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A group-theoretical basis of the axiomatic S-matrix theory is presented. The unitarity condition is taken
as the scalar product of the scattering functions which then are shown to transform according to the unitary
representations of the inhomogeneous Lorentz group. The general transformation property of the invariant
scattering functions is given which allows one, in principle, to write down these functions for arbitrary
processes.

I. INTRODUCTION dynamics involved, however, in the present formulation.
The philosophy of the S-matrix theory is that the
dynamics will follow from the postulate of maximal
analyticity.

~ TAPP has given a postulational formulation of the
S-matrix theory based essentially on relativistic

invariance and the principle of maximal analyticity. '
On this basis he proves the CI'T theorem and the
connection between spin and statistics, the latter with
one additional assumption. He has further derived, by
using the unitarity condition, the same singularities for
the S matrix as are obtained from the perturbation
theory.

In view of the importance of these results for a
complete S-matrix theory independent of the quantum
6eld theory, it is desirable to give a general mathe-
matical formulation of the scattering functions,
incorporating their transformation properties, their
invariance, and the unitarity condition. Such a formu-
lation can be obtained as an application of the theory
of unitary representations of the inhomogeneous
Lorentz group which, like the S-matrix theory, makes
no a,ssumptions about the existence of underlying fields
for the particles.

Unlike the situation in quantum field theory, the
Lorentz group is applied in this paper directly to
scattering functions rather than to the state vectors of
field theory. The S-matrix elements, which involve the
variables of both the initial and the final states, are
considered as the primary quantities satisfying a
certain completeness relation. For this reason we may
refer to them as scattering functions, or S functions,
instead of the S matrix. The completeness relation
expresses the conservation of the total probability (i.e. ,
the unitarity condition of the quantum field theory)
and is an invariant relation. It is then shown that the
S functions transform under the unitary representations
of the Lorentz group. This, together with the invariance
of the S functions, fixes the transformation properties
of these functions. A systematic group theoretical
method is thus provided to construct the invariant
amplitudes for arbitrary processes.

In the sense of the above-mentioned product relation,
the scattering theory is a linear theory. There is no
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t' On leave of absence from Syracuse University, Syracuse, New
York.' H. P. Stapp, Phys. Rev. 125, 2139 (1962).

II. THE SCATTERING FUNCTIONS

Quite generally, a complete scattering experiment is
described by the scattering function S;;, which re-
presents the transition probability amplitude to state i
when the system was in the state j with probability one.
Hence, we must have the normalization of the prob-
abilities (assuming discrete indices for the time being),

g;S;;*S;;=1, for all j,
P, S,;*S;;=1, for all i

If the initial state is taken to be a mixture, then the
condition that the total probability is unity, together
with Eqs. (1), implies

Q, S,; S,t, ——b, s,

Q, S t*Ss,= b, t.
(2)

The S matrix is "diagonal" with respect to selection
rules, but Eqs. (2) are valid for the whole matrix.
Even if, for certain attributes of the particles, super-
selection rules operate, ' Eqs. (2) may be assumed to
hold by definition, as the phases are not observable.

We now take the S,; to be the elements of a linear
space. In particular, the projections on definite values
of momenta, spin, and particle type will be written as

(E, —X'iS)=S(E, —X'). (3)

One can also use, for example, projections on definite
values of the total angular momenta and introduce
scattering functions of the form S(J, —J'). In Eq. (3),
according to Stapp's convention, E stands for an
ordered set of variables (k, ,h, ,t;), one for each final
particle where k, is the momentum four-vector of the
ith particle with k,'=no,~, ); is the spin component
with 2s,+1 values, and t; is the type of the particle
including possible internal quantum numbers. Similarly,
E' is the set of variables of the initial particles written

~ G. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. S8,
101 (1952).
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S(E, —X') = U'err S(A 'K —A 'X'). (6)

The U' is such that first transforming the momentum

arguments of 5 alone, then applying U', we must get
back the original S function.

IIL NORMALIZATION

ln terms of the sets of variables (E, X') Eqs. (2—)
can be written as

S*(E, X')S(K, —X")=—~(K', —K"),

S*(K', X)S(K", E—)=8 (E', E—")', —
K

(7)

where, corresponding to continuous momentum vari-
ables k, , the symbol g J' means integrals over the
invariant volume elements in the momentum space
and sums over the spin indices.

Equations (3) have to be interpreted in the sense of
distributions. The momenta are never measured with
absolute accuracy so that we can multiply both sides
of (7) with some smooth normalized test function
f(E',E") and integrate. This procedure corresponds
physically to the introduction of wave packets in the
initial or 6nal states. We can then write, if necessary,
a proper norm

in S, by convention, in the reverse order and all with
negative signs.

Let the 5 functions transform under Lorentz trans-
formations according to the law

S'(K, —X')= Urrrr S(E, —X'). (4)

We shall show in the next section that the operator
U~~ is unitary.

In a relativistically invariant theory the transition
amplitudes are invariant. By this we mean

S'(K, X')=S—(K, —X').

That is, two different observers operating with the
same values of the initial and 6nal variables measure
the same transition amplitudes. Also, the same experi-
ment viewed from two di8erent coordinate frames
gives the same transition amplitudes. Now U~~ in
Eq. (4) involves the transformations of both the spin
and the momentum variables. If we denote by AE the
set of variables (Ak;, lt, ,t,)—i.e., with only momenta
transformed —and use (5), we can write the trans-
formation property of the imariaet functions in the
for m

We can take now both Eqs. (7) Lor Eq. (8)] as the
definition of a "scalar" product or, better, of a complete-
ness relation in which, however —unlike the usual
scalar product —the summation is over part of the
indices. With respect to the set of indices E it is an
ordinary scalar product, and we shall use it in this sense.

We split U in Eq. (4) into two parts,

where V acts on the first set of variables of S(E, —X')
and 8' on the second set of variables. This separation
can always be made, since V and 8' operate on different
spin spaces and on independent momenta. Equations
(7) remain invariant under either transformation V or
W alone. For example, in the 6rst of Eqs. (7) we can
replace the first set of variables by AK and transform
the spins. We obtain then the equation

Vts*(E, K') VS(K,——X")=8(E', —X"), (10)

which is equal to the first part of (7), since we are
summing over the transformed indices with an invariant
volume. Hence, VtV= 1. H we now transform the same
equation with lV it follows from the invariance of the
e(E', —X") that WtW=1.

By exactly the same argument, we see from the
second part of Eq. (7) that V and W satisfy the
equations VV't=1 and 8"8't=1. Thus, V and 5", and
consequently U= V8', are unitary.

IV. TRANSFORMATION PROPERTIES OF THE
SCATTERING FUNCTIONS

Having established that the scattering functions
transform according to the unitary representations of
the inhomogeneous Lorentz group, we now discuss the
form of these representations suitable for the variables
occuring in S(E, —X'). The unitary representations
have been discovered by Wigner. '4 All we need is to
take the appropriate direct products of the representa-
tions given by Wigner and Wightman. '

Let us denote by U(a,A) these unitary representa-
tions. Here, the four-vector a stands for an element of
the translation group and A represents an element of
the 2&(2 unimodular group, which is isomorphic to the
proper Lorentz group. For particles of nonzero mass,
the transformation property of the 5 functions is
given by

(U(a,A)s)(E, —X')
=exp(i Q, k,a) g, D'&" (A i, , ~,.

—' AA q,. ~,.)
Xs(A(A ')K —A(A ')X'), (11)

(sls)=— p S*(E, X')S(E, —E")f(K—',K")

f(E,E)= 1. (8)

' E P. Wigner, A.nn. Math. 40, 149 (1939).
See also A. S. Wightman, in Dispersion Relations and

Elementary Particles, edited by C. deWitt (John Wiley Bz Sons,
Inc. , New York, 1960).' See also an extended version of the present paper, University
of California Radiation Laboratory Report UCRL-9963
(unpublished).
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where the left-hand side represents the transformed
function at the arguments (E, —K'), and D"'(A) are
the well-known unitary representations of dimensions
2j+1 (j integral or half-integral positive numbers) of
the three-dimensional orthogonal group which, in this
case, is the little group of the inhomogeneous Lorentz
group. Finally, A& „ is such that the corresponding
Lorentz transformation carries the vector p into the
vector k, i.e., A(A~ „)p=k.

Since the S functions are invariant separately under
translations and homogeneous Lorentz transformations,
we obtain from this equation the conservation of the
total momentum

P;k, =0,

and, using (5), the transformation property of the S
functions

S(K, —Z') =Q, S""(A p,. „,. ' AA q,. „,.)
XS(A(A ')K, —A(A ')K'), (12)

where p, are the momenta in the rest frames and
q, =h. (A ')k, .

The definition and the conservation of the angular
momenta will be obtained if S(&', corresponding to
pure rotations, is brought to an exponential form.

Let us consider the special case of one spin- —,
' particle.

In this case, S"'(A) reduces to A itself and

A, „=(k~~„/m)~,

Stapp has introduced the M functions,

M(E, —K') = (k 0/m)~R(K, —E'), (13)

which then have the simple transformation property:

M(E, K') =—A 'M(AK —AZ'). (14)

These M functions are expected to be analytic functions
of the invariant products of the momenta, not the R
functions, since the transformation property of the R
functions involves square roots and the components of
the momenta separately.

In the general case, X)&'&(A) themselves are direct
products of the A' s. One can therefore always split the
factors (k 0/m) l for each spinor index, and the remain-
ing M functions will transform simply with S~'~(A)
instead of X)'&'(Aq ~ 'AA, „).Equations (13) and (14)
agree then with Stapp's results. The application of the
group representations has allowed us to give also the
transformation property of the S or the E functions.
Furthermore, in terms of the known forms of K)~'~(A),
one can write the general form of the M functions and
consequently the invariant amplitudes for arbitrary
many-body processes involving arbitrary spins.

ol

(k 0/m) &S(IC, —K') =A —'((Ak) r/tB)~S(AK, —AK').

The same transformation property holds for the R
functions,

R=S—1.
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