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Upper bounds to the magnitude of the coupling constant for the vertex A+B &-+ C are explored for
meson theories with spatially Gxed sources and also for the full relativistic theory without approximation.
Two types of limit are obtained which depend upon whether or not the vertex A+B &-+ D exists where B
is the antiparticle to B and D is stable. Any greater value is inconsistent with unitarity and the mass spec-
trum of stable particles. In axed-source theories the limits can be explicitly expressed in terms of simple
properties of the given source function; in the nonapproximated relativistic theory they involve some
knowledge of the number or position of the nodes of the single-partial wave absorptive amplitude on the
nonphysical (left-hand) cut. When inelastic scattering of A by B is neglected and the mass of C is only
slightly less than the sum of the masses of A and B, the upper bounds are equal to each other and to the
coupling constant if C is a pure bound state of A and B.

are retained, or in which the left-hand cut is approxi-
mated by a finite number of poles, in general, one has no
tt priori knowledge of it. Therefore, a rigorous maximum
possible coupling constant for the fully relativistic
nonapproximated theory is not determined. The
maxima, which we shall determine, have a simple
analog in potential scattering which also suggests the
physical situation which obtains when the coupling
constant approaches its maximum value: The renor-
malized coupling constant for the three-particle vertex
2+8 &-+ C reaches the maxima obtained here, when the
particle C can be represented purely as a bound state
of A and 8 or at least contains as much amplitude for
being just such a bound state as is compatible with
other constraints on the nature of the interacting
particles.

The most general upper limits found for coupling
constants are of the type given by Eqs. (51), (52),
(60), and (61). These are the chief results to be
presented.

I. INTRODUCTION

'HE strength of the coupling among elementary
particles is generally described by the renor-

malized coupling constant which specifies the magnitude
of the interaction among a)most free "clothed" particles.
For the strongest interactions it is of order unity and is
progressively orders of magnitude less for electro-
magnetic, weak, and gravitational couplings. In a
previous paper' the question of upper limits for coupling
constants was investigated for models in which the
interaction vanished, when the particles were sepa-
rated beyond some critical distance. Here, completeness
and the masses of the interacting particles did imply
upper bounds for the coupling constants, but the results
were not applicable to relativistic 6eld theories or even
to 6xed source meson theories other than those with
spatial distributions which vanished beyond a fixed
radius. l '

In this paper, the previous results are strengthened
and also extended to general 6xed source meson theories.
The methods used are also applicable to relativistic
field theories, if the Mandelstam representation is
assumed. However, in this case the upper limits that
exist for coupling constants turn out to be less de6ni-
tive. For 6xed source meson theories, the maximum
value of the coupling constant depends only upon the
mass spectrum and some simple properties of the
known source distribution. In the full relativistic theory
its upper limit involves, instead of a known source dis-

tribution, either the maximum number of nodes of the
analytic continuation of the single partial wave ab-
sorptive amplitude on the left hand (nonphysical cut)
or, if this is in6nite, some knowledge about the spacing
of these nodes. Although this is known for various
models in which only a finite number of partial waves

II. "CAUSAL" INELASTIC POTENTIALS
AND BOUND STATES

Ke shall begin with a resume of some results for
potential scattering which are an extension of those
discussed in I. The results have an exact analog in the
relativistic field theory problem.

Consider a particle described by a Klein-Gordon
equation

(co'+ P—tz') y(r, co) = V (r,oc) (p(r, co), (1)

where U=o for r& a. The positive- and negative-fre-
quency solutions which have, in general, diferent inter-
actions with the potential are interpreted as those for
a positively and negatively charged particle, respec-
tively. The ~ dependence of the potential implies that
the interaction is nonlocal in time.

"Supported in part by the Army Research Oflice (Durham)
and by the National Science Foundation.

$ Most of this work was completed while the author was on
leave at New York University, New York, New York.

'M. Ruderman~and S. Gasiorowicz, Nuovo cimento 8, 860
(1958); hereafter referred to as I. See also: A. A. Ansel'm, V. N.
Gribov, G. S. Danilov, I.T. Dyatlov, and V. M. Shekhter, Soviet
Phys. —JETP 14, 444 (1962);fJ. Exptl. Theoret. Phys. (U.S.S.R.
41, 619-628 (1961)g.

V(r, t—t') p(r, t')Ct'. (2)

)
7Ve assume that the potential is causal, i.e., that future
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and past are kept distinct:

V(r, t—&') =0, &
—&'&0

so that

V(r,o)) = V(r, r)e'"'dr.

It follows that V(r, o&) is a regular function of &o for
Im~~0, except for possible poles at infinity, and we
assume these are not present. Then

One proof of the regularity of R&, 2(k) follows closely
along the lines of the analogous field theory derivation
of Sec. III. This regularity is the relativistic analog of
the well-known result for the analyticity of the partial
wave amplitude for the Schrodinger equation which
obtains when F =F+ and

I sr„l —+ p.
From unitarity and the regularity of R&,2(k), upper

bounds for the normalization constants IA I' and

I
8 I' follow. To see this we note that

1 " Im V(r, (u')d(u'

V(r,pp) = V(r,0)+— Im(v) 0. (5)

F+(k)+F (k) pF (k) —F (k))
F~(k) =— Ie2~~" (13)

2 co 2

with
22„(r)=A e

— "/r, (r) c)

—+(~2 ~ 2)$ ~

similarly for the positively charged particles the bound
state wave functions are given by

with
q„(r)=B e ™/r-
p =+(~' ~-')'—

(9)

(10)

I.et F (k) and F+ (k) be the s-wave scattering amplitude
for the negatively and positively charged particles
where k = (~2—p2) 2. H the potential V(r, pp) is less singu-
lar than r ' at the origin, the scattering amplitudes
F+(k) for real k are the boundary values of functions
with specified singularities in the upper half plane
Imk&0. These analytic properties are contained in the
statement that Ri(k) and E2(k) defined below are both
regular functions, including the point at infinity, for
Imk&0.

Ei(k) = F+(k)+F (k) 42rlA„2co
I+p

2 k2+n

42 I$2~ I-
ep~a2 (11)

k2+p '
— (F-(k)—F+(k)) 42rPIB I'

~2(k)= ~l
2co I ~ k'+P '

42' I
A„['-

+P ep~ek (12)
m k2+a„2

For real k, R&(k) =%*(—k); A(k) =A*(—k).

The restriction that inelastic processes occur only
for positive kinetic energies

I
~

I
)p, gives

ImV(r, (a') =0, I(u'I (p, (6)

so that V(r, pp) is regular in the entire pp plane except
for cuts along the real axis, with a gap at least as wide
as the line —@&co(p, in which the potential is real.
The negatively charged particles may have a set of E
s-wave bound states at energies co, where 0&or„(p
whose wave functions are given by

is regular in the upper half-plane except for poles at
k=in„, 22=0, 1, 2, and k=ip, 222=0, 1, 2, . For
real k, it satisfies F+(k) =F~*(—k), ImF~(k) &0, and

I F~(k) I

~ 1/k. The function,

iQp —k 1.

(k) — ep~ek F (k)+
in p+k 2ik 2ik

(14)

7r
0& —

I
A,

I

e-2-'—(I ~o
I ~u)+

Qp 2Q

IA„I'e—' "—22r Q (Ice. lap, )
Qn Qp Qn

I
2e—2P

+2 (I ~-
I ~~)- p-(«+p-)

(2o)

has exactly the properties detailed above for F~(k):

$~(k) = F~*(—k), k real (15)

ImF~(k) ~0, k real and positive (16)

l~+(k) I
~ I1/kI, »e» (17)

However, it does not have a pole at k=inp, so that if
P Nap allcl Q„/ap for 22/0 then

I
Ap I'e 2~~22r 1

&+(i~p) =—,(I ~p
I +~)+

Qp 2Qp

From the regularity and symmetry of 0'+(k) it can
be expressed, for Imk~0, as a Cauchy integral over
real values of k together with terms which explicitly
exhibit its singularities:

I
A- I'(I ~-I +~) (~p—~-)

v~(k) 2~i g- 2crn 6

n„(k in.) (n p—+n„)

I
&-I'(I ~- I ~~) («—p-)

+Z g-24222~

P-(k iP-) («+P—-)
2 "dk' k' ImP+(k')

(19)
~ p

From Eqs. (16), (17), (18), and (19)
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The following are immediate consequences of the above
inequalities:

If there are no bound states of positive (negative)
particles (8 =0), then the maximum possible IAof'
for a negative (positive) particle bound state satisfies
the inequality

and
I
A p I

' cannot grow arbitrarily large, since the elastic
channel contributes only a small part of it. For p-wave
interactions we exploit the fact that f~"(k) now vanishes
at k=O. Instead of Eq. (14) we follow I and define

IA. I'~-""-/2-(l-. l+.). (21)

n pe'~ "o/2sI2cup
I
'. (22)

If there are bound state(s) of the positive (negative)
particle as well as of negative (positive) ones or for a
neutral particle which is identical to its antiparticle,
then

1 1
)(e"~I:

2ik 2ik

Because f+(k) =0, it follows that

~"(0)=0 (25)
These upper limits are to be compared to the bound

imposed upon IAp I' by the condition that the charge
represented by the bound state wave function is unity,
if all other possible components of this bound state
other than the particle plus the potential are ignored.
Then j'dr 2popppp*go ——&1; in the limit a~O a pure
one-component bound state at cop gives

IApf'=no/4m frppf. (23)

For the neutral particle the upper limit can be reached
only if there is no inelastic scattering at any energy.
Inelasticity means that over part of the region of in-
tegration of the Cauchy integral in Eq. (19) Im5'(1/k
and IAo I' is always less than the bound given in the
inequality (22). The existence of channels other than
the elastic one for energies above some threshold plus
the causal property of the interaction imply that the
bound state must have a nonzero amplitude for the
states of these other channels: if in addition to the
elastic channel n —+n we have, for suKciently high
energies, n —+P, y, etc. , then any bound state for n

really includes a mixture of P, y, etc. This implication
does not necessarily follow for an energy-dependent
absorptive potential which does not satisfy Eq. (5).

The bound on IApI' for a potential which gives a
bound state for a particle but not its antiparticle can
be much more stringent than that for a particle which
is identical to its antiparticle. (We consider only energy-
dependent potentials which are bounded as the energy
becomes inftnite. ) For a weakly bound particle

I
a&p

I
lj,

and both inequalities give the same limit, which is
exactly what obtains from the nonrelativistic Schrod-
inger equation. However, for very tight binding

I
&op

I
—+ 0 and the limit on the bound-state amplitude

is much more severe for the case which gives the
inequality (21).This comes about in the following way:
If the antiparticle (negative frequency) is not bound but
the particle (positive frequency) is, then the potential
is clearly &u dependent. From Eq. (5) we recall that
causality, energy dependence, and boundedness for
infinite energies imply inelasticity. If the potential is
very different for &

I
~p I

even as
I
~p

I
approaches zero,

the inelastic part of the potential must become dominant

The analytic and symmetry properties of 5& lead to
Eq. (19) with an additional term (—iE'+)(k —ip) on
the right-hand side with P(u+y ') =1. From Eq. (25)
the sign of E~ can be evaluated for several special
cases and, instead of the previous results, we obtain
for a p-wave bound state the more restrictive condition
for those cases which gave the inequalities (21) and (22)
for a s-wave residues.

n e2anp
GCYp

IApf'&
2~( fcop f+y) (2+aop)

n e2anp Cnp
IA ufo

27I 2
I

cdp
I (2+gcxp)

(21')

(22')

' J. G. Taylor, Nuovo cimento 22, 92 (1961).

III. ANALYTIC PROPERTIES AND
FIXED-SOURCE MODELS

The limits on normalization constants for the finite
range "causal" potential bound state depended only
upon analyticity properties of the scattering amplitude
and inequalities which followed from unitarity. In
field theory the renormalized coupling constants play
the role of the normalization constants in the potential
problem. The main difference in the analytic structure
of the scattering amplitudes in the energy-dependent
potential problem of Sec. II and the amplitudes of field
theory lies in the absence of a finite range a. Instead of
an essential singularity at infinity (which is easily
canceled by a simple exponential) branch cuts are
present. However analyses similar to that of Sec. II
are still feasible. The analytic behavior of a single par-
tial wave elastic scattering amplitude, considered as a
function of center-of-mass momentum, is well known
for many special models. From the Mandelstam repre-
sentation it is also known for any local relativistic field
theory, once the mass spectrum is given and may follow
even if the Mandelstam representation is not valid. ' In
the upper half k plane (k =—c.m. momentum) all of the
models which we shall consider give scattering ampli-
tudes which have one or more poles at k=inp, in~, etc.
and branch cuts along the imaginary axis from some
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imo to i~. Generally, in the fully relativistic models the
cut may begin below the isolated poles; in fixed-source
models it proves possible to discuss linear combinations
of amplitudes for which there is always in a gap be-
tween the beginning of the cut and the poles.

We consider the elastic scattering of a particle (—)
and its antiparticle (+) by a scatterer in the notation
of I, For a boson described by a field operator q (r,t)
whose equation of motion is

( —t ') 9 (r,t) =g(r, t), (26)

M&-&(o~, k,k')

the elastic scattering amplitude M' ' for a boson of
frequency cv is conveniently expressed by the reduction
formula:

licit)y, we have

F (k)+F+(k) (E'=E.)
=g'(k) Z

2 (E E—r)' u'—k'—

x (I (I I
o*I~) I'+

I (I I
o

I ~) I') (3o)

—'I.F-(k)-F (k)j=g (k) Z
24) (E E )2 2 k2

x (I (1[oI ~) ['—[(I[o*[~)I').

The singularities in Eqs. (30) and (31) occur wher-
ever the form factor g(k) is not regular, on the real
axis from plus to minus inanity, and, if there exist
possible states m' of the scatterer whose mass is less
than Er+p, , at k= &in where

dt dr dr'e px(i ot+ik r —ik' r')
(E —Er)']—' (32)

In 6xed-source theories the spatial dependence of
j(r,t) factors so that

J(r, t) =g,p(r)O(t), (28)

where 0 involves spin, I-spin, etc. , but not r, and p(r)
is a fixed, given function of r. For p-wave coupling
O(t) is proportional to e r and thus involves the direc-
tion but not the magnitude of r; only trivial changes
in the following argument result. With Eq. (28) it is
possible to perform the integrations over r and r' in
Eq. (27) explicitly. The resulting integral is propor-
tional to [ g(k)P, where

g(k) =go p(r) exp(ik r)dr. (29)

The singularities of the s-wave scattering amplitude
are most simply exhibited in the I ow' equations which
are obtained from Eq. (27) for the s-wave scattering
amplitudes F+(k). The combinations F (k)+F+(k)—
and (ti/cu) LF (k) —F+ (k)]do not have the branch point
at k=ip, , which exists for Ii and P+ separately. Ex-

X(lit}(t)Lj(",t),j*(r0)j
—&(t)[j(r',t), 9*(r,0)]II) (27)

Here k and k' are the incident and final momenta of
the scattered boson, oP —ti'=k'=k", and II) is the
initial state function of the scatterer. Because we con-
sider a spatially fixed source the initial (and final)
state of the scatterer are independent of k and k'. The
charge conjugate boson has an amplitude M'+' related
to M( & by crossing symmetry

M~—
&(o&,k, k') =M~+~(—oi, —k, —k').

Such states contribute poles along the imaginary k axis
IImk[ (ti; the residues at these poles are, except for
arbitrary numerical factors, the renormalized coupling
constants for the vertices corresponding to boson
+I+-+ I'. If the scatterer is a proton and the scattered
boson a scalar charged "pion, " the residue in Eq. (31)
is the conventional renormalized coupling constant g'
defined by

g=g'(it ) I(~l -I p)l'. (33)

fg(k) =F +F + (ti/oi) (F F+).— ——

For sufficiently strong coupling a bound state of ++
and p (p++) is also expected which contributes another
pole at k=ip' and a residue 2g"=2g'(iti')

I
(p+"

I 7+I p) I'.
It will be signi6cant for the derivation of upper bounds
that the residues add in Eq. (30) but enter with opposite
signs into Eq. (31).

The magnitudes of the combination of elastic scatter-
ing amplitudes in Eq (31) an.d also the sum (F +F+)/2
&(t/2 i&)(FoF+) are never gr—eater than [1/k[ on the
real axis because of unitarity. If it were not for the
singularities contributed by g(k), it would be very
simple to calculate upper bounds for the renormalized
coupling constants by using exactly the methods of
Sec. II. Instead we shall construct a function s(k)
which has prescribed singularities and has unit magni-
tude on the real axis. It will then prove possible to
introduce s(k) as a multiplier of combinations of
scattering amplitudes in such a way that the resulting
functions can be treated by previously discussed
methods with similar results. We wish to construct an
s(k) such that Is(k)I =1 and s(k)=s*(—k) for real
k and s(k)P~(k) —i/2k) is regular in the upper half-
plane of k space except for discrete bound-state poles
with

' F. Low, Phys. Rev. 97, 1392 (1955}. We assume the function p(r) to be a distribution of
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Yukawa functions of arbitrary masses. ThcIl

"o (m)dm
g(k) =

„, m'+k'
(35)

o(m)dm )
(36)dq=2 tan ' mo- m 2I'

where mo is the lightest mass contributing to the form
factor. Exactly such a spectral resolution of g(k) will
also be relevant for the full relativistic theory. We shall
first find an si(k) such that si(k)g(k) is regular in the
upper half-plane except for the isolated poles whose
residues are the renormalized coupling constants. The
function g(k) is regular in the cut upper half-plane with
a cut on the imaginary axis from iso to i ~. The real
part of g is continuous across the cut but the imaginary
part is Wino(m. )./Zm for k=im+«. The phase jump of
g(k) is then

rmp —n "+'
si(in) ~

i

km«+ n

If the nodes of a(m) are at m=m, , then

(42)

mp —n'It m,—n)
si(in) ~

m«+ni m, +ni
(43)

finite values of the denominator at discontinuities of
o (m), Dy/2 touches but does not pass through an in-
tegral multiple of m-. Rather a passing through ex
occurs only where o(m) passes through zero. $Delta-
function singularities in o (m), when considered as the
limit of a continuous function, also give this change in
6q/2. $ The maximum value of 6p/2 is then mr, where
e is the number of nodes of a(m) between m=m«and
m= ao. Then from Eq. (40), after replacing the tan '
by (1+n)m, we have the lower bound at k=in:

A function si(k) which satisfies the prescribed condi-
tions can have the form

r "dmo(m) )
s, (k) =expi 2ik

m'+k' i (37)

and

(
o(m)= ——tan 'i mo(m) 2P

22k 4m

o (i«)d~)
(39)

K' m'i—
si(k) =exp

, eP+k'

o(i~)d~)—
X tan-'i no (m) 2P

i
. (40)

i~' —m'

Only the value of the function si(k) or its lower bound
at the discrete poles of the scattering amplitude will be
relevant to putting limits on the coupling constant. A
lower bound for si(in) can be obtained which depends
only upon the number of nodes of the spectral function
o(m) or their spacing. We assume that the minimum
mass of the source distribution is larger than that of
the free boson:

p (5$0. (41)

Then in Eq. (40) that part of the integrand which
multiplies tan ' is positive over the entire range of
integration.

The principal part integral in Eq. (36) will be infinite
at discontinuities of o.(m) but does not change sign at
these points; therefore, at zeros associated with in-

The function s(k) is regular except for the cut on the
imaginary axis. For real k, is(k) i

=1. The phase dis-
continuity across the imaginary axis at k = 2m is given by

si (im+ «)/si (im «) = exp—t Zm io(m) j .
(.38)

Therefore, we take

m p
—n)'"+'

s(in) ~
mo+n

(44)

If the nodes of o(m) are at known positions m=m, ,
then we have again the stronger limit

mp —n)' m;—n)'()= in
moyni m;yni

(45)

For an in6nite number of nodes of 0- the product con-

The function s2(k) —=si2(k) then has precisely the dis-
continuity across the cut so that s2(k)g'(k) is regular
for Imk ~ 0. We now wish to construct the s(k), such
that s(k)[j+(k)+1/Zikj is regular except for poles
when Imk&0. Although this s(k) cannot be expressed
as explicitly as s2(k), we can construct an upper bound
exactly analogous to that for si(in). The combination
f~(k)+ (2ik) ' has an imaginary part for k pure
imaginary, which is exactly the same as that of f~(k)
alone. However, the real part is diferent because of the
additional 1/2ik and so the phase jump 6p' is no longer
that of g'(k)

To calculate hp' exactly it would now be necessary
to know the exact eigenstates of the Hamiltonian. But
again the phase jump can pass through em only when

Im f~ (i i
k

i )—Im (2 i k
i )

—'= Imf~ (i i
k

i ) vanishes. From
Eqs. (34), (31), and (30) this can occur if g'(iiki)=0
or from the possible vanishing of the sum. Because
E ~ Er+IJ, for all states m except m', which contributes
the pole, each term in the sum is positive except m=nz'
which has opposite sign for f+ and f . We can always
choose one for which the entire sum is guaranteed
positive and this choice will also turn out to be the one
which gives the smallest upper bound to the coupling
constant. Then Ay' can equal em only at the nodes of
g'(ii hi). Therefore, s(in) can be chosen to satisfy the
same lower bound as Lsi(in) j' or
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verges if the node spacing increase at least logarithmi-
cally as ns ~~.For application to higher partial waves
it is significant that the above s(k) is not unique. One
can always multiply s(k) by a finite product which has
only zeros in the upper half-plane and does not con-
tribute any singularities there. We de6ne

(46)

This B(k) is another possible solution to the problem
of constructing an s(k) which has absolute magnitude
unity on the real axis and a prescribed phase jump across
the imaginary axes (mod 2e).

We may exploit this arbitrariness to construct an

s(k) which satisfies the inequality (45) and also is'(0)
~0. The product can be expressed as

(48)

so that
0)is'(0) ~ —2(v+1)/mp.

IV. COUPLING CONSTANT LIMITS IN
FIXED-SOURCE MESON THEORY

(49)

The functions s(k) and 8(k) defined in Sec. III play
exactly the role of exp(2iuk) in Sec. II in establishing

upper bounds of coupling constants. We consider a
negatively charged boson 8 of mass p incident upon a
particle P. The renormalized coupling constant for
8 +P+-+ Q is defined by

l(QIO, IP) Is=go..., (50)

in analogy with the pion-nucleon convention of Eq.
(33). Then the results of Sec. II hold with the associa-
tion 2e'idol' —+g'oi 9, e"'"~s(k) or 8(k), and loiol
= lhMl, the absolute value of the mass difference
between P and Q. Then from the definition

~= Qs —(~M)sj: (32')

and the inequalities (21), (22), and (44), we have the
following theorems for the s-wave interaction of a
boson with a source in fixed meson theory:

2ik " dm
B(k)= exp [8(m)+Ay'(m)], (4/)

, rip'+ks

where 8(m) is a multistep function: 8(rN) =0 for m~yi,
0=2m for y~&m&y2, 0=4m for y2&m~y3, etc. Now
Ay' can go through an integral multiple of 2m only at
one of the nodes of o(rN) and at m=mp and has the
maximum of 2e-(ran+1) only if at each such node 6q (m)
is increasing. If we choose the set y, to coincide with
those nodes of o. (res) where App' is not increasing, then
8 (rip)+6 y'(rn) is a positive definite function with upper
bound 2s.(I+1). Thus, I(in) satisfies the inequalities

(44) and (45) and

If g' is the renormalized coupling constant for the
vertex 8 +P~X and 8++P possesses no bound state
then

rr esp+et)
g2+

p, +6M mp n)—
(51),

A rigorous upper limit without restriction is

n (trso+n)'"+'

26M imp —nI
(52)

in++ —k
s++— s

in+++ k
(53)

so that s++f~ possesses neither the 8 +P ~ Q pole at
k= in nor the 8+=P+-+ P'+ pole at k=in~. Limits on
g' can then be found which depend upon the four
masses Mp, Mg, p, and Mp++. For the case of the
charged scalar mesons e+, P= p, Q=N, and P'~= p++,
the doubly charged proton isobar. The resulting in-

4 The limit of a point source is obtained by taking mo infinite.
For charged scalar meson theory with b,&=0, the necessary con-
dition for no isobars is then g'+1. This same general result has
also been obtained by C. Goebel (private communication). The
point nucleon has also been discussed by B. M. Barbashov and
G. V. E6mov (to be published).

~V. N. Gribov, Ya. B. Zel'dovitch, and A. M. Perelomov,
Soviet Phys. —JETP 13, 836 (1960); see also L. D. Landau,
ibid. 12, 1294 (1960).' Y. Nambu and J.J. Sakurai, Phys. Rev. Letters 6, 377 (1961).

If 8 and 8+ have identical interactions with P (viz. ,
a x—and e+ with a A') then the inequality (52) is also
valid.

If the nodes of o (m) are at known m=ris; then the
parentheses in (51) and (52) may be replaced by the
right-hand side of the inequality (45). The coupling
constant g' can approach the limit of (52) only if in-
elastic scattering is negligible for 8 +P. If n«mo
(loose binding or short-range interaction) then in
analogy with the potential case of Sec. II, 2g'AM/rr is
the probability that the particle Q is a pure bound
state of 8 +P, i.e., with no admixture of other particle
states. ' ' If both inelastic scattering is small and n((mo,
g' can be much less than rr/26M only if Q is treated
in the model as, in large part, an additional "elementary
particle" which exists independently of the 8 +P-
interaction.

For loose binding 63f y and the two limits on g'
are the same. When M9 is much less than Mi +p, the
conditions of (51) are much more restrictive than those
of (52) and, as in the potential case, imply the existence
of inelastic channels for 8 +P.

The inequality (51) can be exceeded if 8+ has a
bound state, so that there exists a vertex 8++P ~ P++
with P~~ stable. Suppose this bound state corresponds
to k=kx++. Then we de6ne
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equality is

p+Lpq —(~ ++—2M )&$l re +p)2m+2

g
2( (54)

p—Lp' —(M ++—M )'$-*' bio —y~

An implication is that as g' —+~ the isobar-proton mass
difference goes to zero at least as fast as 2pj!g!.

For p-state interactions the limits on g' are more
stringent. The argument closely follows that for the
square cuto6. We exploit the possibility of choosing
instead of s an 8 which satisfies the inequality (49).
For notational simplicity we assume a single pole at
k=in and define

(k in—) (k+iP) — 1—
(k) f,(k)+ —,(55)

(k+i ) (k—iP) 2ik

scattering amplitude for a single partial wave in mo-
mentum space. For relativistic Geld theories the relevant
analytic structure is known for weaker assumptions
than the Mandelstam representation. ' It is then pos-
sible to derive results analogous to these for fixed-source
meson theory. There is, however, one significant dif-
ference: in Axed-source theory the position and number
of nodes of Eqs. (52) and (60) are given a priori in
specifying the source function, while in relativistic field
theory its analog is determined from the dynamical
properties obtained from the scattering solution itself.
It is only within the framework of various common
approximation techniques that an a priori restriction
can be given for the coupling constant. The situation
is quite analogous to that in potential scattering with a
"causal" potential of the form

with p defined by

2P 2n —inP—s'(0) =0,
V(r,qq) = p(o, ru) do.

0 r
(62)

2 " k' 1mP+"(k')
V, (k)=-

k'+P' qr o k"—k'
(5g)

For k=0, the left-hand side vanishes and E&0. Since
n) P from Eqs. (56) and (49), we have finally

%~2'(in) ) 0.

The p-wave coupling constant f' is conventionally
defined, so that instead of g' we have fq/3. From-
Eqs. (59), (55), (44), (34), and (30), we have finally

3n p nn+n pqqqq+nqq
"+2

f'$1 (60)
kaiV+I2 4n+n+2qqiq kmq —n)

instead of the inequality (51). The last pa, rentheses
can again be replaced by the right-hand side of in-

equality (45).
For the pion-nucleon system with n=0, AM=0, and

rlq the nucleon mass, this gives f' 0~.4 compared with
the observed f~0.08. Whether or not bound isobars

exist, we have the rigorous upper bound

3n ( Nn+n fqqqo+n
f2~

22Afks + +2m, km, —) (61)

which is the p-wave equivalent of inequality (52).
Again the inequality may be strengthened if the posi-
tions of the nodes of 0- are known.

V. APPLICATIONS TO RELATIVISTIC
FIELD THEORIES

The previous analyses which lead to coupling con-
stant bounds depended upon the singularities of the

so that
++"(0)=o. (5'I)

Then if we assume F~"~ 0 as !k!~ qq in the upper
half-plane

In k space the number of nodes of the discontinuity
in the scattering amplitude across the imaginary axis
from imo to i~ depends upon the solution of the scat-
tering problem. Except for certain regions, viz. , jnso
to 2qmo, it is not known. a priori

The simplest case in the relativistic field theory is
that of four equal-mass mesons with no three vertex;
this is the pseudoscalar meson system treated by
Mandelstam and Chew. ' We shall avoid some nota-
tional complication by considering neutral pseudoscalar
mesons only. The postulated analytic structure of the
s-wave elastic scattering amplitude is conveniently
expressed in terms of

A (q', cos8) = (q'+p') ~F(q', cos8), (63)

where q is the center-of-mass momentum and F is the
conventional scattering amplitude. A'(q') is the single
partial-wave amplitude related to A(q2, cos8) (for posi-
tive q' and real 8) by

A (q', cos8) = p&(2l+1)A'(qq)P, (cos8) (64)

In the absence of bound states the function A'(q') is
regular everywhere in the finite q' plane, except for cuts
on the real axis from 0 to +~ and from —pP to —oo.
The imaginary part of A (q') has opposite sign when the
cuts are approached from below or above and vanishes
for real q' between —p' and 0. Following Chew and
Mandelstam, we have for q2 real and less than —p'

qq pqd rq

ImA'(q') = ImA! q'2, 1+2 . (65)
q q' k q'2

It is the number and position of the nodes of ImA'(q') on
the left-hand cut that determines the upper bound for
the coupling constant in this and related systems. Here,

' L. A. Khalfin, Soviet Phys. —JETP 14, 880 (1962).' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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the renormalized four-vertex coupling constant X is
canonically defined by the equation

X —=—A'( —x~p'). (66)

To determine an upper bound for
I
X

I
it is convenient

to consider instead of the q' plane the upper half of the

q plane, so that the analytic region is identical to that
discussed in previous sections. Then we define

where

A'(q') —= 8,'(q)
(u —iq) (v+iq)

(67)

v =V'(2/3) ~. (68)

The function 8'(q) satisfies 8'(q) =8'"(—q) for real

q and obeys the inequality

lq@'(q) I

~ h'+q') ' (69)

for real q. On the cut from q=iy to i~ ImO!'(q) has a
node only where ImA'(q') does. If CP (q) does not vanish
at infinity along every ray in the upper half-plane,

'

it is
suflicient to consider 6,'(q)Lp —iq) which has the
same analytic properties as 8'(q) and leads to a quanti-
tatively similar upper bound for ) as long as m is finite.

As in Secs. III and IV we introduce si(q)

Various approximation schemes such as the replace-
ment of the left-hand cut by a finite number of poles
or the inclusion of a finite number of partial waves (with
subtractions) will give an upper bound to IXI with e
known a priori. In the unapproximated theory, only
if the spacing increases at least logarithmically as
q
—& i~, will Eq. (71) result in an upper bound for X.
In the case of the nonrelativistic elastic potential,

for which Levinson's theorem' is valid, nodes on the
imaginary axis are related to the existence of resonances.
In this case, a complementary theorem to that of
Levinson can be proved: the total change of phase
along the cut on the imaginary axis in the upper half-
plane of q space equals x times the number of poles in
the lower half-plane ("resonances"). Therefore, in this
case there is at least one node in the absorptive ampli-
tude on the nonphysical cut for each "resonance. " A
similar situation might obtain in the field theoretic case
where Regge poles" and nodes on the nonphysical cut
may be similarly related. But the number of nodes and
their spacing would, even then, be unknown a Priori

If an s-wave three-vertex is possible with the third
particle of mass m, then the amplitude A'(q') ha, s an
additional term

si(q) = exp
2iq " dm

„m'+q'
tan 'y(m') (7o)

2 1 4q'
G(q') —=g' +—ln +1 I, (74)

M2 4~2 4q2 q2 M2 j

where y(m') is the phase of Qe(q) at q= im or the phase
of 6'(q) (p,—iq) if subtractions are necessary. The
function 8'(q)si(q) is now regular in the upper half-
plane except for the pole at q=iy and the manipula-
tions of Secs. III and IV lead to the inequality

where A'(q') has nodes at q=im, . If X(—IX . I, the
violation of the inequality (71) is made possible by
additional particles (bound states) of mass less than 2p.
However, X cannot be greater than IX, I

unless a
ghost state of negative norm is present. For q'( —p,',
A'(q') can be expanded in a Legendre series whose
radius is at least q'= —9p,'.

Ao(q~)

where the third particle is assumed to be stable
(m'(4p~) and may be the meson itself (m'=p'). In
addition to the pole at —q'=y' —M'/4 —=P', G(q') con-
tributes a cut along the negative q' axis from q'= —M'/4
to —~. For 2p)M) Qp, there is a gap between the
pole and the cut, and an upper bound to g' follows
directly. Consider

C(q)=—A'(q)/Lq'+~')', (75)

which is a regular function of q in the upper half-plane
except for the cut along the imaginary axis from iM/2
to i~. Df C(q) does not approach zero for q~i ~
then the exponent of the denominator in Eq. (75) may
be raised. ) On the real axis C(q) =C*.(—q), q ImC(q)
)0, and IqC(q) I

~1, so that the arguments of Secs.
III and IV may be applied directly. The cut which is
canceled by si extends down to iM/2, and the phase
jump of —n/2 at q= i+ introduced by the denominator
of Eq. (75) should be included. Then

&(P ImA'(q")PiI 1+2 I. (72)
( q'+~'i

q'2 i

4P (p' P')'* fM+2/) —f m~+P )g'=-
I I II I

p' kM —2P) i km; —PI
(76)

m;~ 3p. (73)

Since only even partial waves enter into the partial
wave expansion (neutral scalar particles) with P, i(x))0
for

I
x

I
)1 and ImA '(q") ~ 0, it follows that ImA (q2) )' 0

wherever the Legendre series converges. Thus,

This upper bound cannot be exceeded for a positive
metric.

'N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).

'0 T. Regge, Nuovo cimento 18, 947 (196O).
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For the three-vertex of equal-mass particles 3P=p,', Sec. III, it is always possible to choose an Ii(q) which
the pole term lies on the cut and no limit is obtained is positive and monotonically decreasing along the
by the above method. Instead we define imaginary q axis from q=o to q= jp. ..

qA'(q) (P+iq)
D(q) = . . » (q).

(v-iq)' (P-iq)
(77) fm; y—)

81(iy) &II I

m;+yi
' (79)

" dy»(iy) fy —&)
2g' .i~ y (y+~)'&x+~&

D(x)dx ~or. (78)

If D(g) does not vanish at infinity in the upper half-
plane, a similar result obtains with (p, —iq) in Eq. (77)
raised to a higher power. By following the argument of

Here, P=(3/4)'p. The function si(q) is that of Eq.
(70), so that it cancels the phase jump across the upper
half imaginary axis from q=i+ to i~ only; D(q) has a
cut from ip/2 to ip. A contour integration in the q
plane around the cut from i@/2 to ip and just above the
entire real axis gives

The combination of the inequalities (78) and (79) give
an upper bound for g' in terms of the location nz; of
the nodes of ImA'(q') on the nonphysical cut q'( —p'.
If A'(q') does not have a zero at infinity, only minor
and straightforward changes are required in the com-
putation of a slightly larger limit.
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