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A development of the N/D formulation of the unitary S matrix is presented for multichannel reactions
including production processes. The relevant amplitudes are expressed in terms of helicity amplitudes and
the coupled, unitarity relations of Blankenbecler. The analytic continuation of the amplitudes in the
presence of anomalous thresholds is considered in detail. An extension of the Levinson theorem to the
multichannel production case is discussed. An application of the formalism developed here is given in

another paper.

I. INTRODUCTION

OTH theoretical and experimental studies on the
higher resonances in pion-nucleon scattering have
led us to hope that these can be eventually understood
by including the effect of the competing production
processes. The work of Peierls,! Goebel and Schnitzer,?
Carruthers,® and Ball and Frazer* shows how the open-
ing of a production channel excites the elastic channel
by unitarity, thereby giving rise to a resonance in the
scattering process, even though the mechanisms con-
sidered by them differ considerably in detail.

The construction of the unitary S matrix for the
multichannel reaction has been studied intensively in
the last few years.®® In particular, Meetz’ has con-
sidered a detailed application of the generalized uni-
tarity relation, as formulated by Blankenbecler, to
pion-nucleon scattering. He considers the unitarity rela-
tion for given angular momentum and parity states, and
shows how the generalized N/D method enables us to
construct scattering and production amplitudes which
satisfy simultaneously the requirements of analyticity
and unitarity imposed upon them. The original version
of Blankenbecler’s unitarity formulation® involves too
many variables to be tractable in practical applications,
and this difficulty is overcome by decomposing the
amplitudes involved into partial waves.

While we concur fully with the philosophy behind
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Meetz’s formulation, we consider Meetz’s work incom-
plete in the following respects: (1) Meetz decomposes
the production and three-particle scattering amplitudes
in the total center-of-mass system, following the work
of Ciulli and Fischer.® Whereas this is satisfactory in the
nonrelativistic limit, the partial wave amplitudes so
defined do not satisfy the simple unitarity relation
Meetz attributes to them. (2) The production and three-
particle amplitudes have anomalous singularities,® with
the concommitant problem of the continuation of the
unitarity relation beyond its “domain of definition.”
This analytic continuation of the /D solution requires
a careful discussion.

In the present article we shall address ourselves to the
N/D formulation of the unitary S matrix for multi-
channel reactions including production processes. We
shall concentrate on the decomposition of the production
amplitudes in terms of the helicities of the particles
involved, and the modification of the N/D solution
necessary in the presence of anomalous singularities.
The description of the angular momentum states of a
many-particle system in terms of longitudinal spin
components (helicites) is not only applicable to rela-
tivistic situations, but also enables the reduction of the
S matrix and the unitarity relation thereof to simpler
forms.

In this paper we shall proceed from a rather formal
point of view, leaving the application to a physically
interesting case—pion-nucleon scattering—to the follow-
ing paper.

In the next section, we discuss the choice of variables
to describe two- and three-particle systems and which
are convenient for later purposes. The invariant ampli-
tudes for two-particle scattering, production, and three-
particle scattering are defined and the unitarity rela-
tions between these amplitudes are noted. The unitarity
formulation of Blankenbecler is contrasted with the
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usual statement of the unitarity relation, viz.,
T—Tt=2miTi6(E—H)T,

and a justification is given for Blankenbecler’s formula-
tion of the unitarity relation which expresses the
absorptive part of an amplitude in terms of quadratic
forms of amplitudes.

In Sec. ITI, the decomposition of the amplitudes con-
cerned into helicity amplitudes is demonstrated in
detail, and the validity of the decomposition of the
production amplitude is considered. The reduction of
the unitarity relation to definite angular momentu
and parity “sectors” is carried out. :

In Sec. IV, we define new amplitudes which are free
from kinematical singularities and which satisfy simple
unitarity relations. The N /D method is formulated for
these amplitudes. The inversion problem of the infinite-
dimensional, continuous denominator matrix (D) is
solved with the aid of the Fredholm theory.

Section V deals with the analytic continuation of the
N/D solution in the presence of anomalous singularities.
An extension of the Levinson theorem! to the multi-
channel production case is discussed. The effect of
anomalous singularities on the threshold behavior of the
production amplitude is also noted there.

II. KINEMATICS AND UNITARITY
A. Definition of Variables and Amplitudes

While the formalism presented in this paper is appli-
cable to any elastic scattering and production process,
we shall confine our attention to pion-nucleon scattering
and one-pion production for ease in description and to
avoid confusion.

We shall neglect the trivial isotopic spin dependence
but will take into full account the nucleon spin in the
following. We label the momenta associated with vari-
ous processes as follows:

@ N(p)+m(k) = N(p")+= (%),
an N(p)+m (k) = N(g)+7 (k) +7(ko),
(AT) N(g)+n (k)47 (k) = N (p)+7(k),
() N(g)+m(k)+m(ke) = N(g)+m(ky) 7 (ky).

¢y
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For both two- and three-particle systems we introduce
the square of the total center-of-mass energy as the
invariant variable s:

§=— (p+k)2y
§=— (Q+k1+k2)27

where p*=p?— pd=—m?, @?=—m? and kl’=kd=—p2

In a two-particle system, we introduce the polar and
azimuthal angles Q= (0,¢) [Q'= (¢',¢")] of k (k') relative
to some arbitrarily chosen Cartesian cotrdinates in the
center-of-mass system.

In a three-particle system, there are several ways to
specify the configuration, and a preference of one
description over the other can be determined only in the
context of the underlying dynamics. Here, we shall
discuss only one of the possibilities, which we shall
utilize in the following paper, but the extension of our
method to other descriptions should be transparent.

We define the direction of K=k;+k; by two angles
&= (v,5) measured with respect to some codrdinate axes
in the three-particle center-of-mass system. In this total
center-of-mass system the direction of ¢ is opposite to
that of K, but the relative orientation of the two-pion
system has yet to be specified. To this end we designate
the direction of ki by angles 5= (,8) measured with
respect to some Cartesian axes in the fwo-pion rest
frame. In addition we define the invariant variable o by

o=— (kitks)?, 3)

which is the square of the “mass” of the two-pion sys-
tem. It is clear that when the Lorentz transformation
connecting the codrdinate systems in the total center-
of-mass and the two-pion rest frames are given, the
variables s, o, ®, and = will describe the configuration of
the three particles completely. We postpone the speci-
fication of this Lorentz transformation until Sec. I11.

Alternatively, we may define the direction of the sum
of ¢ and &4, say, in the total center-of-mass system and
the direction of %; in the rest frame of the nucleon and
the first pion. Clearly, these alternatives correspond to
two ways of combining the three angular momenta.

In terms of definite momenta of the particles involved
we define the following Lorentz invariant amplitudes:

)

or

(K p'N 5 Q| Moo (s) | K,pN; @)= (ko) 2an (p")k'| f| R, pNG) (2k0)V2(po/m) 2= M o2 (5,2",2; N',N),
(ki ko,qv; BE| Msa(s,0) | K, PN ; Q)= (4k10k20)"/2%, (q){k1, k2@ | f| -y pNOW) (2k0) V2 (po/ m) V2= M 55(5,0, BE,L; ¥N),

(k,p)\, Q | M23(S,0') ] kl,k2,qu ; ‘I)E>= (Zko)1/2(150/”1)1/2(]6,?)\(0“6) I le kl,kg( in))%,, (q) (4k10k20)1/2=M23 (S,(T,Q,‘I)E; )\V),

(kllak2,7q,"l; (I)’E/ | M33(S>0',10') | kl:k2’qV; fIfE)

4)

= (4kro'kae" )2 (@' )R s 9 | f| or,n,qv ™) (dher0kn0) V2 (go/m) M= M 53(s,0” 0, BB/ BE; ¥',0),

where \, X', », and »’ are helicity indices of the nucleon,
(=1/2,—1/2), and f=f(0) is the nucleon current

ESY? Jacob and G. C. Wick, Ann. Phys. (New York) 7, 404
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operator,
(v- 0+m)¥ ()= f(x).

The matrix elements exhibited above are understood to
be the on-the-energy-shell ones. Two-pion states are
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normalized as
| ke, ko)= (21)2at (ky)at (ks) | vac).

The unconventional contraction of the nucleon operator,
rather than the pion operator, is deliberate; it serves to
fix the mass o and to explicate the correlation of the
two-pion system.

It must be emphasized that some of the angu-
lar variables shown in Eq. (4) are redundant. In
Moo (s, QN N), for instance, we may choose the direc-
tion of k as the z direction and the plane of k and k' as
the zx plane. Then M5, depends only on s, 8’ (or alter-
natively, cosf’) and the helicity indices A, \’. Nonethe-
less, it will be convenient to maintain this redundancy
to discuss the unitarity relations.

B. Unitarity

For the sake of brevity in this section, we shall sup-
press the angular and helicity variables of the ampli-
tudes. The unitarity relations of Blankenbecler,$ valid
for s= (m-+u)?, may be written, neglecting the contribu-
tions from four (or more) particle intermediate states,
as:

M (S+1C~) ~11422(.8""1:6)
=2mi 3o Moo (s+ie) Mos(s—ie)
4211 Y5 Mos(s+ie, 0’ +ie) M 3o (s—1e€, 6’ —1€),
M32(S+i€, 0')—'M32(S“1:6, 0‘)
=271 Y o M3 (s-+ie, o) Moo (s—1ie€)
27133 Mas(s+ie, 0,0 +1€) M 3o(s—te, 0" —ie),

M22(S+’l:€, QI, Q; )\’, )\)—Mzz(s—'l:e, Q’, Q; >\', )\)
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Mos(s+ie, o) — Mo3(s—ie, o) ©)
=21 )2 Moo (s+ie)Mas(s—1ie, o)
271y s Mos(s+1ie, 0" +ie) Mas(s—ie, 0" —
M33(s+ie, o'y 0)— Mas(s—ie, o', )
=211 Yo Ms2(s+ie, o) Mos(s—ie, o)
218> s M ss(s+1e, 0", 0"+ 1) M 33(s—1ie, 6" —
Here X2 and Y ; are

1.6, 0')7

i€, 7).

2m P(S)[ ( +)2]/d IIZ
— (m+u Q Ay
- 4(2n) s
2m Q(s,a"") fo’" —4u2\1/2
_ e o GO
32(2x)8 si2 o’
‘XBE(SI/Z-m)z—o'/]/dQ"dE" >y
where
dQ=d¢ d cosb,
d®=4ds d cosy,
=dp d cosa,

P, Q are the magnitudes of 3- momenta of the two- and
three—partlcle channels:

2052 (5) = [s— (- ALs— (m— ),
20720 (5.0) =[5 m-+o) TALs— (m—a) %,

and the double primes denote variables of intermediate
states. Thus, written out in full, the first line of Eq. (5)
reads

Y]

=2ripy(s) / 4" S Mas(s+ie, &, Q75 N, N Maa(s—ie, @, 23N, N)

+2mi / do”" ps(s,0") / ABAE" Y Mog(sHie, &, ®"E"; N, ") Msa(s—ie, &5, ;v\ N), (5)

where
S P k]
p2(s)= RN —[s— (m—+p)*],
2m Q( 7‘7) .
ps(s,tf)—sz o s ———(c—4u?) (®)
0,_4 2-11/2
xo[(SI/Z—m)Z—a][ ”] .

Note that, although >, and _; are invariant phase-
space integrals, they are most conveniently expressed in
particular Lorentz frames, and our choice of kinematical
variables is motivated in this context.

A few remarks are in order about the unitarity rela-
tions in Eq. (5). These relations are quite distinct from

Cutkosky’s®® generalized unitarity which connects the
imaginary part of a graph to all possible partitions of it.
Equation (5) states the relations between the absor ptive
parts of amplitudes and the full amplitudes. Let us
examine the second line of Eq. (5). We have, from
Eq. (4),

Mys(s+ie, otie)
=1 (8k10ka0ko)!/? / dix e it -l (g)

Xk, kx| 9(2)[f(2/2), f1(—/2)] Ryu(p).

We continue Mg, (s-7¢, o£ie) in o to a small value,
o <4p?, in which case M3:(s,0) can be continued in s

1 See, also, R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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F16. 1. Comparison of the generalized unitarity of Cutkosky and
the unitarity relation of Blankenbecler. In computing the imagi-
nary part of M s, one must partition the diagram (a) along 2 and 3,
but in computing the ‘“absorptive’” part, one may not partition
along 2 or 3.

into the lower half plane (i.e., there will be a “gap”—
singularity-free region—along the real s axis). Con-
tinuing o back to the original value, Resc>4u? we can
define M 35(s—1e, oa=1¢), which we maintain is identical
with the advanced amplitude:

Ms2(s—ie, otie)
= —i(8k10k20k0)1/2/d4x 'e—i(q+p).;;/2ﬂ(q)

Xk, kvt [0(—2)[f(2/2), f1(—/2)]| R)u(p).

By taking the difference of M3a(s+ie, 0) and
M 3y(s—1ie, o), the second line of Eq. (5) follows in the
standard manner.** In this connection the prescription
of ¢"’41e should be meticulously observed.

The amplitude M 33(s,0”,0) contains two disconnected
graphs, in which one (or the other) of the pions does not
interact with the remaining pion and nucleon, while the
disconnected graph in which the nucleon is not inter-
acting is missing."Note

(N2r | S| N2m)=35,.,6(q'— @) (k1 ks ¥ | ks i)
— (2m)46(q"+ ks + ko' — q—k1—k2) M 35.

14 We are well aware of the lack of rigor in our argument. When
two pions in the final state are assumed to be noninteracting, how-
ever, this statement can be in fact proven. See Y. S. Kim, Phys.
Rev. 124, 1241 (1961) and Princeton University thesis (un-
published).
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The significance of all these remarks will become
clearer if we consider the particular diagram shown in
Fig. 1.8 In the usual unitarity, the imaginary part of
the diagram Fig. 1(a), in the physical region of the
production [s> (m-+a'/2)? ¢>4u%] is the sum of all
partitions (1, 2, and 3). See Fig. 1(b). In Eq. (5), one is
not allowed to partition the diagram along 2 and 3
[Fig. 1(c)], and therefore, in M3;, the disconnected
graph in which the nucleon is noninteracting is excluded.
An advantage of using the unitarity expressed by Eq.
(5) is that, in this case, we need not be concerned with
the details of the pion-pion interaction, but may substi-
tute theresult of a previous study, or a phenomenological
description of the pion-pion correlation.

At this point we may formulate the linear unitarity
relations in terms of Blankenbecler’s generalized V and
D functions for the amplitudes M ;. Such relations
would involve, however, multiple integrals over angles,
which make these relations intractable from the prac-
ticalpoint of view. We shall therefore postpone the
N/D formulation until we have disposed of the compli-
cating angular dependence of the amplitudes.

III. HELICITY AMPLITUDES
A. Decomposition of the Elastic Amplitude

The decomposition of an elastic scattering amplitude
into helicity amplitudes has been studied extensively
elsewhere,'! but for the sake of completeness, we will
summarize the results here. It follows from the rota-
tional invariance of the .S matrix that the invariant
amplitude (N'Q’| M2 (s) |A2) may be written
<k/:p/)\,; 4 I M22 (S) f k;px; Q)

= (1/4m) 2 e QT+ 1N | M7 (s) [N)

Xdar, 7 ()M T (6)g= NS (9)
where (\'|Mas7(s)|\) is, apart from a multiplicative
factor, the helicity amplitude of Jacob and Wick"(JW).

Specializing to the case of =0, ¢’=0, we obtain

Moo (S; (0)0)701 >\/}‘)
= (1/4m) 2 1 27+ 1N [ M 227 () [N)dan7 (8),  (10)
where we have used the relation dan”’(0)=06in. By

virtue of the orthogonality property of dxa(8) (JW 22),
the helicity amplitude (\’| M 227 (s)|\) may be written
1

| M7 (s)|\)= 2#/ d cost’ dyn” (6")

-1
XMa(s, (6',0),2=0; N, ). (11)
Note that the amplitude M1, (s,(6,0),0; A',\) is a func-
tion of two variables s and 6, and redundant variables
are absent.
B. Decomposition of the Production Amplitude

First we shall specify the orientation of the coordinate
frame C’, located in the two-pion center-of-mass system
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in which the angles E= (,8) are defined (see IT A), with
respect to the cosrdinate system C in the total center-of-
mass system. The codrdinate system C’ is such that the
2, axis is in the direction of —gq. (the subscript ¢
designates quantities measured in the two-pion system
C”). The configuration of the two pions in the C frame is
obtained from that of the C’ frame by applying the pure
Lorentz transformation Z along the z, axis with the
velocity Q/(Q*+0)¥2, followed by the rotation Rs,y,—s
where, as in JW,

Ro p o= iJzag—iTybg—iJac

(actually Rj,,, with arbitrary  will do, but this choice
turns out to be the simplest). Then

|k, ke,qv ; BE)=|qv)Rs,y,—sZ | K1c, k203 E)
l
= |qv)R;s,y,—sZ Zl AZ l[ Ko, AD),A|E),

where |qv) is the nucleon state of momentum q and
helicity », |K,A(0)) is the state of two pions with total
momentum K,=kj+k;,=0 and angular momentum !
with its projection on the z. axis A. Since the pure
Lorentz transformation Z is along the 2, axis, A is in
fact the Lorentz-invariant helicity of the two-pion
system. We assume the bras and kets are normalized
according to the prescription of JW. Using the formula
(JW 6)
Rs,y—sZ|K.=0, A(D)= IKA(Z)§ ®),
we obtain
[k1>k2;q”; PE)= Zl,AI KA(l)qu) @XZA ( E)
=2 1.4 KAQD),av; )Y 1u*(e8), (12)
so that
(k, )\, QIM%(S,O') I kl,kz,QV; @E)
=3 1,a(k, 0\ ; Q| M25(5,0) | KA (D), av; BYY 14*(e8). (13)
Now the matrix element (k,p\; ©| M23(s,0) | KA (?),qv; ®)
has the same transformation properties under rotation

as the two-particle scattering amplitude. Therefore, we
define the helicity amplitudes (A | M 237 (s,0) | »,A) by
<kyp>\) Q [ My (S,G') lk1:k2)qy; (I)E)
2J+1
=2 X

L,AJ,M A4

XdM,__)‘J(g)ei(Mi—)\)d»dM'A_yJ(,y)e—i(M-—A+v)6_

(N M 257 (s5,0) | v,A)Y 1n*(e,8)

(14)
We now specialize to the case y=¢=0. Then

N M7 (s,0) | 9,A)
1

d cosf da_,,\7(0)

-1

=27r/dE Y ia(a,B)

X Mos(s, o, (6,0),2=0,E; 7, v). (15)
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As expected, there are five independent variables, s, o,
0, o, and B in the production amplitude.
Similarly

<k1:k2>qV; OF l M32(s;0') I k;p>‘79>
2741
=2 2

1L,AJ,M 4

Xdar, 27 (0)e= 5 MHNSG T () eiM—M03,

<V7A | M32Jl(5,0) l )‘>YM (a,B)
(16)

Finally, time-reversal invariance implies the connection

(0, A| M 327 (s+1€, o+1i€) | N)
=(\|Mq37 (s—1ie, o—1ie) | v,A)*.  (17)
What we have done here is based on the physical
observation that the two-pion state of angular mo-
mentum / and helicity A behaves exactly as a particle of
spin / and helicity A insofar as the kinematics of the
production process is concerned. Thus, the amplitude
(n,A| M 37 (s,0)|\) may be looked at as the inelastic,
scattering amplitude: a state of angular momentum J
consisting of a nucleon of helicity A and a pion producing
a nucleon of helicity » and a particle of spin /, helicity A,
and (variable) mass o. Hence, when the amplitude
(v,A| M 357 *(s,0) |\) has a sharp peak in o, the picture of
an unstable particle naturally arises.
It is obvious now that the three-particle scattering
amplitude M 33 can be decomposed into helicity ampli-

- tudes in a similar manner. Arguing as before, we

obtain the equation defining the helicity amplitudes
V' AN | M7 V(s,07,0) | v,A) as the following:

(kl,’k2’)q,V, > E l Mss (S:OJ:‘T) ] k11k2;qy; (I>E>

Y Y Tew@E) Y T Yur®E)

V=0 A==V =0 A=—1

1
X— Z (2]+1)<V,;A, I M33Jlll(s,a’,0') I V,A>
4 7, M

XdM,A’—-v’ J(,Y’)ei(M+u’—A’)6’

Xdarpr—y? (v)e=8MH—D8  (18)

At this juncture it should be noted that the helicity
amplitude expansion for the production amplitudes
cannot be continued into the complex plane of the
cosine of certain angles.!® This follows because produc-
tion amplitudes have singularities for physical values of
cosines of angles. Note, for instance, that the amplitude
M3 has a branch cut in the variable — (g-+k1)? for
(m+p)*< — (¢+k1)? <, and this condition is satisfied

15 S, B. Treiman (private communication).
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for physical values of s, ¢, cosf, cose, and cosS. However,
as emphasized by Wick,'® the expansion is likely to
converge!” for physical values of cosf and cose, i.e.,
—1<cosf, cosa< 1, even though it may not be continued
to complex values. We shall have no occasion to con-
tinue the production amplitude either in cosf or cosa.
As to the rapidity of convergence, we remark that our

experience with strong interactions indicates, in many

(1/27!'1)()\, [ Mﬁz"(S‘*"ié) —M22J(S—1:E) [ )\)
=p2()Zn (N[ M na? (sHie) N")N | M2 (s—i€) [N)

AND B. W. LEE

cases, that only a few angular momentum states need be
considered, at least at reasonable energies.

C. Unitarity of Helicity Amplitudes

When Egs. (9), (14), (16), and (18) are substituted
in Eq. (5), the angular integrals can be performed
easily. In terms of the helicity amplitudes, the unitarity
relations, Eq. (5), become very simple:

+fda” ps(s,0”) X N[ Mas7V (sie, 0" Fie) [ v, A), A | MgV (s—ie, a—i€) | N),

U A !

(1/27i){v, A| M 327} (s+ie, 0)— M 32 (s—ie, o) | N)

=pa(8) X nr(w, Al My (s+ie, o) [NUN | M 27 (s—i€) |N)

+/do’" pg(s,o"')
5

’
2P AT !t

(1/278)N| M 257 (s+ie, o) — Ma"H(s—ie, 0) | », A)

=p2()nr(N | M go? (s+ie) N )N | M o37H(s—1e, o) | v, A)

+/d0// ps(S,(T”)
i

Ny
Ay

Y (v, Al MW (s+ie, 0, 0" i) | v, A7) 0", A | Mg V' (s—ie, o' —i€) |N),

(19)

> (N MoV (sHie, o' ie) [ v, AN, A | Mgy V' Y (s—1e, o' —ie, o) | vA),

(1/273)(v’, ' | M 357V (s+ie, 0, 0) —M 337 Vi (s— e, 0", o) | v, A)
=pa() 2w, A | Mas"V (s+ie, o) IN'YN | Mas" (s—ie, 0) | », A)

2

+/da‘” p3(s’o_//)
VA

The decomposition into helicity amplitudes has the
following advantages over that of Ciulli and Fischer®
who decompose the production amplitude in the total
center-of-mass system: (1) In the present scheme, the
angular momentum / of the two-pion system refers to
that in the rest frame of the two pions. Hence, the final
interaction in the state (J,}) is due to the pion-pion
interaction in the state of angular momentum /. In the
Ciulli-Fischer scheme, however, the angular momentum
of the two-pion system is measured in the total center-
of-mass system, and therefore, the resulting amplitudes
do not correspond to a definite angular momentum state
of the two-pion system in its rest frame (this has been
pointed out by Peierls! and Carruthers?). (2) The uni-
tarity relations take a particularly simple form for the
helicity amplitudes. This is because the angular vari-
ables ®, E, in the three-particle, phase-space intergral in
Eq. (6) coincide with those in terms of which the helicity
decomposition, Eq. (15), is carried out. It is clear that,

16 G. C. Wick (private communication).
17 E. T. Whittaker and G. N. Watson, Course of Modern Analysis
(Cambridge University Press, New York, 1952), p. 323.

O N | MgV (s+ie, o', 0 +ie) | 7, A7)0, A | Mo V'Y (s—ie, o' —ie, o) | v, A).

in terms of the Ciulli-Fischer amplitudes, the unitarity
relations cannot be expressed as simply as Eq. (19),
contrary to Meetz’s” assertion.

Rather than using Eq. (19), it is more convenient to
define eigenamplitudes of parity as in (JW 57). To this
end we form eigenstates of parity:

[TMID= | JM ;\=1/2) (— 1) 7H2| TM ; A= —1/2),
(M==), (20)

where 1T is the “total parity” of the pion-nucleon sys-
tem. We define the eigenamplitudes of parity M7 by

MU (s)= (1/2)(JM 11| M2(s) | JMII)
=((1/2)| M7 ()| (1/2)) (—1) 7+
X(=/D)| M7 (5)]1/2), (T==%). (21)

The amplitude M7 (s) is, of course, independent of M.
Similarly, for the three-particle system we define

|TMILLE) = |TM, 1 v=1/2,A=¢)
i(—l)"_uz[jM:l;V=_1/27A=—E>; (22)
£=0, --+l, IM==1.
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For each parity state, there are 2/41 states of angular momentum J. We define the eigenamplitudes of parity

My 05 and Mg/ 108 & by :

M7= (1/2)(TMILLE| M| JMII)

=((1/2),£| M"H(5,0) | (1/2))=£= (—1)7H%(— (1/2), — [ M 52" (5,0)| (1/2)),

M33JH'VE,; k= (1/2)(JMH)ZI7£’ l M33 | JMH)Z:E)

=<(1/2))£, l M33Jl"l(s:0',10) l (1/2)1£>i (— 1)J_1/2

The amplitude M37™ % can be defined so that

(II==), (23)
X<_— (1/2)) _£’|M33Jl"l(sao',)a')l (1/2)’ E>y (H=:l:). (24)
(25)

M7 ¥ (sde, o-i€) = [ M 327 ¥ (s—ie, o —1ie€) |*.

Since the parity is conserved, amplitudes of the same parity are related by the unitarity relations. Substituting
Eqgs. (22), (24), (25), and (26) into Eq. (19), and suppressing the superscripts JII, we obtain

(1/2w8)[ M 92(s+i€)— M (s —1ie€) ]

=p2(3)M22(S+i€)M22(S—7:€)+Z /da p3(S,0')M231‘E(S+’i€, 0'+i€)M3215(S'—1.6, 0'—7:6),
L&

(1/2m8)[ M 3% (s+1€, ) — M 23¥ (s— 1€, ) ]

=pa($) M aa(s+ie) M o3t (s—ie, o)+ 2 /da, p3(s,0") M o3¢ (s+ie, o' +ie) M5V ¥ (s —ie, o’ —1ie, 0),
Iy

(1/275) [ M 324 (s+1i€, 0)— M 35% (s—1¢, o) |

(26)

= po () M 5% (s+1€, 0) Moa(s—1€)+_ /dzr' 03(5,0") M 356 V¥ (s+-i¢, 0, o' +ie) M 32V (s—1ie, 0’ —1e),
el

(1/2m8)[M 55" ¥ (s i, o', 0) — M3s" ¥+ (s —ie, 0’ 0) ]

= pa(8) M 3" ¥ (s i€, o) M as¥e(s— e, o)+:; / do’! ps(s,0”") MssV ¥V (s+ie, o, o/ +ie) Mgl '8 H(s—ie, o —ie, o).
’

IV. N/D FORMULATION

The elastic amplitude M27T(s) can be expressed in
terms of the phase shift 61 as:

MapI0(5) = [

]e“m sind s
mp2(s)

1672 e sind

(S)1I2

@7

m

In the notation of CGLN,!® we find

Mo (s)= (x/m){ (E+m)[A L(s)+[(s)"*—m]1BL(s)]
H(E—m)[—A L) +[()"+m]Bri(s) 1},
for J=L=1/2,

where L is the “orbital” angular momentum of the
state JII;
L=JF1/2, if IO=(—1)7*1

and E is the c.m. nucleon energy,
E= (s+m?—u2)/2(s)'2,
The amplitude M 2.(s), considered as a function of s,

18 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu»
Phys. Rev. 106, 1337 (1957). Hereafter referred to as CGLN.

contains kinematical cuts. To remove these, we define a
new function Fe"U(w), w?=s, by

Fop M (w) = goT(w) M 227" (w?), (28)
2m  fE+m\2EL
gzL(w)=———(——) . (29)
E+m\ P

The new amplitude Fz27 ™ (w) has dynamical branch cuts
in the manner described by Frazer and Fulco.® The 2L
power of P in the denominator of g»~ does not introduce
additional poles in Fa 7™ (w), since M 2,7 ™ goes to zero as
P2L a5 P approaches zero.

We know very little about the analyticity of
M33’mV(s6',0), but we conjecture that kinematical
cuts can be removed in much the same manner. Define,
suppressing & and £,

Fag"nlll(w,o',,a') — [gal'f’ (w,d’)]1/2M33JHll l
X (S)‘TI’U) [g3 u (w,O') ]1/2:
I‘Qo(s,a)+m:r’ 31)

Qo(s,a)+ml_ Q(s,o) ’

where I is the lowest orbital momentum (in c.m.) of the

(30)
with
2m

g3” (wy‘7> =

¥ W, R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960).
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[(rm)N]su system compatible with the parity con-
siderations, such that

I=min|J|, J=8+140; |o|=1/2,

and

QO (S,(T) = I:Q2 (S,O‘)-{—m?]lﬂ.

The factor (Qo+m)~12 is necessary to cancel the kine-
matical singularities arising from the spinor normaliza-
tion factor. In nonrelativistic theory, one expects that
the factor [Q(s,0) T7[Q(s,6") 77 removes kinematical
singularities arising from

0(s5,0) =[ (w+m)2— o2 ]2 (w— m)2— o2 42/ 220

F22 (w—i—u) —F22 (‘Z(’)'—ié)

AND B. W. LEE

and Q(s,0"). Note that in nonrelativistic theory

M33J v 1(350'/10') = ®[QI(S)U)7QI, (870/)]’
as Q or Ql — 0.
Finally, we define

Foy T (w,0) = [g2" (w) 1M 257 (5,0") g™ (w) ]V, (32)

We claim the new amplitude Fo371! is devoid of kine-
matical singularities. This conjecture can in fact be
proved for certain class of diagrams one of which will be
dealt with in the following paper.

In terms of these new amplitudes the unitarity rela-
tions, Eq. (26), may be expressed as, suppressing the
superscripts JII and denoting henceforth / and £ col-
lectively by I,

=Zrisz(w)Fgg(w-i—ie)Fgg(w—ie)—I—Zﬂ'i/dU > p3(w,0)Fos (w-t1ie, o+i€) Fs(w—1ie, 0 —1ie),
i

Fggl('w+1:€, 0')_F23l(‘w_1:€, G')

= 2mipel(w) Fozo(w+1€) Fasl (w— e, a)-|—21ri/d¢r' > psVI(w,0")FosV (wtie, o' +ie) Fyst L w—1e, o' —ie, ),
l’

Fasl(wtie, o) — Fagl(w—ie, o)

Fsal"l('w+1.€, 0”, 0')'—F33V'l(w—'1:6, 0”, 0’)

=21rip21‘('w>F32V ('w+i6, Ul)Fzgl(w—ie, 0')

where

(34
=2mipl(w) F ot (w1, U)Fzg(w—ie)-l-,?ﬂri/da’ > pst I (w,0")F33b YV (wt-ie, 0, o' +i€) FaoV (w—1e, o’ —1ie),
I
+21ri/d<r" > o3V L(w, o' )F stV (wie, o, 0" +i€) Fast " H(w—1ie, " —ie, 0),
lll
L(w) = po(w?)/g. X (w).
p2k(w)= pa(w?)/gs" (w) 35)

p3l1(w;o') =p3 (wzya-)/g?)”(w;o')'

As noted by Blankenbecler, the constraint on the amplitudes imposed by Eq. (34) will be satisfied by the solutions

of the following set of linear equations:

sz(‘w) =F12(w)D22(w)+/ do Z F23t(w, 0'+i6)D321(‘w, 0'—’56),
4pu? l

N231(w,a) =F22(W)D23l(‘w,0')+/ do'l Z F23l'(w, 0'I+i6)D33V'l(7«U, a'—-ie, 0’),
4p? v

(36)

N32l(w30-> =F32l(w,0)D22(W)+/ do’ Z F33l'l’ (w’ g, U’+i€)D32l,(w) O',—ié),
4p? 124

N33Z"l(7.0,0",0') :F;;zl, (w,G/)Dgal(w,U)‘{-/— da"
4u?

>

I

Fsg V' (w, o', "' +ie) Dyt H(w, o’ —ie, o),
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where
/

dw
Das(ae)=1— / )N,
w —w

'

dw
D)= [ ==l o) V0,0,

w—w
37)
dw'
Dyt (w,0) = _/ —p2" (@) Nas(w,0),
w—w
dw’
Dyt Yw,o',0)=6y,10(c"—0a)— - 03V L(w',0" ) N33V Y (w0’ ,0) =61,10(c’ — ) — K 1(w,0” o).
w—w
Formally, let us denote the discontinuities across the left-hand cuts of the amplitudes® F.; by 4;:
F22 (w—l—u) - F22 (w—- 'Lé) =2mriA 29 (W),
Fosl(wt1e, 0)—Fast(w—1ie, 0) =2mid 25t (w,0), 39)
Fal(w+tie, 0)—Fal(w—ie, o) =2mid 39} (w,0),
FasV Y wtie, 0, 0)—F3st H(w—1ie, o', ) =2wi A 33Y Y (w,0’,0).
Then
dw' ®
sz('L?)) =/ *’—[A 29 (’w')Dn (w’) +/ do Z A2sl(w/,U)D32l (‘w',o'*):la
— W W 4p? l
dw' T ®
N23l(w,0')= —_— Azz('w/,O')ng(wl)‘I-/ dO’l Z Aggl'(w',a')Dgal"l('w',a'*,a'):l,
—o0 w' —wl 4p v
(39)
dw' T ®
N32l (‘w,O') = - A32[(w,70')D22 (wl)+/ do’ Z A33l' v (wl707UI)D32l' (w’,dl*):|,
o W —wl ap? v
dw' ®©
Nt )= [ | At @D )t [ a3 A D o) |
o W —wlL 4p s

Once the A4 ;; are given, the coupled integral equations (37) and (39) can be solved for N;; and D,;. After substi-
tuting N;; and D; into Eq. (36), we must solve Eq. (36) for F;;. In order to do this we must invert D3t (w,0,0”).
Consider the integral equation

fiweo)=2 / DytV(w, 0, o' +ie)¢V (w, o' —i€)do’
14 u?
or ) (40)
o (w,0) = fl(w,0)+> f do’ Ky, 1(w, 0,0’ +ie)o? (w, o' —1ie).
14 4p?

This is a Fredholm equation® in ¢ with kernel Ky, ;(w,0”,0). Now let Hy i1(w,0,0") be the resolvent kernel. Then
evidently

> do"" Dyt V' (w,0,6" )8y ,08(c" —a")+H pe, v (w,6""*,6") = 64,08 (0 —0”) (41)
I 4"2
and
Hy ) ('w,O'/,O') =Dy .l(w7a,)0)/D (w): (42)
where Dy, ;(w,0',0) is the Fredholm minor?:
*© Kl'-l(w70,:‘7) Kl'.l"(w:o'/yo-")
Dy ,y(w,o’,0) =Ky, 1(w,0’,0)—> da”’ (43)
v e Kpa(we’e) Ky (w,e""*,0")

2 Actually, great care must be exercised here since anomalous thresholds are present (see Sec. V).
21 Reference 17, Chap. XI.
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and D(w) is the Fredholm determinant?:

0 1 0 00
D(w)=1-3 f Kz,l(w,a,a*)da—l-——f dtr/
U J a2 21! 42 4t

= detD33l" ! (w,O',O").

Let us denote the inverse of Di!i(w,e’,0) by
ngz(‘lﬁ),o",o‘)!

Gzl,z(w,O",U)Eall'15(0',—0)+DZI,z(w,UI,U)/D(ZU). (45)

Now Eq. (36) can be solved for F;;. Formally we
write
Fij(w)=21 Nax(@)[D7'(w) Jis
or

F(w)=N(w)-D(w),

1,

D () =—
(w)_—(—ermw)Dm(w),

A(w)

AND B. W. LEE

Kz'z(‘w,(f,lf*) Kl,z/ (w,a,a')
2

1, Kp, l(w,o-'*,cr*) Kl’,l' (‘Zl),()'/*,(f/)

do’

(44)

where %, 7, k stand for the channel index 2 or the channel
index 3, /, and continuous ¢. Further

sz(w), sz()
N<w>=<zvﬁ<w>)=(N . :U))

Dzz(w), Dzm(‘w)
D(w)= (Dss(a)) = ( ot D (w)).

Then »

=2+ Doy (0)Grm(w)

A(W)Gnm_l—Zr Gnr(w)DTZ(w)Zs D2S(‘w)G8m(w)>.

Here the subscripts m, %, 7, s stand for the channel 3, /, and continuous ¢, and

A(w) = D22('LU) - Zr,a DZ’r(w)Grs (w)Da2(w)

00

=Dy(w)— 2
L 42

Thus, for i=j=2,
1
Fzz(w)’—'m[]vm(w)— >

w LU
Finally, it should be noted that
detD;;j(w)=D(w)A(w)=detD (w),

48
detD3gl"’(w,a’,a)=D(w). ( )

V. ANALYTIC CONTINUATION

Production amplitudes, as a rule, have anomolous
singularities of the type discussed previously by a
number of authors.? The formal solution obtained in the
last section has, therefore, to be continued in the
manner discussed by Mandelstam,* and Blankenbecler
and Nambu,? in an external mass—in our case, o—from
a normal to an anomalous case.

To illustrate the analytic continuation of the N/D
solution, let us assume that the two-particle scattering
amplitude Fan(w), and the three-particle amplitude
F33(w,0’,0) have only the right-hand cuts demanded by
unitarity. The inclusion of the left-hand cut of Fz. does

F16. 2. A contribution to
M 33 considered by Peierls.!
N* denotes the excited state
(3,3) of the nucleon.

2 S, Mandelstam, Phys. Rev. Letters 4, 84 (1960).
23R). Blankenbecler and Y. Nambu, Nuovo cimento 18, 595
(1960).

dodd’ Dost(w, o+1€)Gy,y (w, o—1ie, o’ +i€) D3V (w, o’ —1e).

d(f/d(f’ ZVgsl(‘w,

(46)

o+1i€)Gr, v (w, o—ie, o’ +ie) D3 (w, 0'—ie)]. 47

not present any difficulties, but simply complicates the
algebra. The left-hand cut of Mj;; arising from the
disconnected graphs in which one of the pions is
noninteracting would give rise to the isobar formation in
the production process. This mechanism—the (3,3)
isobar formation following the pion production—has
been much discussed in the literature.’=3?* Another
interesting diagram is the one in which the (3,3) isobar
and the pion scatter with a nucleon exchange, a process
whose effect on the pion production has been considered
by Peierls' (see Fig. 2). While these diagrams will
produce further complexities, we believe the simple ex-
ample we shall discuss below is adequate to demonstrate
the general procedure of continuation.

If we had a representation of the production ampli-
tude in five variables comparable to the Mandelstam
representation for the scattering amplitude, we would
have a complete knowledge of the left-hand cut. In the
absence of such a representation, the best thing we can
do is to choose a certain set of diagrams and to evaluate
the left-hand cut. Let us consider the one-pion-exchange
diagram (see Fig. 3). The singularities of the partial
wave amplitudes Fa3!(w,0) associated with the one-pion
exchange are well known. For ¢ <2u*(1+u/2m), the

2 R, M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 123,
333 (1961). Additional references are given in this paper.
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branch point wo (o) lying farthest to the right is
wo (o) = {2m?+o
Lo (i) (—a+-42) W T2 AT, (49)

Let us increase ¢. When o reaches 2u?(1+4pu/2m), the
branch point wy is at the elastic threshold we=m-4u. If
we give a small positive imaginary part to ¢ and increase
o further, the branch point moves as indicated by the
line in Fig. 4. When o=4u?, the branch point is at
wo(4u2) = (m?+2u2)¥2) and as ¢ is increased further, the
branch point moves into the complex plane as indicated
in Fig. 4:

wo(o+1€) = {2m2+o
— il o (dm?—p?) (o —4p?) /2 ]2} 112 N2,
— (m/2) <argwo(o+ie) <0, o>4p2

When a small negative imaginary part, —ie, is attached
to o, the curve in Fig. 4 is reflected about the real w axis.

The particular configuration of the singularity in
Fig. 4 is of importance because it crosses the real w axis
above w=m-pu. It follows that any quantity which
involves an integral in w over A s3(w,0) from w=m-pu to
w=c0 is no longer defined. We must thus discuss the
proper continuation of N and D. Since Djt(w,0) and
D33tV (w,0,0") are defined by integrals extending from

(50)

F1c. 3. One-pion
exchange diagram for
M3y, The dashed
lines are pions, the
solid line nucleons.

w=m-+2u to w= o, the only consideration involved for
them is the proper continuation of N3z!(w,s) and
N33t (w,0,0"). However, Do(w) and Dysl(w,0) must be
properly continued, as well as Nys(w) and Nag!(w,0).

We first consider the continuation of Nao(w),
N2t (w,0), Dyg(w), and Dyst(w,0). Recalling Eq. (36),
we would expect the discontinuity of Nso(w) and
Ngst(w,0) to be nonzero along a cut similar to that
shown in Fig. 4. Further, Dy2(w) and D23t (w,¢) will now
exhibit anomalous cuts since the contours in Eq. (37)
must be appropriately deformed. Let us make these
remarks more precise.

From Eq. (36) we may calculate the discontinuities of
Noo(w) along the anomalous cut (the heavy line in Fig, 4;
real and complex).

[diSCN22 (w)]a
= (1/2i)[N22(71)+) —Nj (w~)]
=F22[discD22(w)]a+7r/ do‘[AzaH (w, 0’+i6)

+a2s(w, o+1i€) 1Dss(w, c—ie), (51a)

where . are as shown in Fig. 4, and the superscript /,
and the accompanying summation, are suppressed.
Several points must be emphasized: (1) We anticipate
that Dss(w) develops anomalous singularities where
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W - PLANE

2,172

BRANCH CUT, w=(M2+2p. )

Y
\u

F16. 4. The contour of integration of Dss(w) and Das(w,s). The
heavy line indicates the intruding singularities of Nas(w) and
N za(w,a)); the dashed lines are the deformed contour for D2 (w) and
Dzs('w,a .

Nao(w) does, thus the first term on the right; (2) the
discontinuity of Fa3(w) along the anomalous cut is
written as

[diSCFzg(‘w,U):la = ’)T[_—_A 231I (w,0)+a23 (w,o)], (51b)
where — A3 (w,0) is the continuation of A.3(w,0),
defined for o <2u2(14-p/2m), to o> 2u(1+u/2m), when
w is on the anomalous cut, and as3(w,0) is in fact defined
by Eq. (51b). We shall denote the continuation of
Aos(w,o) for o>2u2(14p/2m) when w is on the normal
cut by 423 (w,0).

Equation (51a) is quite unsatisfactory since the ex-
pression for N, is expressed in terms of ass, which can be
found only after Fss(w,o) is known. It will be assumed,
and verified ¢ posteriori to be consistent with unitarity
and given analyticity on the left-hand cut, that

Fzz(?ﬁ))[diSCDn('W)ja
+1r/ do' (223(7,0, 0'+’l:€)D32(w, 0"-1:6) =0 (51C)
4p?

The same remarks hold also for Nes(w,0).
Thus, we write proper analytic continuation of Nss(w)
and Na3(w,0) as
4

%) w2
Ngg(w)=/ dO'I:/ A2 (W, otie)
4u? w’—‘w

w2 dw'

XDSZ (w’, 0"—1:6)'{-

wo(o+i€) w,_w
XAzaH (w’, 0'+'i€)D32(w’, G—ié)],
(52)

°° w2y’
st(’w,(f)=/ da'l:/ - A2 (w', o’ +ie)
442 w—w

we dw'

XD;;;;(‘ZU,, 0',—1:6, 0')+

wolo'+ie) W —W

XA23H w' 0"+i€)D33(w’, U'—ié, 0) ,
?
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where the first integrals in the square brackets are along
the normal cut and the second along the anomalous (the
heavy line in Fig. 4).

The paths of integrations from ws=m-u to o in the
definitions of Dy2(w) and Dy3(w,0) must be deformed so
as to avoid the intruding singularities of Vg and N3 in
the integrands. Therefore, the paths of integrations must
be deformed as indicated by the dashed line in Fig. 4.
Thus, we obtain

* dw'
Day(w)=1— / 2% (W) N gs ()
wa W' —w

+2r / w [ Rl
wo(o’+i€) w'—w
XA (W', o' +i€) Dss(w', 6’ —1ie),

/

Das(,0) = — f 022 () Ny (1 0)
we W —W

® w2 dw’
+27r/ da'/ i[p2L(w')]°
4p? wo(orie W—w
XA 2311('10,, 0'+’i€)D33<w’, a’—ie, cr),

(53)

where [p2*(w)]° is the analytic continuation of the
p2¥(w) defined in Eq. (35) without the 6 function.

Equation (53) shows clearly that both Dyy(w) and
Ds3(w,0) contain anomalous (real and complex) cuts.
The complex cuts extend to infinity in the lower half w
plane. The discontinuities across the anomalous cuts are
given by

[discDse(w)]a
= 2ri )
[discD23(w,0) ]a
=2ai 2" (w) I°

do A (w, o-+i€)Dyo(w, o—

2

ie),
4p

X/ do’ Ao (w, o' +1i€) D33 (w, o' —1e, 7).
4/4’
Therefore, we see, from Eq. (51.c) and a similar equation
for [discDs3(w,0) Ja, that if

Q23 (71),0') = 271'1.[;)2[’ (ZU):ICFQQ (‘Z(’))A 2511 (w,(r),

then Eq. (51.c) is satisfied.
The continuation of N3 (w,ec) and Na(w,e’,0) re-
quires considerable care. Formally we write

w2
2\732 (‘w,O') = /

+

(51.d)

w
B A321 (w',a)D22(w’)
w —w

w2 dy

Az (W, 0)[ Daos(w') ], (54)

wo(e) W —W

JR.,

AND B. W. LEE

INTEGRATION PATH OF Nzp

DEFORMED INTERGRATION
PATH TO DEFINE Dy, (W)

I X
W Dap(W)iNp, (W)

N
\\/

F16. 5. The path of integration of V32 and N33 is indicated by the
solid line. The path of integration of Da; and Dys in the integrands
must be deformed as indicated by the dashed line to secure the
proper continuation.

where [ Ds2(w)]° is the continuation of Dy (w) along the
path of integration from w, to we(c). The continuation
of Dyy(w) is then effected by deforming the path of
integration in Eq. (53) as indicated by the dashed line
in Fig. 5. Then

w2 gy’

Nag(‘w,a') = A32I(w 70')D22I(w,)

o W —w

w2 d’

+

A 3211 (w’,a)

wo(e) w—w
X[D2s" (w') —2mwi p2(w') J°N 2" (') ], (35)

where Dsp!(w), Dy (w), and N (w) are boundary
values of Dys(w) and Ngo(w) as w approaches the
boundaries as indicated by arrows in Fig. 5. N33(w,0”,0)
can be continued likewise:

N33 (w,a’,u‘)
w2 dy’
= ———Aazl(w 10" ) Dasl (w’ ,0)
w'—w

w2 dw'

+ A32H(w’,0'/)

wo(or) W —W
X[ D2 (w',0) — 2mi[ p2(w") J°Nos™ (w',0)],  (56)

D32 (w,0) and D33 (w,0’,0) are as written down in Eq. (37).

There is a very interesting property of the N/D
solution to be noted: While D develops anomalous
singularities, the determinant of D is analytic except on
the cut from we=m-+pu to ©.25 We recall that

detD (w)=D(w)A(w). (48)

% This theorem and Eq. (61) were first noted in a conversation
between R. Blankenbecler and the authors. For previous attempts
to generalize the Levinson theorem, see, for example, M. T.
Vaughn, R. Aaron, R. D. Amado, Phys. Rev. 124, 1258 (1961).
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D(w) is seen to be analytic in the w-plane cut from
m—~+2u to «, by construction, Eq. (44). Let us take the
discontinuity of A(w) across the anomalous cut [see
Fig. 6]:

[discA(w)]a
=[A(w)—A(w-)]/2¢

=7 pa(w) ¢ {/ do A3 (w, 0-+1€)D3o(w, 0 —1¢€)

i

—/ da[ do'/ do"" A" (w, o+1¢€)
4;12 4[42 4#2

X Dy3(w, o—1e, 0’ +ie)G(w, ' —ie, o'’ i)
X Dso(w, o'’ —1i€) 1 =0. (57)

This has an important consequence. Adopting the
matrix notation, write the .S matrix as

S=1+2mig2F g2, (58)

where the rows and columns are labeled by the channel
1=2, 3, the angular momentum quantum numbers /, and
£, and the continuous variable ¢, and g'/2 is the diagonal
matrix whose elements are [po% (w) /2 and [p5* (w,0) JV2
Since

FD=N,
Eq. (58) may be rewritten as

028 (w) = [D (w)+2migN (w) 1D (w) o>

=D (w—1ie)D(w-+ie)1p!2 (59)

Hence, taking the determinants of both sides, we obtain
A(w—ie)D(w—1ie)

A(w+ie) D (wtie)

detS(w)= (60)

Taking the logarithmic derivatives of both sides of Eq.
(60) and integrating from w, to «, we obtain in the
usual manner

In detS(wy)—In detS(w )= (n—ncpp)w, (61)

where # is the number of bound states having the
quantum number J, II, (number of zeros of detD) and
7¢.p.p. is the number of Castillejo-Dalitz-Dyson poles
of detD. Equation (61) is a multichannel extension of
the Levinson theorem,?? since In detS(w) is the sum of
the eigenphase-shifts in the (J,II) sector. It should be
emphasized that this sum includes the phase shifts, not
only from two-particle channels, but from three-particle
channels as well.? While this theorem is proved under a
restrictive condition (Ag=A433=0), we believe this
generally valid.

The reader can ascertain for himself that, while the
expression for Fas(w), Eq. (47), apparently has left-hand
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singularities, the cut of Na(w) is exactly canceled by
theleft-hand cut of theterm > ,u,n N om(10)Gonn (0) Do (w).
The same thing is true for Fj;(w) also. _

While it has been shown®2¢ that the N/D solution
satisfies the symmetry properties of the 7' matrix,
Fom(w)=Fu2(w) which follows from the time reversal
invariance, it has yet to be shown that this property of
the 7' matrix is preserved in the course of analytic
continuation. In the matrix notation,

1
F2m(w) =—A—EA Z N2nGnm+ (Z N2nGnrDr2)

X (Z D2sGsm)—N22 Z DZrGrm]. (62)

Let us compute the discontinuity of this function across
the anomalous cut (w;, w_ as indicated in Fig. 6):

[discFom(w)]a
=[Fas(wy,0)— Fas(w_,0)]/2i

=74 2" (w,0)[1—2mi[psE (w) ]°F2a(w)]. (63)
On the other hand
1
FM2 (w) =X[:Nm2_'z NmnGner]' (64)

Since N2 and N, are discontinuous across the branch
cut, we see that

[discF m2(w) ]a
=[Fs(wy,0)— Faz(w_,0)]/2i

1
=74 32H (wga)“{ [D22H - Z D2THGTst2__J
A 8
“Zi[sz:lc[Nmu—Z NZrHGrst2]}- (65)
Since both A(w) and Fy,(w) are analytic in this region,

( % J.) D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250
1961).
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we can write

Dy (w) =2 D™ (w)Grs(w) Do (w) = A(w),

r,8

Nog™(w) =22 Doy™ (w)Grs (w) Doz (w) = A(w) Fas (),

7,8
so that?”

[discFme(w)]a
=1 5" (w,0)[1—2mwi[ps" (w) JF o (w) ].

Therefore, insofar as A3 (w,0)=A423"(w,0), the dis-
continuities of Fon(w) and Fue(w) are the same across
the anomalous cut. This, combined with the result of
Bjorken and Nauenberg,?® establishes the symmetry of
the T matrix.

Furthermore, comparison of Eq. (63) and Eq. (51.b)
gives

azs(’w,o') =— 27ri|:p2L (W)]°F22 (‘LU)A 32H (w,a),

which is identically Eq. (51.d). Hence the consistency of
the assumption, Eq. (51.c), is now established.

In concluding this section, we remark on the threshold
behavior of the production amplitude when there is an
anomalous singularity of the type discussed in this
section. In nonrelativistic theory?® one can deduce the
threshold behavior as

(66)

F237 1 (w,0) — const, 7

as w—mtu or mt(o)V2

In relativistic field theory, the threshold behavior of the
production amplitude, Eq. (67), does not in general
hold at w=m--pu, but, as will be shown in the following
paper, the amplitude Fy3/"!(w,0) behaves as

lim Fa’/M(w,0) =const[P(s)]2L2,  (68)
w—mtp

whenever there is an anomalous singularity arising from
the one-pion-exchange diagram [Fig. 3. Let us examine
how this discrepancy arises. Equation (67) is derived
under the assumption that the potential, or the inter-
action is of short range, so that outside a certain
“interaction radius” particles propagate essentially as
free particles. The anomalous branch cut is connected
with the fact that the exchanged pion in Fig. 3 is on the
mass shell when w=m--pu. Since the exchanged pion is
on the mass shell, it can propagate an infinite distance
without damping, and the “potential” associated with
the one-pion exchange in the production process can no
longer be considered as short range.

27 These relations, Eqgs. (63) and (66), can be verified for the
one-channel case; see R. Blankenbecler, M. L. Goldberger, S. W.
MacDowell, and S. B. Treiman, Phys. Rev. 123, 692 (1961) or
references 22, 23.

(1;86 (S)(;,e, e.g., L. Fonda and R. G. Newton, Phys. Rev. 119, 1394
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VI. CONCLUDING REMARKS

We have developed a formalism in which one can
discuss the relation between elastic scattering and pro-
duction processes. When we discuss higher resonances in
pion-nucleon scattering, for instance, a number of
models or approximations can be considered within this
framework. If, for example, 433 is set equal to zero, we
obtain what is essentially a generalization of the model
of Ball and Frazer,* but, whereas they had to limit the
size of the inelastic contribution to elastic scattering to
satisfy the unitarity condition, the feedback implied by
unitarity is automatically contained in the present
formalism, so that the resulting amplitudes are guar-
anteed to satisfy unitarity.

In addition, if 433, computed from the disconnected
graphs in which one of the pions is not interacting, is
included, we obtain the relativistic version of the
Carruthers®-Goebel-Schnitzer? model, including the ini-
tial state rescattering effect. In this case, it might be
more convenient to use, simultaneously, two schemes of
coupling three angular momenta, i.e., the [(7m)V /o
scheme and the [[(xV) ;7 ], scheme in the conventional
terminology. The relativistic recoupling algebra for this
case has been worked out in the helicity representation
by Wick.®

We have obtained the V/D solution for the T matrix
in the presence of anomalous singularities by analytic
continuation in the external mass o. The correctness of
our procedure can be checked quite independently by
noting that the 7" matrix so deduced has correct analytic
properties, satisfies unitarity, and has the correct dis-
continuities across anomalous singularities.

During the completion of this paper, we became
aware of a related study by Nauenberg and Pais® who
concentrate on the cusp behavior due to production
channel rather than the more formal aspects treated
here.

ACKNOWLEDGMENTS

The authors have been benefited by conversations
with Professor R. Blankenbecler, Professor C. Goebel,
Professor M. L. Goldberger, Professor A. Klein, Pro-
fessor M. Nauenberg, Professor R. Sawyer, Professor S.
Treiman, and Professor G. C. Wick. We are particularly
indebted to R. Blankenbecler who has actually par-
ticipated in many stages of the studies reported in
Sec. V, and to G. C. Wick for advice on the material
presented in Sec. ITI. Part of this work was done during
the authors’ stay at the Brookhaven National Labora-
tory in the summer, 1961, and both authors wish to
thank Professor M. Goldhaber and Professor G. C. Wick
for the hospitality extended to them there. One of
the authors (B. W. L.) wishes to thank Professor R.
Oppenheimer for the hospitality extended to him at The
Institute for Advanced Study.

® G. C. Wick (private communication); Ann. Phys. (to be

published).
% M. Nauenberg and A. Pais (to be published).



