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The X/D formulation of the unitarity S matrix, valid for reactions involving production processes, is
applied to the reactions, w+Q —+ m+Q, ~+&—+ m+w+N, w+++N —+ w+m+N, in the energy region of
the higher resonances. A model is constructed in which the two pions in three-particle states interact in
only one state, and the left-hand discontinuities of the elastic and three-particle scattering amplitudes are
neglected while the left-hand discontinuities of the production amplitude are approximated by a pole. The
elastic amplitude is driven through unitarity by the inelastic amplitude. The general properties of this
model are investigated, and the procedure is applied to the D- and P-wave scattering of the x —N system.
The comparison between the experimental data and the model presented here is quite favorable.

I. INTRODUCTION
' 'N this paper we shall apply the formalism developed
~ ~ in the previous paper' to pion-nucleon scattering
and pion-production in the sub-BeV region. More
specifically, we would like to explore the possibility
that the higher resonances in elastic scattering are
driven, through unitarity, by a growing production
process. Indeed such a mechanism is well known in
nuclear reaction theory. ' A related point of view was
taken by Ball and Frazer, ' who show that the second
and third resonances in pion-nucleon scattering are
what Nauenberg and Pais' call "wooly" cusp effects;
the effects are associated with the opening of the
production channel consisting of a nucleon and an
unstable vector meson which subsequently decays
strongly into two pions.

What we would like to demonstrate is that the
contribution from the inelastic channels can cause a
resonance in the elastic channel, even beLom the threshoLd

of the irtelastic corttributiort There a. re two mechanisms
for such resonances; if the "force" in an inelastic channel
is strong enough to support a bound state in the absence
of the coupling between the elastic and inelastic
channels, then the bound state will appear as a res-
onance in the elastic channel when the coupling between
the two channels is "turned on." This mechanism has
been invoked to explain the mA resonance as a bound
state of the EX channel by Dalitz, ' and has been
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' L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 283 (1962),
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Physics (J. Wiley 8z Sons, New York, 1952), Chap. VIII to X.' J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).' M. Nauenberg and A. Pais (to be published).' R. Dalitz, Phys. Rev. Letters 6, 239 (1961).

investigated in detail in a static model by Lee and
Klein. ' Sakurai' has suggested that the same mechanism
may perhaps account for the higher resonances —in this
case, bound states of the pT channel.

The second, and perhaps less well known, mechanism
is operative when there is a strong coupling between
the elastic channel and an inelastic channel. Even below
the threshold of the inelastic process, the system can
make a transition to the inelastic channel, virtually.
When the coupling is strong, the system can "oscillate"
strongly between the two channels and tends to stay in
this relatively stable con6guration, developing a
resonance. It is this picture that we wish to propose as
the mechanism for the higher resonances in pion-nucleon
scattering. The same mechanism has been discussed by
Blankenbacler' to account for the two-pion resonance

(p meson) in terms of the three-pion resonance (co

meson).
In the next section, we shall present a more detailed

and precise description of the model we will consider.

Briefly, this model may be summarized as follows:
The higher resonances in pion-nucleon scattering are
caused by a strong coupling between the pion-nucleon
channel and the p meson (resonating two pions)-
nucleon channel. As a guide to the nature of the coupling
of these two channels, the one-pion exchange (OPE)
diagram of the process s.+X—+sr+sr+X is studied.
The analyticity of the helicity —angular-momentum
projections of the OPE amplitude is investigated, and
a pole approximation to the projection of the OPE
amplitude is described (Sec. II).

In Sec. III the coupled equations resulting from the
approximations presented in Sec. II are solved, and
their analyticity and structure are discussed. Also in
Sec. III explicit calculations are presented for Dg and
F; waves. In the conclusions we compare this calcula-
tion to other models which have been proposed recently.

6 B. W. Lee and A. Klein, Nuovo cimento 13, 891 (1959).
7 J. J. Sakurai, Phys. Rev. Letters 7, 355 (1961).

R. Blankenbecler {to be published).
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II. ANALYTICITY OF THE MODEL

A. Physical Approximation

Our goal in this paper is to determine the three
amplitudes Msg 3fss (Ass), and M», as they are defined
in I, when they are coupled through the constraints
imposed by the unitarity relations. The contribution of
the production process to the elastic scattering is
expected to be important in the region of the second
and third resonances, roughly from 500 MeV to 900
MeV, where the production cross section becomes
sizable. Therefore the coupled-channel problem will be
mainly of interest in this energy region.

As in the previous paper, we shall truncate the
unitarity relations at the three-particle states, in order
to obtain a closed problem and hope that the solution
will approximate reality, at least in the energy region
considered.

In this energy region, higher angular momentum
states than s and p are excited, and the statistical
weights' attached to higher angular momentum states
make their contributions to the cross section more
important than those from s and p states. Recent work
on the high-energy limit of the two-particle scattering
amplitude" indicates that the s- and p-wave amplitudes
require ad hoc parameters (subtractions in the dispersion
relation), and we expect that the behavior of the
S;- and P~-wave phase shifts will be influenced signif-
icantly by these parameters. Experimentally, the Dg&&'

and F;&" states are known to dominate the second and
third resonances. "Therefore, we shall concentrate our
attention to these two angular momentum states.

Since we know very little about the analytic structure
of production amplitudes and the three-particle scatter-
ing amplitude, we will eventually have to rely on a
model. We assume that the scattering in the D; and F;
states is driven mainly by the inelastic processes. This
is partly supported by the experimental fact that, for
energies up to and slightly above the (3,3) resonance,
these phase shifts are small. " This means that the
resonance behavior of the D; and Fs phase shifts is
essentially independent of the left-hand cuts of these
partial-wave amplitudes. We shall therefore completely
neglect the left-hand singularities of the elastic ampli-
tudes in these angular-momentum states. Cini and
Fubini" considered these phase shifts within the frame-
work of their approximate version of the Mandelstam
representation. While the low-energy behavior of these

' To be more speci6c, we mean the factor (2j+1).' M. Froissart, Phys. Rev. 123, 1054 (1961);Q. W. Greenberg
and F. E. Low (to be published); V. Singh and B.M. Udgaonkar,
ibid. 123, 1487 (1961).' B. Moyer, Revs. Modern Phys. 33, 367 (1961).

"W. D. Walker, J. Davis and J. D. Shepherd, Phys. Rev. 118,
1612 (1960)~

'3 M. Cini and S. Fubini, Proceedings of the ZP60 Annual
International Conference on High-Ener gy Physics at Rochester
(Interscience Publishers, Inc., New York, 1960), p. 310; J.
Bowcock, N. Cottingham, and D. Lurie, Nuovo cimento 19,
142 (1961).

TABLE I. The angular momentum states of the p-S system,
Ig, corresponding to the angular momentum states of the 7r-X
system, Iz.

7fE system
Ig

S)
P$
Pp
D)
D$
pg

pS system
Ig

Sx„D)
P$
Pg, Fg
Sg, Dg
D;, Gp

'4 An extensive bibliography may be found in R. M. Sternheimer
and S. J. Lindenbaum, Phys. Rev. 123, 333 (1961)."B.W. Lee and M. T. Vaughn, Phys. Rev. Letters 4, 578
(1960); P. Carruthers, Ann. Phys. (New York) 14, 229 (1961).

~ A. Erwin, R. March, W. D. Walker and E. West, Phys. Rev.
Letters 6, 628 (1961).

phase shifts may be controlled by the nearby left-hand
singularities, it is clear that the resonance behavior
cannot possibly depend on these singularities.

In the final state of the production process, X+tr
—+1V+tr+m, we assume that only the pions interact
strongly. We are of course well aware of the overwhelm-

ing experimental evidences" for the isobar correlation
of the final nucleon and a pion, but we would like to
take, in the present work, the point of view that the
higher resonances are not caused primarily by the (3,3)
isobar in the final state. The angular distribution,
polarization, etc. , of the production are sensitive to
the formation of the (3,3) isobar in the final state, but
we shall not concern ourselves with these aspects of the
problem.

The left-hand cuts of M» will be completely neg-
lected: it is consistent with the assumption that only
the pion pair interact in the three-particle state. We
recall from I that the disconnected graph, in which
the nucleon is noninteracting and only the pions interact
as a pair, is excluded from 3E33. In this picture, the
three-particle scattering process is also driven by the
coupling of the two- and three- particle channels.

We assume that the two pions in the final state of
the process w+1V~w+s. +1V are produced only in
the T=J= 1 state. Since these pions are assumed to be
strongly interacting, the two-pion state may be con-
sidered as an unstable vector boson" in all kinematical
considerations. Following the convention we shall refer
to this system as p meson. More specifically, it is a
two-pion system with spin 1, parity —1, isotopic spin
1, and a mass distribution centered at 5.4 p. ' Since
the p meson has spin 1 and negative parity, the orbital
angular momentum of the pS system is in general
different from that of the mS system for given J and II.
The orbital angular momentum of the pÃ system
corresponding to the angular momentum of the xS
system, L~, is tabulated in Table I.

The production amplitude 3132 may be written, as
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Mgp ~
~ + lI

FzG. 1. A sche-
matic representation
of the analyticity
chosen for the cou-
pled channels. The
square represents
left-hand singulari-
ties.

M3p'0 + 0 +

Mgg.
I + N

ln I)
Mpp~" (s,o) = Lg, '(w o)]'*Fpp~(w o)Lgg(w)]l.

'7B. C. Maglic, L. W. Alvarez, A. H. Rosenfeld and M. L.
Stevenson, Phys. Rev. Letters 7, 192 (1961);N. H. Xuong an/
Q, g. Lynch, ibid. 7, 3/7 ($961),

We suppress l, /= 1 being understood hereafter. As we
shall show, the factor gpr(w, o) removes the zero of
Mpp~n at w=m+go, so that Fpp~n is finite at the
production threshold. Therefore, the energy variation
of M» " near the production threshold is given by the
energy dependence of the factor gpr(w, o):

Lgp'(w, o)]'"M(w, o)]"'.
That is to say, the energy variation (power law) of the
production amplitude near the production threshold is
given by the centripetal barrier effect. Therefore, the
s wave in the final pÃ channel gets excited first, then
the p wave, and so forth. Correspondingly, we expect
the effect of the opening of the pX channel to manifest
itself first in the D~„S~ states, then in the F„ I';, I"~

states, etc. , in the xX channel (refer to Table I).This
corresponds to the ordering of the higher resonances in
the T=—', channel, which are known experimentally to
be D; and P;."

Recently, vector mesons of negative G parity (which
decay into 3x.) have been discovered'r (rlP 4p, &00 5.6p).
There is reason to believe, however, that these mesons
are not so important as the p meson in explaining the
higher resonances. The reason is that, in order for the
process ~+X—+riP(000)+1V to proceed, at least two
pions must be exchanged between the nucleon and the
meson, and the range of the force associated with this
process is shorter than that associated with the produc-
tion of the p meson, so that the primary effect is likely
to show up mainly in low angular momentum states
(s and p, say).

To recapitulate: Speaking loosely, since all amplitudes
are coupled to one another through unitarity, the
scheme employed here considers M» and M» to be
driven by M» through unitarity, while M» itself is
driven by its source (left-hand singularities). The model
assumed is schematically pictured in Fig. 1, and this
figure summarizes the physical content of the model.

k~(P)v»(q)]*= —~(q)7»(P). (3)

FIG. 2. The speci6c dia-
gram (QPEl which approx-
imates the left-hand dis-
continuities of %32.

B. One-Pion Exchange Approximation

Given the left-hand discontinuity of M~3, it could be
substituted into Eq. (I39) to determine the 1V's and
thus the amplitudes in the spirit of the model given in
Sec. IIA. However, these discontinuities of M~3 are
not known in any detail, and even if they were, it is
not at all clear that the resulting coupled system could
be solved by a practical calculation. Thus, we will
choose a specific left-hand discontinuity which can be
calculated from the Cutkosky diagram and has rela-
tively simple properties. In order to insure that the
contribution of this singularity to the production
amplitude is significant, we impose the condition that
this singularity be close to the physical region. Such a
discontinuity is given by the OPE diagram shown in
Fig. 2.

Referring to I we see that the singularities arising
from this diagram are near the physical region. Using the
same notation as I, the branch point is a function of 0.

in the m plane. As 0 is increased, the branch point moves
to the right until it reaches w=m+p. It then circles
w=m+p, (by use of the ip) and moves to the left
until 0.=4p2. When a.)4p', the branch point becomes
complex, see I, Fig. 4. The OPE diagram thus dominates
the nonphysical region, m2&m&zv3, of the production
amplitude.

Instead of the definition given in I, it is more conven-
ient to define M23 and M32 as

Mpp=i(k, p(out) I ftlkr, kp(in))N(q)

XL2kp2krp2kppPp/tg]',
1

Mpp= iu(q)—(k&,kp(out) I fl k,P(in))
XL2ki02k202kpP0/m]'*,

in order to discuss the effects of the OPE diagram. The
new definition is adopted so that the OPE terms of
M23 and M» are real in the physical region. One can
convince himself by inspection that the unitarity
condition, Eq. (I5), is not altered by this new definition
of the amplitudes, nor is the relation between them.

I et us denote by 823 and 832 the OPE amplitudes of
M23 and M32. One can readily show that

I 28 gii(p)v0~(q) (~—ia') '(k
I j.I kr, kp(in)),

2
& = —g~(q)v ~(P)(&—~') '(k, k (out) I j-tl»,

where t,= —(p—q)', g is the prS coupling constant such
that g/40r=14, j is the pion current operator and,
further,
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Tssr.z II. The linearly independent combinations of helicity
amplitudes with definite parity.

(»,Al Boo~I&&)a(—&, A—I Bee~I &&)

&+, +1 B~l+&y&-, —1IB~I+&
&+ +1 B'I+)—&

——I IB'I+&
(+, OIB&l+&+ &—,OIB~I+&
&+, o

I B'I+&—
&—,o

I B'I+&
&+ —1IB'I+&+&—+I

I B'I+)
&+, —1IB'I+&—

&—,+1IB'I+&

Orbital parity

(-1)'+'
(—l)' '
(—1)"'
(-1)~ '
(—I)'+'
(—I)' '

r
g=k+k~l

IL r

l

I

l

f
I

II

Fxo. 3.The coordinate
systems and vectors rel-
evant to a discussion of
a three-particle system.
(a) is in the c.m. of the
two pions; (b) is in the
c.m. of the three-particle
system. The tilde nota-
tion is the same as the
prime.

I
C

Sec. III 8] is Ro o o
——1, so that the (.' frame and the

C frame are connected by a pure Lorentz transforma-
tion, Z. Consequently, the vector k, lies in the x,z,
plane (see Fig. 3).

If we reduce N(P)you(&7) into the Pauli representation
and pick out the states of definite helicity, we obtain

E+m (Qo+m)
~~(pbsN+(V) =

2m « 2m J

P(s) Q(s, ) cos
. (-:8), (3)

E+m Qo+m sin

We have suppressed, for the moment, the isotopic
spin dependence.

Let us concentrate on the decomposition of 832. In
analogy to Eq. (I15), we have, with p=oi,

(&,) I
&»"(wp) I) )

where cos8= p j in the total c.m. system, and

lpl = lkl =z(s),
I ql = IKI =Q(s,a),
po= E, qo=Qo.

(6)

As we have stated, we assume that m —m scattering
is dominated by the J=T=1 state, so that"

d(cos8) ds&&, , &, (8)= 2n dg Y'»&*(&r,&{I)

A

where cosy =k j, so that

(kt)ks(out) I J.I k) —16&re (p'/p' —4p') l

)(e'" sin5&X3(2k (kt —ks)/p' —4p, '), (7)
Xa»Ls, a, C =0, "-, O=(8,0);., )&j. (4)

where p'= r, and 8~ is the mm phase shift in the T=J= 1
Since, in the integrand of Eq. (4), we require the OPE state. Now in the two-pion c.m. system, we can write"
amplitude for y=0, the rotation operator, R»,~ o, in Lsee Fig. 3(a)j

4m.'(ki ks) k—=(.'—p)L(f . p' -p')' —4p'p—'3'(p'—4p')' —Z— I'»(~ P) F»*(w x, 0), — (g)
3 4=0,+1

(&,Al Boor (w,p) IX)=2&r
1

L(f—p' —f s)'—4p'f '3'
d cos8 d„&&,&,s(8)gu„(q)you&, (p) 4&r Ft, &&*(x,0)

p(p'-4p')'

Since

X(—1642&rl p'/(p' —4&o&')/le*" sinbt), for T=

w' —m'+ p' w' —m'+ p' 2p
cosx=kt, .j,= Q —P

2wp 2wp I (f—fss —p')' —4ps&«'7l

»nx= P(1—s') '2p/L(f —p' —p')' —4p'p'j',

~ (9)

"The normaiization of the asymptotic state Ik&,ks( )) is such that

lk, ,ko( ))= (1/v2)at& &(k&)at& &{ks)Ivac).
"We have P&,+z(8,O&)=%-,'(3/2s)&since+*e, F&,o(e,os)=so(3/s)O Xcose; cf., A. R. Edmonds, Aagalar 3ffo&r&er&tg&r& eN Qaan&&&m

Neekaaecs (Princeto'n University Press, Princeton, ¹wJersey, 1957),
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where s=cos8, we may rewrite Eq. (9) as

2
(v,A i BSP~(w,p) i) )= i

p
—

(S~q—4S~ ~"'»»i
I

—lg2«s d -~.~'(~)~ (Ãv»~(P)
p' —4P,' &3 i t—p2

+P(1—s') &

X 42{Q(w —~ +p~)/2wp —PL(w —m +p )/2wp]s) for

-—P(1—s') &

0 . (10)

As pointed out in I, it is more convenient to form linear combinations of the amplitudes such that eigenfunctions
of parity are obtained. The six, so formed, linearly independent amplitudes are given in Table II. They are labeled

by i rather than $ (as in I) for a more explicit identification.
Defining B32J, with T suppressed, as

B32~&(w,p)=(vA)B» )X)a(—v, —A)B32~[X),

and using Eq. (10) with Table II, we can write

p (Sm)& 1 E+m/Q-0+m -&
—4Ss /@1 sggi

~

—
~
g2s dz P&r(s)

p'-4p' 5 3 i p' 2m—k 2m

where (l=J——', in the following expressions)

(
P~'(s) =P(1—s')&

~

— +
~

cos-', 8d;, )~(8)—
~

+
~

sin-,'ed;, )J (e)
Qo+m E+mi (Qo+m E+mi

P(1—s') Q P
P~i'(s) — P~'(s),

1+1 Q0+m E+vs

P~'(s) =—P(1—s') Q P
Pg'(s) — P(~i'(s),

1+1 Qo+m E+m

2'Rp

w' —m'+p' w' —eP+p' Q
P~'(s)=%2 Q p P~+i(s)+

2wp Qp+m E+m
Pg(s), (12)

w'+m'+p' w' —m'+p' Q E
P"(s)=~2 Q p P~(s)+ P~+i(s),

2Rp 2wp Qo+m E+m

PJs(s)—
P(1—s') Q i i& P l+2i'

I
P~+i'(&)—

I
Pi'(s)

(+1. Qo+m(l+2) 8+m l )
P(1—s') -

Q 3+2 -'*P
PJ6(s)— P,'(s) —

~
~P„,'(s) .

l+1 Qo+m i E+m (i+2)

As Table II shows, the parity eigen amplitudes
naturally separate into two groups. A xX system in one
of the states, P;, D~ or F;, can produce a (~n.)X state
with appropriate J and T and )=1, 3, 5, but not

{=2, 4, 6. On the other hand, the states Si„Pg are
characterized by (=2, 4, 6, and not by )=i, 3, 5.
Incidentally, in the description of the xx system as an
unstable vector boson, the states f'=1, 2, 5, 6, corre-

spond to the longitudinal polarization of the vector
boson, while the states )=3, 4, correspond to the
transverse polarization.

F XII(w) —
g L(w)~ JII( )w

F»'"(w, p) =Lg2'(w)g3'(w, p)]'~»'"(w, p),

Fms~r(w —ie, p ig) = /F3, ~—r(w+ie, p+iq)]*,
F»'""'(w,p,p') = [ga'(w, p) 1'~»'""'(w,p,p')

X [gs'(w, p')]».

(13)

As in I, we define new amplitudes Fgm~" (w), Fmq~r (w,p),
F32 r(w, p) and F33~&r'(w, p,p'), which are free of kinemat-
ical singularities by
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In Eq. (13), we have
2m (E+m)'~

ap'(w) =
E+m4 P j (14)

space densities are modified as in (I35)

j p2L+1

pp'(w) = 8(w —(m+p, )),
4(2~)P w (E+m)"+'

where I. is the orbital angular momentum of the xX
system in the state (J,II), and

2m (Qp+m) Pl

g '(w, p) =
Qp+mE Q )

(15)

where is the lowest orbital angular momentum of the
(m.pr) i=ilV system in the state (J,t). Of course, the phase

1 -p2 4~2- $

pp'(w, p)dp= pdp
8(2x.)P (Q +m)"—' 2

p

Xe(p —2p,)0(w —m —p). (16)

Finally, we obtain the discontinuity of F» along its
left-hand cut, due to the OPK diagram, as

( 2m -' 2m '(E+m)~(ep+m r

LdiscFpp (w, p))r, ——disc ! ! ! !
Bpprsr(w, p)

~E+m ep+ m k P I 5 Q

2 ( p (8~ '* -(Eym)' epsom)
!!

—487r e'" sinai !
—g2pr disc !

1 5 pP —4pP E3 i Q )

The m dependence of the left-hand-cut contribution to F32~~ comes entirely from

(E+m) ~ (Qp+m) r
d»sr(s)

Q

ds Ps&(s) . (17)
t p

(18)

Let us study this function for f= 1, 3, and 5, which are proper for the D,* and F; states of the prlV system.

Iomgitudieal':

1 E+m)~ Qp+m r P I Q 1+2Izl- Le~—i(&) Qi+i(&)) S $+2 S
Q P i Q E+m 2t+1 Qp+m 23+3

1 (E+mq'(Qp+mq —:

Q 1 P
! LI(I+2))' CQ (*)—Q (*))— l—1 & Z+1

Qk P 1 5 Q 3 Qp+m 21+3 E+m 2l+1

Transverse:

1 (E+m) (Qp+m) w' —m'+p'
I~2 Q

Pe& P j k Q i
e p—e, ()+ Q()

Qp+m E+m

w' —m'+p' P
p

1 1
L(I+1)Qi+i(*)+hei-i(&) 7— L(I+2)e+.(*)+(I+1)e(*))

E+m 2l+1 Qp+m 21+3

see that as w crosses the branch cuts of P(s) or Q(s, p.),
I r(w, p) is continuous, i.e., 8 r is devoid of kinematical
singularities. (4) As w —+ m+p along the real axis
from w)m+p,

where Qi(x) is the Legendre function of the second kind,

I=J—p, x= (2EQp —2m'+ p')/2PQ. (20)

We note: (1) The branch cut of Qi(x) for pP)2p'
X (1+p/2m) must be defined in the manner prescribed
in I, Sec. V. (2) Recalling that I=O, 1 for the D;, F;
states, and

ei(x) ~ —i(~/2) p, (x),

since the branch cut described in (1) passes around
w=m+p. Hence,

const
lim Fpp r(w, p)=

m-+m+p p2L+2

(1)l+1

lim Qi(x) =
!

—!, (I integer)
(2l+1)!!Ix)

we deduce that I~& and therefore 8~& are finite as
Q~ 0. This proves the threshold behavior we have Further consideration will convince the reader that
asserted. (3) Recalling that Q&(x) = (—1)'+'Q&(—x), we the conclusions (2)—(4) are of general validity, holding
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for all 8/r, and, secondly, that B/r(w, o) is most singular
at w=//i+@.

This second remark leads to our last approximation.
It is clear from Eq. (19) that the solution of the coupled
equations, by use of Eq. (17), will be exceedingly
complicated, and it seems quite likely that this complex-
ity will obscure the physical results of our model. In
order to avoid this diKculty we will replace the m

dependence of fdiscF»r~r(w, p)7& by a pole with

appropriate position and residue.
Since F32(w,p) is most singular at w=m+p=w2, it

seems most reasonable to place the pole at that point
so that

2 ( p
[discP "~&(w,p)i]r ~

—48 e'" sinii )1 k p' —4P'

Sx
2~gi'/r~S(w —w2), (21)

3

where the residue I' & must be determined.

In practice the method by which one determines I'~& is
not unique, and at least two procedures are possible.
We may take F~& as a phenomenological parameter
which can be varied to 6t the data, or we may attempt
to estimate its value by calculating the contributions
from certain generalized perturbation theory diagrams.
Since the validity of any calculation of a particular
graph or set of graphs is uncertain, we prefer to use the
first procedure, i.e., F~& is a parameter. However, we
shall try to estimate the value of F~t' from the OPE
diagram in Sec. III C.

III. N/D EQUATIONS

A. Solution of the Coupled Equations

In this section we will solve the coupled X/D equa-

tions resulting from the physical approximations made

in Sec. II. Rewriting Eq. (I36) for convenience, we

have

X2g(w)=F»(w)D22(w)+ Z dp"F»' ( iP ) (22a)

g23r'(w p')=F2~(w)D»r'(w, p')+ Q dp F23" (w&p )D33 (wip ip )i (22b)

1l/3&r(w p) =F»r(w p)D22(w)+ 5 dp"F38 " (wrp&P )D» (wip )i (22c)

1lr~3rr'(w p p') —F»r(w p)Dq r'(3pw')+ Q dp F33 (wipip )D33 (wiP )P )&
g//

(22d)

where we have suppressed the angular momentum and r„, ,
(P) =

isotopic spin labels, and the Ãs and D's are defined as

in I. The results of the previous section are implemented

by imposing the boundary conditions

2 p SX

(
-e'1 sin5~ —2m g,

p' —4p' 3

for T= (24)

(discF»(w) 7r, ——0,

Ld»cF»" (w p) 7~= Ld»cF»" (Wp) 7~'

=~I'"fr(p)5(w —w2),

LdiscF parr'(w, p,p')7r, =0,

on Eq. (22), where fr(p) is defined as

(23)

The isotopic spin label on fr(p) will usually be suppres-
sed. The solutions of Eqs. (22) and (23), F@, will

satisfy the unitarity relations, Eq. (I34), by construc-
tion, and further, since the discontinuities in Eq. (23)
are symmetric, we are guaranteed that the P,; will

satisfy time-reversal invariance as well.

Taking the discontinuities of Eq. (24) and applying
Cauchy's theorem to the X;; we obtain

& (w)= Z I'""* dp"f*(p")D ""(w p")

1V» '(w, p') = P I'r"* dp"f*(p")D33 " '(w2, p",p'),
w~ —m V/ J

(25b)

& "(w,p)= I'"f(p)D (w),
'N2 'N

1

(25c)

&»"'(w,p,p') = I'"f(p)D»'(w2, p'). (25d)
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The solutions of Eq. (25) are most conveniently expressed in terms of the following quantities

Eg'(x, y) =
pg'(w')

dw' —, EP(x,x) =Eg'(x), wg= gN+ p ',

(w' —x) (w' —y)

G.'(*,y)= Z I«"I' d."If(")I'
gl f

G '(xx)=G '(x)

pg'(w', p")
dzo wg= go+ p

(w' —x) (w' —y)

(26)

To solve for E»(w), for example, we substitute Eq. (25c) into the definition of Dgg(w, p) and replace Dgg(wg p )y

in Eq. (25a), by the resulting expression. Eq. (25a) will involve E»(w) and D»(wg); we express Dgg(wg) in terms
of iV'gg(w), and obtain

1Vgg(w) = Gg(wg)— Gg(wg)
, pg(w')&»(w')

dR'
3J —

ZD2

(27)

where we have suppressed the angular momentum labels. Eq. (27) is a I redholm equation of the second kind, "
with separable kernel, and can be immediately solved for iV»(w). This allows us to determine D»(w) and from

Eq. (25c) we obtain egg(w, p) and then Dgg(w, p). Proceeding in a similar manner with Eq. (25b) and (25d), we

obtain, using Eq. (26),

Egg(w) =— 1 Gg(wg)
)

w —wg 1—Eg(wg)Gg(wg)

&»'(w, p) = —«'f*(p)
w —wg 1—Eg (wg) Gg (wg)

&»"(w, p) = «f(—p)
w —wg 1—Eg(wg)Gg(wg)

(28)

These lead to

&»"'(w,p, p') =
1 Eg(wg)

«r&'*f(p)f*(p')
'N 1—Eg(wg)Gg(wg)

where

Dgg(w) = 1+E ( g) w)wG g( g)w/I g1 Eg(wg)Gg(wg) js

Dgg'(w, p) =P"*f*(p)Eg(w,w )/L1 —E (wg)Gg(w )j,
Dggr(w)p) =P f(p)Eg(w)wg j p)/I 1 Eg(wg)Gg(wg) jy

Dgg"" (w)p)p ) =8rr~5(p —p )+7"Fr f(p)f (p )Eg(wg)Eg(w, wg) p)/L1 Eg(wg)Gg(wg)]y

(29)

Eg'(x,y; p) =
pg'(w', p)

dK'
(w' —*)(w' —y)

(3o)

Returning to Eq. (23) it is a straight-forward computation to obtain the Ii;,. One finds

Gg (w, wg) —Gg (wg)
)

w —wg 1—LEg(w, wg) —Eg(wg)7I Gg(w, wg) —Gg(w;) j
P"*f*(p)

Fag&(w p)=- Pgg(w),
Gg (w,wg) —Gg (wg)

~»"(w,p) =L~»"(w*,p*)3*,

Eg(w, wg) —Eg(wg)
I"gg""'(w p,p') =««'*f(p)f*(p') ~»(w)

Gg (w, wg) —Gg (wg)

' E.T. Whittaker and G. N. Watson, Courseof Modern Analysis (Cambridge University Press, New York, 1952), Chap. XI.

(31)
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B. General Properties of the Solutions

One can easily show that the solutions in Eq. (31)
satisfy the truncated unitarity condition, Eq. (I34).
On the other hand, it appears that the original, assumed
analyticity has been violated. Specifically, both F22(w)
and F22(w, p,p') seem to have poles at w=222+a. In-
cidentally, if the delta function, 8(w —ws), in Ldisc

F»71. had. been chosen at some other point, say ws (ws,
the structure of the solutions would be exactly the same,
the only change being that m2 is replaced by mo except
when m2 occurs as the lower limit of an integral. To show
that F2~ and F33 do not have poles at m2, we refer to
Eq. (26) and observe that

Gs'(w, w2) —Gs'(w2)
is given as

v. = h/4p~) 5(pz' 4a')'/—pa']'*,

Fio. 4. A plot of Regs(w) with three plots of Re(62(26)j r. The
intersections between these two curves 1ead to resonances.

and

ps'(w', a")
de

(w' —w) (w'- w2)
'

=( — ) 2 II'""I' da" If(a")I'

(32)

with pg=5.4p, . This approximation will be used in the
remainder of the paper, and its effects, which do not
introduce any essential structural changes, will be
discussed in a later section.

We are now in a position to discuss the general,
physical properties of the solutions in Eq. (31) or (33).
Consider the structure of F»(w). It is easy to see that
the

E2 (w,w,)=E2 (w2)

= (w —w2)
a2'(w')

(w' —w) (w'- w2)'

Re(I E2(w, w2) —E2(w2)] —I Gs(w, ws) —Gs(ws)]-'}
—=Re(E2(w) —

I Gs(w)] '}

Thus, in both F» and F» the pole singularity at m2

cancels out. On the other hand, the pole at m2 remains
in F22 which is in agreement with Eq. (23).

To discuss the analyticity for m)m» it is more con-
venient to write F22(w) as

F22(w) (w w2) f LE2(w)w2) E2(w2)]
—

I Gs(w, ws) —Gs(ws) 7-'}—'. (33)

From Eqs. (26) and (33) we see that F22(w) is defined
in a cut plane: an elastic cut coming from E2(w, w2)

and extending from mq to ~, and an inelastic cut
coming from Gs(w, ws) and extending from ws to oo.

Clearly, F23 and F33 are defined in planes cut in exactly
the same manner, but, as seen from Eq. (31), with
different discontinuities. As mentioned previously,
these discontinuities are the proper ones to satisfy the
truncated unitarity condition.

Before we proceed with a general discussion of the
properties of the solutions in Eq. (31), it is convenient
to introduce a nonessential approximation for the
structure of the m —~ resonance. In particular, we write

e"' sin5~
(v/2) L(a' —4p')'/p'7'

a ' a' '(v/2) Da' 4a—')'/—p']*'—
Then in the limit of a narrow resonance

sinsgi ~ (y/2) I
(a2 4+2) 2/p2]erg (pi22 p2) (34)

In these expansions, the half-width on a p scale, y~,

can vanish, and thus produce a resonant behavior in
F22(w). The "subtracted" forms, ReE2(w) and ReG2(w),
are zero at m =m2, and rise to a maximum before they
pass through an appropriate zero point. However, we
wish to compare ReI G(w)7' with Re%2(w). From the
remarks above, ReLC2(w)7 ' is infinite at w2 and
decreases as w is increased. Since Gs(w) develops an
imaginary part when w&ws, and the zero of ReG2(w)
occurs for w&ws, ReI Gs(w)7 ' does not become
infinite at the zero of ReLG2(w)7, but passes through
zero and becomes negative. Of course, ReG2(w) has a
discontinuous slope at w =ws, and so does ReI 62(w)] '.
Thus one may easily obtain the situation presented in
Fig. 4. The curves in Fig. 4 do not represent the most
general situation. In particular, the zeros may be
interchanged so that there is only one intersection.

Several remarks can be made from Fig. 4:

(1) Two zeros can be obtained in the denominator
of F22(w), and thus two resonances. However, the
higher resonance probably has no significance at all.
If the position of the higher resonance is much larger
than m3, then the effects of higher inelastic processes
are undoubtedly important, and our solutions, subject
to the constraints imposed by the trlrscated unitarity
conditions, are no longer applicable. On the other hand,
if such a resonance occurs near m=m3, then it very
well may be physically meaningful.

(2) For a given angular momentum state the curve of
Re%2(w) is fixed, but the curve of ReLG2(w)] ' need
not be 6xed. We have assumed that the x —x cross
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section is known from other sources, i.e. , fr(p) is
known, but we can still vary the parameter which
characterizes the coupling between the elastic and
inelastic channels, viz. , F~&. If I"~& is increased then the
entire ReLG2(w)) ' curve is depressed, and vice versa.
Three different values of I'~t are given on Fig. 4. This
shows an important conclusion of the model presented
here, viz. , the position of the resonance is not necessarily
above or below the inelastic threshold, contrary to
Ball and Frazer, ' but depends on the value of the
parameter F~&. Incidentally, we do not need to know
the phase of different t components of I'~& to determine
F»(w) since only terms of the form pr"

~

I'r" ~' occur.
(3) It is important to realize, referring to the remarks

just made, that F~t cannot be varied at will to fit the
data. Recalling the explicit form of fr(p), Eq. (24),
we see that once F~& and the x—m. cross section are
fixed, the isotopic spin dependence is also determined.
As an example, let us say that a resonance is present
in the D;&"mE system. Since the isotopic spin factors,
in this model, occur as

and we need
~

fr~2, it follows that the G2 ' curve for
T=-,' is increased by a factor of four over that for
T= ~~. Thus we would expect the D @ system to exhibit
a resonant behavior at higher values of m than the D;("
state. %e must emphasize that it is possible that the
63 ' curve for Dg&I does not intersect the X2 curve, in
which case there would be no resonant behavior. In
fact, it could happen that neither the D &' or D;("
states involve intersecting curves, and neither shows a
resonance.

(4) It is clear from Eq. (31) that F22(w, p) and
F22(w, p,p') will exhibit the sa,me type of w dependence.
In particular, if F22(w) exhibits a resonance, then

F22(w, p) and F22(w, p,p') will also show a resonant
behavior in m. Although the position and width of these
resonances may be altered from that in F»(w), the
general structure of the amplitudes will be the same
since K2 and 63 are reasonably smooth functions. This
point is quite relevant to the elastic and inelastic x-X
scattering cross sections.

(5) Although there is no restriction as to whether a
resonance will occur above or below the inelastic
threshold, the magnitude of the elastic cross section
will depend markedly on the position of the resonance
relative to the inelastic threshold, Again consider the
example of D;. I.et us say that D~"& has a resonance for
z(m3, and D ') has a resonance for m)ms. The
magnitude of the D @ cross section will be much
larger than that for D;&". This may be seen as follows.
Below m3, the inelastic channel has no imaginary part,
and the magnitude of the cross section at the resonance
depends on only ImE2(w). However, above w2, the
magnitude of the cross section at resonance depends on
the ImG2(w) as well. For I=O, 1 (I=lowest orbital
angular momentum state in the three-particle channel)
this contribution grows rapidly with energy and
markedly decreases the magnitude of the cross section
at the resonance. The effect can be so large that the
lower resonance in T= —,

' may be easily seen, exper-
imentally, while the higher resonance in T= —,

' cannot
be separated from the experimental errors, at least at
present.

(6) Finally, it is of interest to examine the extreme
cases when F~ —+ 0 and F~ is very large. The first case,
I'~ —+ 0, is of a trivial nature. Eq. (31) shows that all

the F,; are zero. This is not surprising; there is no
inhomogeneous term to drive the unitarity relation,
i.e., the integral equations. Said another way, all
potentials between particles are zero. The case when
F~ is very large is more interesting. Referring to Eq.
(31), we find (for I'~ very large)

F22 (w) —+ —(w —w2)
—

'LE2 (w, w2) —E2 (w2)j—',

F22(w, p) —+ 0,
(35)

F»(W p,p') ~— f(p)f*(p')

w w2 AJ dp
~ f(p ) ~

LE2(w, w2,' p")—E2(w2&w2, p")]

where 3 is a factor involving the relations between
the I'r, see Eq. (31).At first, it may seem strange that
F23 is zero, since the coupling between the two- and
three-particle channels is very large. However, consider
a transition between a two- and three-particle state,
Since the transition can be made, we should expect
that F23 is nonzero. But the coupling is so strong that
the three-particle state immediately makes a transition
back to a two-particle state, and the transition will

never be a permanent (asymptotic) one. Thus F22 is

zero. In fact, when such strong coupling is present, there

is a decoupling between two- and three-particle scatter-
ing. This may be seen by observing the analyticity in

Eq. (35). In particular, F» and F» do not have the
same cuts: F~2 is cut from zv~, while F33 is cut from m3.

This particular difference in analyticity between two-

and three-particle scattering makes a permanent
transition between them impossible. Considering the
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lim (w —w2)F32'(w, p) = I'~f(p),
W~W2

(36)

an»yticity of Eq. (35) further, it would appear that both
F2/ and F» have developed a pole at wm (if we had chosen
the inelastic pole at mo(m2, then F22 and F;3 would have
poles at w~), since the cancellation arising from the
form of Eq. (32) is no longer present. However, the
form given in Eq. (35) is invalid when w=w2. To see
this we note that we have, by definition,

but from Eq. (31)

lim (w —w2)F~2~(w, p)
W~Wg

=I'f(p)/I:I —&2(w )Ga(w2)1 (37)

Thus, in. order for Eqs. (36) and (37) to be compatible,
we have the limit

lim E2(w2)03(w2) =0, (38)
W ~W2

Asdepmden] of I'~. Thus, Eq. (35) is replaced by (w ~w2)

F„~(w)~g ~r~r ~' dp" If(p") I' ,
p3'(w' p")

dzo
(w' —w2)'

F32'"(w,p) ~ I'"f(p)/(w —w~),

F.. «'(-,p,p') -F'«'r f(p)f*(p')
p2'(w')

d3) )
(w' —w2)'

(35')

which is valid independent of F~. Thus, the imposed
analyticity in Eq. (23) is in fact maintained.

At this point it is necessary and important to extend
the results of paragraph (6) outside the direct applica-
bility of our model. In particular, let us consider the
two cases in (6) when there is an elastic pole as well

as an inelastic pole. We will take this elastic pole at
m =ve, (w2 with residue n~. The general structure of the
denominator common to all the amplitudes is

a(w') =1—+LE,(w,w, )—E,(w,)j
—LG8(w, w2) —G3(w2)]LE2(w, w2) —E2(w )]

+n Pr ~

I'&
~

'Lmixed terms in G~ and E2]. (39)

A(w') = 1—nLE'2(w, w, )—E2 (w,)], (40)

and F23 and F33 go to zero. This is exactly the form that
is obtained when one computes F~2, eeglecfieg inelastic
contributions, i.e., the unitarity relation is of the form

Referring to Fig. 4 and Eq. (33), this solution corre-
sponds to setting t G(w, w2)] '=1/n. Thus, it is not
surprising that previous attempts to obtain resonances

by nelgecting inelastic contributions have not been very
successful, " at least when reasonable values of the
left-hand discontinuities are used, i.e., values of n.

When we take the opposite case, F very large, the
results are similar to those given in paragraph (6).
However, we can interpret the result in a different way;

Clearly, when n —+0, this is identical with the model
given here. However, let us consider the extreme cases
FI—& 0 or I'~ very large when n/0.

In contrast to paragraph (6), when I' ~0, F~2 remains
finite (since the numerator contains a term proportional
to n as well as I'~) with a denominator of the form

this is again equivalent to neglecting the inelastic
contributions to F» since the unitarity condition is of
the form of Eq. (41). This corresponds to setting

$03] '=0 in Eq. (33) and Fig. 4.
Finally, if F~ is finite and n&0 we can determine the

behavior of the resonance as a function of n from Eq.
(39). Specifically, if n is not too large, the position of
the resonance will be at most shifted. If one is given the
sign of n and can consider the mixed terms in Eq. (39)
as negligible, then one can even determine whether the
shift is to higher or lower energies.

C. Syeci6c Solutions

It is now possible for us to describe the results of our
calculations for specific choices of the Ã—p system and
the resulting z-X system. In particular, we wish to
consider IJ=O and 1., and more specifjLcally the p-X
states 5; and P;. As seen in Table I, these are connected
to the m-X states D; and F;, and we consider both
values of the isotopic spin.

In order to obtain numerical solutions for the
amplitudes we must calculate Ep(w, w2) and G3r(w, w2)

for the combinations (L,I)q (2,0); and (3,1)——, as they
are defined in Eqs. (26) and (16). Such integrals are

dificult to perform by machine calculation, since they
involve principal-value integrals and imaginary parts.
This difficulty is particularily emphasized in the case of

G3(w, w2) which involves an additional integration over

p. The complexity due to the p integration in G3 can

be eliminated by taking the ~—m system in a sharp

resonance state and using Eq. (34). On the other hand,

the difficulties associated with the principal-value

integrals can be diminished by approximating the

phase-space factors and performing the integration

analytically. As shown in the Appendix, pq~ and pq
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FrG, 5. Plot of sin'5 for Dg and Iig in elastic m-lY scattering.

can be well approximated as

p2 &(w)~[2m/4(2s') )(1/4w )
X ( (w —m)' —p')'/(w+nz) }

X[(w—~)'—p,
']-'*

p2~'& (w) [2m/4(2m) ') (1/4w')

X{[(w—m)' —p')'/(w+ 1e)')
x [(w—m)' —p,')~

(42)

pa&0& (w,p~)~[2m/32(2~)')4[1+ (m+pg/w))
X [w' —(m+ pg)')~

p,o&(w,pz) [2nz/32(2 )')—'[1—(nz jpa/w))
X [w' —(m+ pz)')'.

With this approximation for the phase-space factors
the appropriate functions, E2 and G3, can be obtained
explicitly, see Appendix. For both of the combinations
of interest, viz. , (2,0); and (3,1);, the resulting curves
are similar to those shown in Fig. 4. In Fig. 5 we show
sin'8 for the x —A states D;~ and Ii;~ with both values
of the isotopic spin. For both D; and Ii; we have chosen
the appropriate value of F to 6t the experimental
data for the T=2 states. As pointed out in Sec. III 8
the behavior of the T=—', states is automatically deter-
mined by the isotopic spin dependence of fr(p)

In the D; channel we have chosen an appropriate
value of F so that the T=—,'has a resonance at 600
MeV,""and since the isotopic spin dependence is

"P. Falk-Vairant and G. Valladas, Proceedings of the 1960
Annular Internati onat Conference on IIigh-Energy Physics at
Rochester (Interscience Publishers, Inc. , New York, 1960),page 38."C.D. Wood, T. J. Devlin, J. A. Helland, M. J. Longo, B.J.
Moyer, and V. Perez-Mendez, Phys. Rev. Letters 6, 481 (1961);
other references are given in this paper.

determined we find a resonance in T= 2 is also present.
This T=-', resonance corresponds to a zero in the real
part of the denominator of Eq. (33) at w=12.6p,

(980 MeV), but because of the remarks in Sec. III 3,
paragraph (5), and the fact that p~'0&(w, p~) increases
very rapidly above w=m+p», , the maximum actually
occurs at w=m+ps=12. 2p (880 MeV). We would like
to interpret this maximum (cusp) as the "knee" in the
m+p cross-section at 850 MeV.""This rapid develop-
ment of the inelastic channel (for I=O) is responsible
for the cusp effect as well as the reduced cross-section
of the Dg") amplitude. Actually, the sharpness of the
cusp is a spurious effect, and if we were to perform the
p integration rather than using Eq. (34), the resonance
curve would become a smooth function.

The resonance in the F;& channel is placed at
w=12.3p, (900 MeV),""which is above the inelastic
threshold (880 MeV). In contrast to the remarks
pertinent to the D; channel, there is little reduction of
the cross-section of the F;&&) amplitude. This follows
simply from the fact tha, t p3"& (w,pg) does not increase as
rapidly as p3"&(w,pz) in the energy region, w)m+pR.
On the other hand, the accompanying resonance in
the F&&&'*& channel occurs at w=14.0p (1350 MeV), and
is severely reduced since p3"&(w,pz) is no longer neglig-
ible. It is thus lik.ely that this resonance is responsible
for the "resonance" near 1.4 Bev in the s+p cross-
section. ""

We have pointed out that the value of F~ has been
chosen so as to best represent the T=2 experimental
data. However, an independent estimate of its magni-
tude can be obtained from Eqs. (17) and (21). From
Eq. (20) we see. that x —& ~ as I' ~ 0 or Q ~ 0, and
in the limit Q —+0, I is dominated by the Q„(x)
with the lowest index in Eq. (19), i.e., n=l 1. We —may
thus obtain a value of I'~ by comparing Eq. (21) with
Eq. (17) when Q~O and retain only those terms
proportional to Q~ &(x). Since we have taken p=pg,
Q —+ 0 corresponds to w ~ m+p», , and comparing
Eq. (21) with Eq. (17), using Eq. (19), we obtain

rp. T."=(pa p)»m f[(&—+~)/I')'[(Qo+~)/Q)'
w~m+pR

P ~PR

X1/Q[I'(&+~))i/(»+1) Q~(x)),
ja ~2r Jl

r, , = —[(i+2)/1)

The values obtained from Eq. (43) are larger than
those actua/ly employed in Fig. 5:

D ~ F-'1 3FP T
-1

Iis: F&' 5Fp g ".
If the perturbation-theory values of F had been used,
the resonances discussed in the preceding paragraphs
would still be present, but at much lower energies.
However, the disparity between the values of F is due
in part to our method of comparing Eqs. (17) and (21),
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In particular, as w-+m+p, we have seen that P~2~ 1/P" +' which, for I.=2, 3, is much faster than our
pole approximation. It is likely that sizable errors have
been introduced if the region near the elastic threshoM
is important in the m integration of Z2(w, w2). This is
particularly relevant when we realize that the amount
of error introduced by the pole approximation increases
as I increases. Our calculations tend to overestimate
the value of X2(w,w2). A reduction of E2(w, w~) to
compensate for this error would yield resonances at
higher energies, and a fit of the data would be possible
with less disparity between F and Fp.T..

IV. CONCLUSIONS

In this article we have attempted to explicate the
role played by production amplitudes in the determina-
tion of elastic amplitudes when they are coupled by
unitarity. We have also endeavored to demonstrate
the importance of this elastic-inelastic coupling by
means of an explicit calculation. The most pertinent
observation that can be obtained from our analysis
concerns the importance of the left-hand discontinuities
relative to the restrictions imposed by unitarity. In
particular, it is likely in many processes that the
elastic "forces" contribute very little to the structure of
the elastic amplitude near the thresholds of inelastic
channels. It is rather the particular form of the coupling
between the amplitudes, i.e., the unitarity relations,
which is responsible for their structure.

It does not follow that this observation is generally
applicable, and an important exception may be m —x
scattering where the elastic "forces" are very dependent
on the crossing relations, i.e., when an additional
constraint, which can be very restrictive, is imposed on
the system, the unitarity relation may not be sufficient
to determine the general properties of the amplitudes.
On the other hand, we believe it very plausible that the
strange-particle resonances observed recently" are the
result of the coupling between the various strange-
particle channels and not specific left-hand singularities.
It is true that several channels must be considered in
the scattering of strange particles and the analysis is
more complicated, but this implies that the constraints
imposed by unitarity are more severe than ever. In
this connection, it is important to realize that any
inelastic channel can restrict the form of the elastic
amplitude, i.e., two-particle as well as three-particle
channels. As in the work of Dalitz, ' it seems likely that
the resonance in the m —A systems can be understood
in terms of coupling to the K—Ã and ~—Z channels.

A comparison between the model presented here and
the works of others' 5 " '3 "is most conveniently made
by referring to the remarks in the previous paragraphs.
In particular, we take as fundamental the unitarity

"See, e.g., M. H. Alston, L. W. Alvarez, P. Kberhard, M. L.
Good, W. Graziano, H. K. Ticho, and S. J.Wojcicki, Phys. Rev.
Letters 5, 520 (1960); O. Dahl, N. Horwitz, D. H. Miller, J. J.
Murray, and D. G. White, ibid. 6, 142 (1961).

relations, and insist that these relations be rigorously
satisfied (at least in the truncated form), while other
authors have attempted to emphasize different aspects
of particular problems at the expense of the unitarity
relations. An important property, which follows from
the unitarity coupling and is not shared by procedures
that neglect this coupling, is the marked decrease in
the cross section above the inelastic threshold. Such
behavior can be explicitly included in any given
calculation, but an ad hoc procedure of this type will

surely violate the unitarity relations at some other stage
of the calculation. One must satisfy the unitarity
relations at the onset of the analysis and maintain
them throughout.

This rapid increase in the inelastic absorption with
the resulting decrease in the elastic cross section is
partially responsible for our emphasis on coupling the
three-particle system as (ms. )1V rather than m(s.Ã).'4
It is true that the formation of the (3,3) isobar takes
place in the production reaction. However, it is not
obvious that it dominates the production reaction and
elastic scattering above 400 MeV (pion laboratory
kinetic energy). In fact, if we consider the (3,3) isobar
as a sharp resonance with a "mass" of 9p and perform
a calculation similar to that in Sec. III, then the
inelastic threshold occurs at about 10p, (390 MeV) and
any resonant behavior in the elastic channel much
above that energy will be reduced to a very small value
(as the T=~3, F; resonance in Fig. 5). Thus, it seems
unlikely that the (3,3) isobar formation is very signif-
icant in the development of the higher x—N resonances.

The preceding remarks suggest the following state-
ment: In general, when an elastic channel is coupled to
a set of inelastic channels in such a way that resonances
result, the position of an observable resonance will be
essentially at or below the inelastic threshold. This
statement is in contrast to the conclusion of Ball and
Frazer, ' and a few additional remarks are necessary.
The basic observation made by them is that a rapidly
rising, inelastic cross section will lead to a resonance in
the elastic channel. Because this resonance is a result of
a particular analyticity, the resonance occurs very near
the region of the rapid increase. By an appropriate
choice of the inelastic absorption, they then fit the
elastic data. Unfortunately, the magnitude of the
inelastic absorption is chosen rather arbitrarily. The
pertinent remark in a comparison of their model with
the model presented here is that the rapidly rising,
inelastic cross section in their model represents the
real production of an X and p. For this reason, the
location of the elastic resonance cannot be very different
from the inelastic threshold (thus, they must choose
the m- —x system as resonating between 4.5 and Sp, so
that the inelastic threshold, 11.3p (670 MeV) (w~
(11.8p, (780 MeV), is not very much larger than the
600-MeV resonance). On the other hand, in the model
presented here, the elastic amplitude can resonate far
be1ow the inelastic threshold by means of the uirtgal
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production of an T and p. It is this virtual production
which is allowed by the unitarity relations, and is not
present in the work of Ball and Frazer. Of course, how
the inelastic amplitude develops the necessary energy
dependence in their model cannot be discussed, while
here it is the unitarity coupling between the channels
which is responsible.

In Sec. I we mentioned an alternative mechanism to
that presented here, i.e., a bound state in one channel
decaying into another channel. ' ~ While such a mechan-
ism may describe certain experimental effects, it differs
from the model presented here in an essential way. In
the analysis, e.g. , presented by Sakurai, ' the tacit
assumption is made that it is possible to separate one
channel from another and discuss the interaction
between them in terms of decaying systems. In contrast
to this point of view, we consider as basic a strong
coupling between the channels; in fact, this coupling is
so strong that any effective separation between the
channels is impossible. Thus, although it may be
possible to phrase some of our results in terms of a
bound-state mechanism, an essential difference in
outlook is present.

A final comparison can be made with the model of
peripheral collisions. '~ Because of the specific coupling
chosen between the elastic and inelastic channels
(Fig. 2), it would appear that a definite connection to
peripheral-collision models is present. However, the
rigorous application of the unitarity relations implies
that any number of pions, compatible with symmetry
principles, can be exchanged in M», M», and M».
There is thus little comparison between the models.

Finally, it is of interest to discuss the relevance of
the particular choice of singularities and coupling made
here to the experimental results. We have already
discussed the difficulty associated with the coupling
m (z.1V). Similar remarks can be made about the chan-
nels's 1V+tl and" 1V+f, although they might have
some effect on the 600 MeV, T=-', resonance. These
remarks do not apply to the channel 1V+a&. However,
since or has T=O, the "knee" in the T=-,' could not
develop, i.e., the isotopic spin dependence of fr(p) does
not allow a contribution to the T=~3 state. Thus, of
the inelastic channels which could be the relevant ones
to actually reproduce the data, the channel 1V+p is
certainly most favored. It is important to emphasize
that the model developed here cannot determine which
inelastic channel is most strongly coupled to the
elastic channel. This is an assumption, a priori, and
must be checked against the data.

The above remarks and the results of Sec. III C
provide rather strong evidence that the 1V+p channel

is most strongly coupled to the 1V+s. channel. However,
Table I implies a certain arrangement of partial waves.
The calculations in Sec. III C consider Ig=O, 1 for the
largest J-value allowed. However, we should also expect
that the S~ m —Ã channel is driven by I&=0 as well
as Dl /we would not necessarily expect a resonance in
these additional partial waves because of the behavior
of ps (w)$. Experimentally, " it is necessary to mix S;
and D; waves to fit the data which is quite satisfactory.

On the other hand, Ig= 1 will drive P; and I'; as well

as Ii;, but no D waves. Unfortunately, the experimental
evidence" shows that a strong mixing of D waves with
the predominant Ii; wave is necessary (with perhaps
some I' wave). Only if Iz=2 can any D waves be
introduced into the 900-MeV resonance. However, this
possibility is unlikely for the following reason: Vfe have
seen that the position of the resonance for Ig= j. is
higher than that for Ig=0. It is likely then that a
resonance for Iz——2 would be at an even higher energy,
with a value of I" not very different from I'p. ~. , and
thus would produce no strong D-wave scattering at
900 MeV. Further, it is possible that one would not see
such a resonance because of the inelastic absorption.
Incidentally, the 1V+p channel can have no effect on
the resonance in the T=~ channel near 1.4 BeV. Again,
the reason is the large absorption of the inelastic
channel.

The most obvious extension of the particular calcula-
tion presented in Sec. III would be the inclusion of
another channel. An example, and in the nature of a
conjecture, would be to include a coupling of the
1V+3z. system, other than that mentioned previously,
to the mlV channel, viz. , (1Vrr)(s.z.), where the (1Vz.)
system is the (3,3) isobar and the (z-vr) system is the

p meson. As with (7rz.)1V, the isotopic-spin dependence
of f~(p) is approximately 1 for T=-,' and 2 for T= —', .
If we consider the lowest states, i.e., I~=0, then we
find that 5;, D;, and Dg are the corresponding mÃ

channels. Again the T= —,
' channel will have its resonance

at a lower energy than that in the T= ~ channel. In this
case, the reduction of the elastic cross section above 900
MeV, because of a large inelastic absorption, does not
apply. To see this we consider both systems as sharp res-
onances, and find that the inelastic threshold occurs at
w= 14.4p (1460 MeV). This situation is very attractive
since we could consider a resonance at 900 MeV in the
T= sr channel (Providing the necessary D-wave mixing)
and an additional resonance in the T=-,' channel. It is
not inconceivable that this T=~ resonance would be
the resonance near 1.4 BeV in vr+p scattering, in which
case the angular distribution would be dominated by
D~~ and D~.

~ S. D. Drell, Revs. Modern Phys. 33, 458 (1961).
'~ A. Pevsner, R. Kraemer, M. Nussbaum, C. Richardson,

P. Schlein, R. Strand, T.Toohig, M. Block, A. Kngler, R. Gessaroli,
and C. Meltzer, Phys. Rev. Letters 7, 421 (1961).
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APPENDIX

Ke wish to rewrite and approximate the phase-space
factors in a somewhat more convenient form. The
explicit forms are, suppressing the 8 functions and the
faCtOrS Of (22r),

p
I (w) [P2L+1/w (g+m) 2I—1]

thus

p2"'(w p) =-,'[1+(m+p)/w][w' —(m+p)2]&. (A7)

For I= j., we have

p2"'(w, p) = 'L(w-m —p)/—(w+m p)—]Lw' (m—+p)']',
which can be well approximated as

p2"'(w)=4L1 —(m+p)/w]Lw' —(m+p)']' (Ag)

Using the approximate forms of the phase-space
factors, it is straight-forward calculation to determine
the functions E2 (w) and G2 (w). Consider, for example,
E2&2~ (w); we have

(w —w2) " dw'
E2&"(w) =

1 [(w—m)' —t22]~*[(w+m) 2—t12]L+'

(2w) 2L+1

(w' —m+ti)'(w' —w2)-
X

w" (w'+m)'
(A9)

and
(w —w2) " dw'

E2&"(w) =

which becomes, when written in partial fractions,(2w) 2I—1

[(w+m)2 p2]2L—1

p2'(w, p) = [Q'"'/w(Q2+m)" ']
L

'—( +p)']"'L '—( —p)']"'*

(2w) "+'
X + +

w'+m (w'+m)' (w'+m)'

(2w)'I—'
X . (A2)

[(w+m)' —p']" '

We consider p2 (w) 6rst and use the approximation

Defining the function,

H(w, r) =Partie Pnie
[(w' —m) '—t1']-'*

dGJ

VO VV ZV —7

(A10)

[(w+m)' —p2]={wym)2. (A3) we obtain

Then from Eq. (A1)

L (w) (1/4w') f [(w—m) 2—„2]L/(w+ m) 2L-2)

X [(w—m)' —t12]'*. (A4)

[w' —(m —p)'] w'. (A5)

From Eq. (A2), we obtain

Lw' —(m+ p)']'
P2'(w, P)=

22I(2w)2 —2I [(w+m)2 p2]2I—1

X Lw' —(m+ p)']'*. (A6)

For I=O, we use the approximation

[(w+m)' —p']/w' 1+(m+ p)/M;

In the case of p2I(w, p), since we take p= pI2
——5.4t1, we

use the approximation

g2(2) (w)
=-,'(w —w2) [AH(w, m)+BpaII(w, r)/—ar] l,= „

+ (C/2) [82II(w, r)/8r2] l, „+nII(w,0)
+&[~&(w,r)/~. ]I.=2+ (v/2) 92&(w,.)/~ "]I.=o].

H(w, r) can be explicitly evaluated analytically, and
thus XP'(w). A similar procedure may be used to
evaluate all the appropriate E's and 6's.

Notes added in proof (1) Profes. sor W. R. Frazer and
Dr. J. S. Ball have kindly pointed out to us that the
solution for F22(w) in Eq. (33) has a "ghost pole" at
some real value of w, since as w~ —~, E2(w) goes
to —~ logarithmically, while [C2(w)] ' is negative
for w(w2 and goes to zero in that limit. (2) The
quantities E'2(w, w2) and G2(w, w2) are actually divergent.
In the final solution, Eq. (31), only the subtracted
forms appear, so that the formal manipulation from
Eq. (27) through Eq. (31) is justified. We could of
course have made a subtraction in the matrix 9 and
avoid handling divergent quantities.


