~(x)+ro~(x)

r@o((x)= (dx') (xi' —x()ro" (x,x').

The novel transformation aspects of the operators
Goo(x) are thus associated with the appearance of the
function r&"(x,x').

This function can be evaluated by remarking that

f'G—"(x) .[i'tG" (x)'. ($&(x,x')8".G"(x') )]
+G"(x) ro'(x x') = —i[o(G"(x))' of'(G" (*'))'

+to (x')]= i[to (x) Go'(x')]. Go'(*')

so that it suKces to identify the coeKcients of G'"(x),
after a reduction of the first term. A fairly explicit
statement of the result is given by

ro" (x,x'),= —io f' g [it,8"So(x,x')]o,
bc

which expression, incidentally, also equals

2 t t-l[4 "(*),[A (*),G"(*)]]
-2 t.t.—.[A,.(*),[~..( ),G-( )]].

The complete density of the internal property
represented by the matrices T, and t, is given by

j,'(x) = 8&G."(x)=k. (o)x i(P—&(x) .t,G"(x)),

and the total content of this property is described by
the constant Hermitian operator,

T.= (dx)j.'(x).

Whenever the contributions to this integral are effec-

&&Tr [toX)o(x,x') 8'9,8"So(x',x)] tively confined to a spatially bounded region the scalar
function %(x), which specifies the longitudinal compo-

b
Gok —Gok T g Ic+

In this and in previous manipulations the following
relation has been useful:

o[8'So (x,x'),o,G "(x")]—x[8"'X)o(x",x') go)G."(x)]

—[O'Klo (x,x') itb X)o (x',x")8"']„
—[So(x', x)8"it.no (x,x")8"']o,.

Another aspect of the function ro" (x,x') should be
noted. It is a consequence of the definition that

[8o i'tyo (x) ']ro'(x,—x')

=Q tot, [y."(x),[Go'"(x),f'K)o(x,x') 8".G"(x')]]

—P t, toi~ [Go'o (x),[P,"(x),f'Xlo (x,x') 8".G"(x')]].

Beyond remarking that an evaluation of these double
commutators would indeed yield a function of the
field P, we shall not record the explicit result, for the

important thing is the commutator structure, which

is such that the constraint equation,

[8,—i'y, (x)'].G'"(x)=ko(x),

is maintained in time and under Lorentz transforma-
tions. Thus, a detailed term-by-term evaluation of

must have the asymptotic behavior

~x~ ~ ~: +.(x)- T..
4or[x/

No such slowly decreasing term will appear in the
time derivative of G ~, however, and we can identify
the current j~, which obeys the conservation law

as
8oj'+8oj"=0,

jo(x)= —8oG'o(x) —8&G'o(x) =ho(x)+i(Po(x). tG'"(x))

+i (y( (x)tG" (x)) ro" (x) . —

[j'(x),j'(x')]= —'tj'(x)'8(x —x')

+8I 8('i['g" (x)'So(x,x'). 'tG" (x')'
—'tGoo(x)'. So(x,x')'@'(x')'].

The additional divergence term does not contribute to
integrated quantities, and we reaf5rm the commutation

We see that the function ro" (x) also intervenes here.
Although the current j&(x) obeys a local conservation

law, in contrast with k"(x), the density j'(x) does not
have a localized character with respect to equal-time
commutation relations, as does ko(x). Thus,
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properties of the T operators, From the known characteristics of pb and Gpb we now

find that
[Tb T ]=+ T tgbg

[4 (x),~.,]= [x.(1/i) a,—x, (1/i) a,]q (x)-iy, (x)
+i[OP—i'@P(x)'].Ai(x)+iPb&(x),

while obtaining

[Bb—
i'tabb(x)']p

p, (x) = f'—r~b((x)

[jp(x),T.]= t.jp(x).
where

The Lorentz transformation properties of jt" are more
complicated than those of k&. For example,

[j (x),Jp~]= [xp(1/i) Bi x—b(1/i) Bp]j'(x) ij—~(x)

+'tA&(x)'.j P(x)+'t8bA&(x)'. G"(x)+i8br~'b (x),

and by writing the latter as

ab

—P t.tbi p „(x),[y,.(x),yp(x)]],
ab

[jP (x),Jpb] = (1/i) BbPbbx pjP (x)+xj&"(x)
+i'tA( (x)'.G"(x)—r~', (x)]

one can verify the Lorentz invariance of the conserved
T operators,

[T.,Jp(]=0.

Vge consider, finally, the Lorentz transformation
behavior of the field qP(x). One might begin with the
explicit construction,

qP (x)=f' (dx') nq (x,x') .Bb'G" (x'),

which, incidentally, has a counterpart in

P"(x)=f' (dx') X)~(x,x') Bi'G"(x'),

but it is simpler to return to the di8erential equation

f'G pb =~pub (pjb i—'tabb') .$p. —

and the divergence of this equation will supply the
additional function of the field qt that transcends the
elementary geometrical and gauge transformations.
The asymptotic behavior of qP(x) is given by

x —+~: 'x
4~/x/

according to the differential equation

Qpyp —fpj p p. (sty'@p)

Pote added irb proof. The energy density commutator
equation can be given a general dynamical basis by
examining the modification in the TI"" conservation
equation produced by an external gravitational field.
Also involved is a minimum assumption of time locality.
For an analogous derivation of the null charge density
equal-time commutator from the current conservation
equation, one must consider systems such that the cur-
rent is not an explicit function of the time derivative of
an external vector potential.


