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Unitarity and Production Amplitudes
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A development of the N/D formulation of the unitary S matrix is presented for multichannel reactions
including production processes. The relevant amplitudes are expressed in terms of helicity amplitudes and
the coupled, unitarity relations of Blankenbecler. The analytic continuation of the amplitudes in the
presence of anomalous thresholds is considered in detail. An extension of the Levinson theorem to the
multichannel production case is discussed. An application of the formalism developed here is given in
another paper.

I. INTRODUCTION

OTH theoretical and experimental studies on the
higher resonances in pion-nucleon scattering have

led us to hope that these can be eventually understood
by including the effect of the competing production
processes. The work of Peierls, ' Goebel and Schnitzer, '
Carruthers, ' and Ball and Frazer4 shows how the open-
ing of a production channel excites the elastic channel
by unitarity, thereby giving rise to a resonance in the
scattering process, even though the mechanisms con-
sidered by them di6er considerably in detail.

The construction of the unitary S matrix for the
multichannel reaction has been studied intensively in
the last few years. ' ' In particular, Meetz' has con-
sidered a detailed application of the generalized uni-
tarity relation, as formulated by Blankenbecler, to
pion-nucleon scattering. He considers the unitarity rela-
tion for given angular momentum and parity states, and
shows how the generalized XjD method enables us to
construct scattering and production amplitudes which
satisfy simultaneously the requirements of analyticity
and unitarity imposed upon them. The original version
of Blankenbecler's unitarity formulation' involves too
many variables to be tractable in practical applications,
and this difhculty is overcome by decomposing the
amplitudes involved into partial waves.

While we concur fully with the philosophy behind
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Meetz's formulation, we consider Meetz's work incom-
plete in the following respects: (1) Meetz decomposes
the production and three-particle scattering amplitudes
in the total center-of-mass system, following the work
of Ciulli and Fischer. ' Whereas this is satisfactory in the
nonrelativistic limit, the partial wave amplitudes so
defined do not satisfy the simple unitarity relation
Meetz attributes to them. (2) The production and three-
particle amplitudes have anomalous singularities, ' with
the concommitant problem of the continuation of the
unitarity relation beyond its "domain of definition. "
This analytic continuation of the 1V/D solution requires
a careful discussion.

In the present article we shall address ourselves to the
E/D formulation of the unitary 5 matrix for multi-
channel reactions including production processes. We
shall concentrate on the decomposition of the production
amplitudes in terms of the helicities of the particles
involved, and the modification of the E/D solution
necessary in the presence of anomalous singularities.
The description of the angular momentum states of a
many-particle system in terms of longitudinal spin
components (helicites) is not only applicable to rela-
tivistic situations, but also enables the reduction of the
5 matrix and the unitarity relation thereof to simpler
forms.

In this paper we shall proceed from a rather formal
point of view, leaving the application to a physically
interesting case—pion-nucleon scattering —to the follow-
ing paper. "

In the next section, we discuss the choice of variables
to describe two- and three-particle systems and which
are convenient for later purposes. The invariant ampli-
tudes for two-particle scattering, production, and three-
particle scattering are de6ned and the unitarity rela-
tions between these amplitudes are. noted. The unitarity
formulation of Blankenbecler is contrasted with the
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usual statement of the unitarity relation, viz. ,

T Tt =—27riT9(E H)—T,

and a justification is given for Blankenbecler s formula-
tion of the unitarity relation which expresses the
absorptive part of an amplitude in terms of quadratic
forms of amplitudes.

In Sec. III, the decomposition of the amplitudes con-
cerned into helicity amplitudes" is demonstrated in
detail, and the validity of the decomposition of the
production amplitude is considered. The reduction of
the unitarity relation to definite angular momentum
and parity "sectors" is carried out.

In Sec. IV, we define new amplitudes which are free
from kinematical singularities and which satisfy simple
unitarity relations. The 1V/D method is formulated for
these amplitudes. The inversion problem of the infinite-
dimensional, continuous denominator matrix (D) is
solved with the aid of the Fredholm theory.

Section V deals with the analytic continuation of the
1V//D solution in the presence of anomalous singularities.
An extension of the Levinson theorem" to the multi-
channel production case is discussed. The eGect of
anomalous singularities on the threshold behavior of the
production amplitude is also noted there.

II. KINEMATICS AND UNITAMTY

A. Definition of Variab1es and Amplitudes

While the formalism presented in this paper is appli-
cable to any elastic scattering and production process,
we shall confine our attention to pion-nucleon scattering
and one-pion production for ease in description and to
avoid confusion.

We shall neglect the trivial isotopic spin dependence
but will take into full account the nucleon spin in the
following. We label the momenta associated with vari-
ous processes as follows:

(I) 1V (P)+~(k) ~ 1V (P')+~(k'),

(II) 1V(p)+2r(k) ~ 1V(q)+2r(ki)+2r(k2),
(1)

(II') 1V(q)+2r(ki)+2r(k2) —&1V(p)+2r(k),

(III) 1V(q)+2r (ki)+2r (k2) —+ 1V(q')+2r (ki')+2r (k2').

For both two- and three-particle systems we introduce
the square of the total center-of-mass energy as the
invariant variable s:

or
s= —(p+k)2

s= —(q+ki+k2)',
(2)

wllere p'=y' po'= —m' q'—= —m2 alld k]' ——k22= —ti'
In a two-particle system, we introduce the polar and

azimuthal angles Q= (0,&) LQ'= (O',P')7 of k (k') relative
to some arbitrarily chosen Cartesian coordinates in the
center-of-mass system.

In a three-particle system, there are several ways to
specify the configuration, and a preference of one
description over the other can be determined only in the
context of the underlying dynamics. Here, we shall
discuss only one of the possibilities, which we shall
utilize in the following paper, but the extension of our
method to other descriptions should be transparent.

We define the direction of K—=ki+k2 by two angles
C = (y, b) measured with respect to some coordinate axes
in the tkree particle-center of mass sy-st-em. In this total
center-of-mass system the direction of q is opposite to
that of K, but the relative orientation of the two-pion
system has yet to be specified. To this end we designate
the direction of ki by angles "=(n,P) measured with
respect to some Cartesian axes in the two pion res-t

frame. In addition we define the invariant variable o. by

o = —(ki+k2)',

which is the square of the "mass" of the two-pion sys-
tern. It is clear that when the Lorentz transformation
connecting the coordinate systems in the total center-
of-mass and the two-pion rest frames are given, the
variables s, 0-, C, and will describe the configuration of
the three particles completely. We postpone the speci-
6cation of this Lorentz transformation until Sec. III.

Alternatively, we may de6ne the direction of the sum
of q and k&, say, in the total center-of-mass system and
the direction of k~ in the rest frame of the nucleon and
the erst pion. Clearly, these alternatives correspond to
two ways of combining the three angular momenta.

In terms of definite momenta of the particles involved
we de.ne the following Lorentz invariant amplitudes:

( ',y'~', Q'I ~22(s) Ik,» Q) = (2ko')'"&~ (P')(k'I flk, Pl ""')(»o)"'(Po/m)"'=~22(s, Q',Q ~', l~),

(k,k,qvi 4" IM' (s,o)
I
k,yli; Q)= (4kiokoo)'~ u. (q)(ki k2 '""

I f1 k ply '"~)(2ko) (po/m)'~2=M32(s, o,e,Q; vX),

(kyP; QIM23(s o) Iki k23Iv; I-)= (2ko)'"(Po/m)"'(k PXi'"'&
I ftlki k2~'"&)23„(q)(4kiokoo)'I'=M23(soQC-;) v), (4)

(kl pk2 pQ v j c ~
I
~33(syo yo) I

kl&k2)3Iv j @ )
= (4km'k23')'I'u„(q')(ki', k2"""

I flki, ko, qv&'"&)(4kiokoo)"2(qo/m)'~2=&33( o.'s, Co'-', e=; v', v),

where), )', v, and v' are helicity indices of the nucleon,
(=1/2, —1/2), and f=f(0) is the nucleon current

"M. Jacob and 6. C. Wick, Ann. Phys. (New York) 7, 404
(&959).

'

"N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).

operator,

(y 8+m)+(x)= f(oo)

The matrix elements exhibited above are understood to
be the on-the-energy-shell ones. Two-pion states are
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normalized as

~
k, ,k,)= (2!)-'"at(ki)at(k2)

~
vac).

The unconventional contraction of the nucleon operator,
rather than the pion operator, is deliberate; it serves to
6x the mass 0 and to explicate the correlation of the
two-pion system.

It must be emphasized that some of the angu-
lar variables shown in Eq. (4) are redundant. In
M22(s, Q', Q,X',li), for instance, we may choose the direc-
tion of k as the s direction and the plane of k and k' as
the sx plane. Then M22 depends only on s, 8' (or alter-
natively, cos8') and the helicity indices li, li'. Nonethe-
less, it will be convenient to maintain this redundancy
to discuss the unitarity relations.

(5)

Here +2 and gs are

2m P(s)
Z2= 8[s—(m+p, )2j dQ" gg",

4(22T)3 s'~2

&3=
32(2&r) 3

Q(s,o")(a" 4t32 —'t2

M23(S+zC& &T) M23($ zE& 0')

=22Tz +2 M22($+zE)M23($ —
zC& 0)

+27rz &T 3M23($+zE& a' +zE)M33($—
zE& o' —ze, o')&

M33($+zE& 0'
&

0') 3II33($ zE& 0
&

0')

= 22rz +2 M32(s+iE, 0 ')M23(s z—E, o )
+22rz+33II33($+zE& &T

&

0' +zE)M33($—
zE& 0' ze& 0').

B. Unitarity

For the sake of brevity in this section, we shall sup-
press the angular and helicity variables of the ampli-
tudes. The unitarity relations of Blankenbecler, ' valid
for s~ (m+tz)2, may be written, neglecting the contribu-
tions from four (or more) particle intermediate states,
as:

M22 (s+iE) M22—(s iE)—
= 22Tz +2 M22($+zE)M22($ —zE)

+2&rz +3M23($+zE, 0' +zE)M32($ —zE, 0 —
zE)&

M32($+zE (T) &M32($—'bE& 0')

=22ri +2 M3, (s+ieo)M, 22(s iE)—
+2&Tz +3M33(s+zE, 0', &T +zE)M32($ zE& 0' —ze—),

X8[(s'I'—m)' —o"$ dC "d "g.-,
where

dQ=d&t& d cos8,

dC =d8 d cosy,

d =dP d cosct,

P, Q are the magnitudes of 3-momenta of the two- and
three-particle channels:

2(s)" P(s) = [s—(m+t»)'j'~'[s (m —p)2—]'f2

2(s)ii'Q(s o) = [s—(m+0)'7'I'[s —(m —a)2]'12
(t)

and the double primes denote variables of intermediate
states. Thus, written out in full, the first line of Eq. (5)
reads

M22($+zs& Q
& Q& lt

& X) M22($ zE& Q
& Q& X

&
l%)

=22rzp2(s) dQ" gi»M22($+zc, Q&Q &lt'&li )M22($ zE&Q &Q&lt &lt)

+2&Tz dot&3($&&T ) 'dC' dA Q&» M23($+zE& Q, 4' 4; lI
&

V )M32(s zE& O' Z
& Q& V, A)& (5 )

where

2m P(s)
V2(s) = 8[s—(m+tz)'7,

4(2&T)3 s'12

2m Q(s,o.)' 8(--4')
32(22T)' s'"

4p2- 1/2

X8[(s"'—m)' —o g

Note that, although +2 and +3 are invariant phase-
space integrals, they are most conveniently expressed in
particular I.orentz frames, and our choice of kinematical
variables is motivated in this context.

A few remarks are in order about the unitarity rela-
tions in Eq. (5). These relations are quite distinct from

Cutkosky's" generalized unitarity which connects the
imagirzary part of a graph to all possible partitions of it.
Equation (5) states the relations between the absorptive
parts of amplitudes and the full amplitudes. Let us
examine the second line of Eq. (5). We have, from
Eq (4)

M32($+zE& o&zE)

=i(skiskssks)' ' d'x e ' 2+v '*'u(q)

X(ki, k2'"' ' &i8(x)[f(x/2), ft(—x/2)flak)N(p).

We continue M32(s+zE, o~iE) in o to a small value,
o &4p,', in which case M32(s, o) can be continued in s

"See, also, R. K. Cutkosky, J. Math. Phys. 1, 429 (1960),
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(a)

XmMIg=

j +emcee~~ass

1

l

Q
I g (CUTKOSKY)'—i—

(b)

Ass M3~ =

ye
%0%0~% ~ MMW ~~~ 4 %IS

(BLANKKNBECLKR)

The significance of all these remarks will become
clearer if we consider the particular diagram shown in
Fig. 1." In the usual unitarity, the imaginary part of
the diagram Fig. 1(a), in the physical region of the
production Ls&(m+o'") o&4p'$ is the sum of all
partitions (1, 2, and 3). See Fig. 1(b). In Eq. (5), one is
not allowed to partition the diagram along 2 and 3
I Fig. 1(c)j, and therefore, in Mss, the disconnected
graph in which the nucleon is noninteracting is excluded.
An advantage of using the unitarity expressed by Kq.
(5) is that, in this case, we need not be concerned with
the details of the pion-pion interaction, but may substi-
tute the result of a previous study, or a phenomenological
description of the pion-pion correlation.

At this point we may formulate the linear unitarity
relations in terms of Blankenbecler's generalized E and
D functions for the amplitudes M;;. Such relations
would involve, however, multiple integrals over angles,
which make these relations intractable from the prac-
tical, point of view. We shall therefore postpone the
Itr/D formulation until we have disposed of the compli-
cating angular dependence of the amplitudes.

(c)

FIG. 1.Comparison of the generalized unitarity of Cutkosky and
the unitarity relation of Blankenbecler. In computing the imagi-
nary part of &32, one must partition the diagram (a) along 2 and 3,
but in computing the "absorptive" part, one may not partition
along 2 or 3.

into the lower half plane (i.e., there will be a "gap"—
singularity-free region —along the real s axis). Con-
tinuing o- back to the original value, Reo. &4@', we can
define M»(s —ie, o Hie), which we maintain is identical
with the advanced amplitude:

M»(s —ie, o &is)

= —i(8krsksske)'i' d4x e 'is+»'*i'u(q)

III. HELICITY AMPLITUDES

A. Decomposition of the Elastic Amplitude

The decomposition of an elastic scattering amplitude
into helicity amplitudes has been studied extensively
elsewhere, " but for the sake of completeness, we will
summarize the results here. It follows from the rota-
tional invariance of the S matrix that the invariant
amplitude &V0'I M»(s) l)t0) may be written

&k',p')t'; 0'
l Mss (s) l k, p)t; 0)

= (1/&)gpss(2J+1)&)t'lMss~(s) l)I)

Xdsr i, (8')e" +"'e'd
y (8)e ' +" e (9)

where &)t'IMss~(s) l)I) is, apart from a multiplicative
factor, the helicity amplitude of Jacob and Wick'(JW).

Specializing to the case of 8=0, P'=0, we obtain

M» (s, (8,0),0; )t')t)
X&k, k"'"' '"'i8(—*)Lf( /2), f'(—*/2)Elk) (P).

'

(1/4 )~ (2I+1)&q lM, (,) lq)d, (8) (10)
By taking the difference of M»(s+ie, o) and
M»(s —ie, o), the second line of Eq. (5) follows in the
standard manner. "In this connection the prescription
of o-"~i& should be meticulously observed.

The amplitude Mss(s, o', o) contains two disconnected
graphs, in which one (or the other) of the pions does not
interact with the remaining pion and nucleon, while the
disconnected graph in which the nucleon is not inter-
acting is missing. ~Note

&X2s.
I
S

I
cV2a) =8„„8(q'—q)&ki'k 't'"'~

I
k,k, &' l)

—(27r)'i8 (q'+kr'+ ks' —q
—hi —k s)M ss.

'4 We are well aware of the lack of rigor in our argument. When
two pions in the Gnal state are assumed to be noninteracting, how-
ever, this statement can be in fact proven. See Y. S. Kim, Phys.
Rev. 124, 1241 (1961) and Princeton University thesis (un-
published).

where we have used the relation d&ri~(0)=8~&. By
virtue of the orthogonality property of dz i, (8) (JW 22),
the helicity amplitude &)t'lM»~(s) l)t) maybe written

&)t'IM»'(e) l)~) =2m d cos8' d„(8')

XMsr(s, (8',0), 0=0; )~', )t). (11)

Note that the amplitude Mrs(s, (8',0),0; )i',)t) is a func-
tion of two variables s and 0', and redundant variables
are absent.

B. Decomposition of the Production Amplitude

First we shall specify the orientation of the coordinate
frame C', located in the two-pion center-of-mass system
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in which the angles = (n,P) are defined (see II A), with
respect to the coordinate system C in the total center-of-
mass system. The coordinate system C' is such that the
s, axis is in the direction of —q. (the subscript c
designates quantities measured in the two-pion system
C'). The configuration of the two pions in the C frame is
obtained from that of the C' frame by applying the pure
I.orentz transformation Z along the s, axis with the
velocity Q/(Q'+0)'i', followed by the rotation R& ~

where, as in JW,

~a b c ~
—i Jzcg —iJ @be—i Jgc

(actually R&,„,„with arbitrary g will do, but this choice
turns out to be the simplest). Then

lk, k,qv; c -)=
I qv)R, „, Zl k „k,; .)

= lqv)Z. ,. .ZP P IK„A(t))(&,AI=-),
l h=—l

where Iqv) is the nucleon state of momentum q and
helicity v, I

K.,A(l)) is the state of two pions with total
momentum K,=ki,+k~.=0 and angular momentum l
with its projection on the s, axis A. Since the pure
I orentz transformation Z is along the s, axis, A. is in
fact the I,orentz-invariant helicity of the two-pion
system. We assume the bras and kets are normalized
according to the prescription of JW. Using the formula

(JW 6)
Z. . .ZIK, =O, A(t)) = IKA(i); c),

we obtain

lk, k,qv;C=)=g IKA(l), qv, C)gAI )
= pi, +

I
KA(l), qv; 4)Fix*(n,P), (12)

Bo that

(k,yX; QIM23(s, o) I ki, k„qv; C -)
(k yX' AIM»(~, ir) I KA(l) qv' C')F&&*({i'P) (13)

Now the matrix element (k,pX; &
I M23(s,a) I KA(&),qv; C)

has the same transformation properties under rotation
as the two-particle scattering amplitude. Therefore, we
define the helicity amplitudes (li

I
M» ~'(s, a ) I v,A) by

(k,y& fllM»(~, ~) lki, k~,q'c'=)
21+1

(l~ I
M23~'(s, o')

I
v A)

Fiick*(n

P)
l, h J,M

J(8)& i{M+xi $d &
J(+)&

i{M ii+ v) 8— —

We now specialize to the case y=g=O. Then

(X IM2g~'(s, a)
I v,A)

=27r d Fig(n, P) d cos8 di. .. &, ~(8)

As expected, there are five independent variables, s, 0,
8, n, and P in the production amplitude.

Similarly

(ki,kp, qv., C -
I
M,2(s,a) I k,pl{,n)

2J+1
=Z Z (,AIM--(,.) l»F. (-,W

lh JM 4g

i z(8)~ i{M—+x)4d~ ~ J(~)~i{M—x+v)8 (16)

Finally, time-reversal invariance implies the connection

&v,AIM»" (~+~~, ~+~~) I&'&

=(P IM23~'(s —ie, {7 ie)—
I v,A)~. (17)

(k,',k, ',q'v', C '-'
I M33 (s,~',~) I ki,k2, qv, C -)

oo l'

F ~ (=") Z 2 F *(=")
0 h'=l, ' 1~0 h=l

1
X—P (27+1)(v',A'IMag J "(s,a', o) I v, A)~ J,M

, J(~~)si{ilr+v' ii')5'—
J(+)&

—i{M+v —A) 8 (1g)

At this juncture it should be noted that the helicity
amplitude expansion for the production amplitudes
cannot be continued into the complex plane of the
cosine of certain angles. "This follows because produc-
tion amplitudes have singularities for physical values of
cosines of angles. Note, for instance, that the amplitude
M23 has a branch cut in the variable —(q+ki)~ for
(m+p)'( —(q+ki)'( ~, and this condition is satisfied

What we have done here is based on the physical
observation that the two-pion state of angular mo-
mentum / and helicity 4 behaves exactly as a particle of
spin / and helicity A insofar as the kinematics of the
production process is concerned. Thus, the amplitude
(v,AIM»~'(s, a) I» may be looked at as the inelastic,
scattering amplitude: a state of angular momentum J
consisting of a nucleon of helicity ) and a pion producing
a nucleon of helicity v and a particle of spin 1, helicity A,
and (variable) mass a. Hence, when the amplitude
(v,A IM»~'(s, a) I» has a sharp peak in 0, the picture of
an unstable particle naturally arises.

It is obvious now that the three-particle scattering
amplitude M» can be decomposed into helicity ampli-
tudes in a similar manner. Arguing as before, we
obtain the equation defining the helicity amplitudes
(v', A'I M33~"(s,o',0) I v, A) as the following:

XM23(s, 0, (8,0), C =0, -;X, v). (15) "S. B.Treiman (private communication}.



L. F. COOK, JR. , AND B. W. LEE

for physical values of $, a, cos8, cosn, and cosP. However,
as emphasized by Wick, ' the expansion is likely to
converge' for physical values of cose and cosa, i.e.,—1&cos9, coso.& 1, even though it may not be continued
to complex values. We shall have no occasion to con-
tinue the production amplitude either in cosg or cosa.
As to the rapidity of convergence, we remark that our
experience with strong interactions indicates, in many

cases, that only a fear angular momentum states need be
considered, at least at reasonable energies.

C. Unitarity of Helicity Amplitudes

When Eqs. (9), (14), (16), and (18) are substituted
in Eq. (5), the angular integrals can be performed
easily. In terms of the helicity amplitudes, the unitarity
relations, Eq. (5), become very simple:

(1/2srz)(X IMsz ($+ie)—Mzz ($—ie) IX&

—pz($)g, -(Z IM»'($+ze) I
~ )( IM»'($ —ze) I &&

+ da" ps( $, a") p (X'IMzs ' ($+ze, a"+ze) lv", A"&(v", A" IMszs"($ —ze, a —ze) IX&,
r, /z,",v

(1/2sri)(v, A
I

Mess�

'($+ie, a) —M»s '($—ie, a) I X&

=pz($)p' (., A IM»" ($+'., ~) I
~"&&~"IM»s($ —z.) Iz)

+ &a" pa($, a") Q (v, &I Mass"'($+ze, a, a "+ie)
I
v") A"&(v") A" IMzzs" ($—ie, a" ie) I y&,

—
)rr err „rr

(1/2srz)(X I
M»s'($+ze, a) —Msss'($ —ze, a) I v, A&

=»($)E~-0 IM»'($+ze) I& &0 IMss"($—ze, a) Iv, A&

(19)

+ da" ps(s, a") Q (X I
Mess" ($+ie, a "+ie)

I
v", A")(v" A" IM»s" ($ ie, a." ie—, a—) I vh&,

lrr Arr, vr

(1/2sri)(v', A' IM, ,s"($+ie, a', a) M»s—"($ ie) a—') a) I v) A&

=ps ($)gy-(v'y A I Mes ' ($+ze, a ) I X &(X I
M»s'($ zey a)—I vy A)

+ ~a"»($ a") & (v'~A'IM»" "($+ze a' a"+ze) lv, A &(»"IM s'"'($—ze a"—ze, a) lv, A)
lrr A",v"

The decomposition into helicity amplitudes has the
following advantages over that of Ciulli and I'ischer'
who decompose the production amplitude in the total
center-of-mass system: (1) In the present scheme, the
angular momentum / of the two-pion system refers to
that in the rest frame of the two pions. Hence, the Anal
interaction in the state (J,l) is due to the pion-pion
interaction in the state of angular momentum I,. In the
Ciulli-Fischer scheme, however, the angular momentum
of the two-pion system is measured in the total center-
of-mass system, and therefore, the resulting amplitudes
do not correspond to a dehnite angular momentum state
of the two-pion system in its rest frame (this has been
pointed out by Peierls' and Carruthers' ). (2) The uni-
tarity relations take a particularly simple form for the
helicity amplitudes. This is because the angular vari-
ables C, ™,in the three-particIe, phase-space intergral in
Eq. (6) coincide with those in terms of which the helicity
decomposition, Eq. (15), is carried out. It is clear that,

' G. C. Vhck (private communication}."E.T. Whittaker and G. N. Watson, Coisrse of 3EoderN A Naiysss
(Cambridge University Press, New York, 1952), p. 323.

in terms of the Ciulli-Fischer amplitudes, the unitarity
relations cannot be expressed as simply as Eq. (19),
contrary to Meetz's~ assertion.

Rather than using Eq. (19), it is more convenient to
define eigenamplitudes of parity as in (JW 57). To this
end we form eigenstates of parity:

I JMII&=
I JM;X=1/2&+(—1) +»'I JM;) = —1/2),

(II=a), (20)

where II is the "total parity" of the pion-nucleon sys-
tem. We de6ne the eigenamplitudes of parity M» by

M22'n($) —= (I/2)(JMII I Msz($) I JMII&

=((1/2) IM '( ) I (1/2)&+(—1)"'"
X(—(1/2) IMzzs($) I1/2), (II=&). (21)

The amplitude Mzz ($) is, of course, independent of M.
Similarly, for the three-particle system we de6ne

I JMii, i,g&=
I
JM, I; v=1/2, A=g&

&(—1)s 'izl JM, 1; v= —1/2, A= —
$&, (22)

)=0, ~ I, II=+1.
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For each parity state, there are 23+1 states of angular momentum J'. We define the eigenamplitudes of parity
%32~~'& and M33~D '&" '& by:

Mzz~n «=—(I/2)(JMrr, i,pl M» I JMII&

=((1/2),$IM32 '(s,o) I (1/2))&(—1) "'(—(1/2), —)IM '(s,o) I (1/2)), (II=+),

M .'" "'"—= (I/2)&JMII, I', P'IM331 JMII, t,~)

X(—(1/2), f—I
M33$1 I($,0',o) I (1/2), $)& (11=&). (24)

The amplitude M23~~ '& can be defined so that

M23$n «(s+ze, o+ie) =F32~"'&(s ie—, o —ie)$*. (25)

Since the parity is conserved, amplitudes of the same parity are related by the unitarity relations. Substituting
Eqs. (22), (24), (25), and (26) into Eq. (19), and suppressing the superscripts JII, we obtain

(1/22ri) $M22(s+ie) M—22($ ie—)j
=ps($)M22($+ze)M22(s —ze)+Q do pz(s, o)M23'&(s+ze& o+ze)M32'&($ —ze, o.—ze),

l, g

(1/22rz)LM23«(s+ie, o)—M23«($ —ie, o)j
=ps($)M22($+ze)M23'&($ —ze, o')+ Q do-' ps(s, o.')M23' & (s+ze, o'+ze)M33' & '&(s—ze, o' —ze, o'),

(1/22rZ)l M32«($+Ze) o)—M32'&($—Ze) o)g

=pz($)M32 3($+ze, 0')M22($ ze)+Q d(r pz($)o' )M33 3' 3 (s+ze) o', 0+ze)M'32 3 ($ ze, 0ze)',
gl

(26)

(1/22rz)LM33' "($+ze, o', o) —M33' ' ' (s—ze, o, o)g

p2($)M32 3 ($+ze~ 0 )M23 e($ ze&0)+P do p3(s&0 )M33 f ' 3 (s+ze& 0
&

Ir ~+ze)M33 3 ' z($ ze& 0 ze 0).
$/I

p $11(zo)—g L(~)M $11(~2) (28)

IV. N/D FORMULATION contains kinematical cuts. To remove these, vre define a

The elastic amplitude M22 n($) can be expressed in
terms of the phase shift Rgb as:

M22$n (s) = es&Jn SlnBJn
— p (S)-

2113 (E+Izz)zz
g2'(~) =

p+Nz k p
(29)

l6x~ e'~en sin5 Jn
($)1I2 (27)

In the notation of CGLN "me find

M22 "($)= (zr/IN)((E+Izz)/A 1($)+I
($)'~' —zrz/BI ($)j

+(&—~)L
—A~+I($)+L($)"2+~)II~+I($)j},

for J=1.&1/2,

where I. is the "orbital" angular momentum of the
state JII;

L=J&1/2, if II= (—1)$+1~2

The new amplitude p»$" (w) has dynamical branch cuts
in the manner described by Frazer and Fulco."The 2L,

povrer of P in the denominator of g2 does not introduce
additional poles in p22 "(w), since M22 "goes to zero as
P2~ as P approaches zero.

We know very little about the analyticity of
M33$""(s,o', o), but we conjecture that kinematical
cuts can be removed in much the same manner. Define,
suppressing $' and $,

P 11$' 1(~I~& ~) $g
I'I'( ~zo~))1/2M $1Iv1

X($,~',~)Ea,II(~ ))us, (3O)

and 8 is the c.m. nucleon energy,

E= ($+IN2 —z32)/2($)"'.

with
Qs(s, a)+213 sr

The amplitude M22(s), considered as a function of s,
where I is the lowest orbital momentum (in c.m. ) of the

» 6. I. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu~
Phys. Rev. 106, 1337 (1957). Hereafter referred to as CGLN. 12 W. R. Frazer a111 J. R. Fulco, Phys. Rev. 119, 1420 (1960).
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I=min~3~, 3=3+1+~; ~a~ =1/2,
Finally, we define

F»"'(w, a) = t:gz'(w) 1'"~»'"'(~,a') t:g8 "(w)]"' (32)
and

QO(s, a) =
LQ3 (s,a)+ zzzz]'~3.

We claim the new amplitude F23 "' is devoid of kine-
matical singularities. This conjecture can in fact be
proved for certain class of diagrams one of which will be
dealt with in the following paper.

In terms of these new amplitudes the unitarity rela-
tions, Eq. (26), may be expressed as, suppressing the
superscripts JII and denoting henceforth l and $ col-
lectively by l,

The factor (QO+zzz) '~' is necessary to cancel the kine-
matical singularities arising from the spinor normaliza-
tion factor. In nonrelativistic theory, one expects that
the factor PQ(s, a)] TLQ(s,a')] T' removes kinematical
singularities arising from

Q(g g) = P(W+ZTZ)8 az—]u3$(W ZTZ—)3 a3—]l&3/2K&

f(zrzr)lS]zrI system compatible with the parity con- and Q(s,a). Note that in nonrelativistic theory
siderations, such that ~ "'(,.',-)= ~LQ'(,.),Q'(,.')],

as Q or Q'~0.

F23(w+zo) F32('l0 zc)

=27lzp2 (w)P22(w+zc)P23(w zc)+2&lz do' Q p8 (w&a)P» (w+zE&a+'zc)P33 (K z8& 0' zc)&
Z

F38'(w+ie, 0)—Fz, '(w —i8, a)

=2zripz (w)F33(w+i8)F33'(w —ie, 0)+2zri do' p pz' (w, a')F33'(w+ie, a'+i8)F33"(w ie, o—' ie, a), —
Zl

F83l(w+zc, lT) F83l(w —ze, o)— (34)

=23TZpz (W)F33 (W+Zc& a)P33(W —Zc)+27TZ do' Q p8 (W&&T )P33 (W+Zc& 0& lT +Zc)F33 (W Zc& lT Zc)&
ZI

F88 ' (W+zO& 0'
&

0') F88 ' (w zO& 0'
&

0')

=2&rzpz (K)F33' (w+ze& o')F88 (K z8& 0)

+27l3 do Q pz (w&0' )F88 ' (w+zo& 0'
&

0' +zc)F88 ' (w zc& 0' z8& 0)&
ZTr

where

P3'(W) =P8(w')/C3'(W).

p8" (w, o) = p3(wz, a)/g3" (w,o).
(33)

As noted by Blankenbecler, the constraint on the amplitudes imposed by Eq. (34) will be satisfied by the solutions
of the following set of linear equations:

X22(w) P38(w)D22(w)+ da Q P28 (K'& 0+3')D82 (w& 0' 38)&
4&2 Z

+23 (w&a) F22(w)D28 (w&a)+
4~2

lla' Q F38'(w, a'+i 8)D33' '(w, a' i 8, o), —

(36)

+32 (w&a) P33 (w&a)D22(w)+ do' Q P88 ' (w& lT, a +38)D33 (w 0&38)&

+83 ' (w&a &a) =F82 (W&a )D28 (W&0')+ do Q F83 ' (K &
0'

&
0' +36)D38 '

(W& 0' zC& 0)&
4@2 Z
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where

D22(w) =1—
I

p2 (w')%22(w'),

D '(wa)=—
I

/' o.)X32(w,a),p3 ZO, o

D23'(w, a-) =— »'(w')&»(W ),

(37)

Iw, ,
— ~ 5 ao) E. i—, i(.w—,o,

dzo
w o a)=8p, g5(a —o' (w' /r')1Vgg w'Dgg' '(w o' o-) —0i. , igg, ', = ~ ib(a' —o-)—

'
uities across hhe 1he discontinui i

'le F22 (w —ze =2m. iAe2(w),

F w 'Le, o')—=2/r1

33F ' '(w+ee, o,
Then

p3
'N —5)

eft an am litudes" Il;; by 3;,:eft-hand cuts of the amp ituus denote tFormally, let us

(38)

X22(w) = A, 2 (w') D2g(w') + /do Q A 23'(w' o)Dg2'(w, )r
l

FiF '(w o) =

N32'(w, o.) =

A22(w', o)Dg2(w')+

A 32'(w' a)D2~ (w')+

/do' Q A23P (w', /r')Deg' '(w, o,o.
)I

I /gdo'P A„o A ''(w'o)o')Dg2' w, o.

(39)

' a.')D23'(w', a)+232 'N qO 23 )
I /I g

eg
' " ' ' " D " '(w o ',o.d " Age' "(w',o',a. gg ", o.da

4 2

v "and D;;. After substi-

ZVqO ~

l', l

q o~ re iven, t e, h coupled integra e
36), olve Eq."and D;, into Eq.g

00

Consider the integra

f'( ,w)a=2 I
e3 ' ie)$ (w /r ze)d/rDes''(w, o, o'+ie ', ' —'

da.

(4O)

L' /do' Ei, i(w, o., +ai )ye'( wo
—ie .

on"in 0- with k

0 =, 0 I
o * o. )j=8g, i 5(o—0 )+Hpi, p(w)a )a8i, i 5(o' —o.D ' (w o')o'dg (41)

w,o—0 = 'N)0

reso ve1 nt kernel. Thenm 0-,0- eer, o' a). Now let FFp, iernel Ep, g(w, o,/r .This is ah' '
a Fredholm equati

evidently
00

and
=Di, i(w, a', )/Do( ), wH p, i (w)0)a =D p, i w', a', (42)

w e, o' o) is the Fredholm minorwhere D, i(w, a/, a is

~ i w, o',o)—PDi. i(w, /r', o) =

must be exercise here"""u""7-". ".'I reat care mus
~' Reference 17, ap.

/ //)) E p, p' (w)a00 Ei', i(w) 0 0

//g //)
da l/

0 E~ ~
'NEp', i(w)/r )/r

resent (see Sec. V).s thresholds are presensincee anomalous

(43)
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and D(w) is the Fredholm determinant":

D(w) =1—P
1

E3,&(w, a,a*)da+ —da
2t 4„~

K&&(,w, a,a*) E &, & (w, a,a')
do' g

Z, 3(W,a'*,0*) Z, , (W,a'*,a')

—=detD88' '(w, o,o').

Let us denote the inverse of D»"(w, o.',o) by
Gp 3(W,a',a):

wherei, j, k stand for the channel index 2 or the channel
index 3, l, and continuous o-. Further

or
P,;(w) =ps X;2(w)LD- (w) j2;

F(w) =N(w) D—'(w)

G3. 3(w, a', a)—=3, , ,3(a'—a)+D3. 3(w,a', a)/D(w). (45)

Now Eq. (36) can be solved for P;;. Formally we

write

N22(W),
N(w) = (1V;;(w))=

X„2(w),

D22(w),
D(w) = (D' (w))=

D„2(w),
Then

F2„(W)

X„(w)
D2 (w)

D„(w)

=1 —P, D2, (w)G, „(w)
D-'(w) =

~(~)~—2 0-(~)o (~), ~(~)&-+Z.o-(~)» (~)Z. ».(~)»-(~))
Here the subscripts m, e, r, s stand for the channel 3, l, and continuous 0-, and

A(w) =D22(w) —Q„„D2„(w)G„(w)D,2(w)

=D22(w) —p D28 (w a+$2)G83(w ,0' 2E 0+2e)D32 (w'a 2e) (46)

Thus, for i= j=2,
1

P22(w) +22(w) Q ~a ~a +28 (w) 0+Ze)G[, p(wq 0' zeq 0+ze)D'82 (w) 0' zc)
A(w)

(47)

Finally, it should be noted that

detD;;(w) =D(w)h(w) = detD(w),
(4g)

detD, 8' '(W, o', 0)=D(W).

V. ANALYTIC CONTINUATION

Production amplitudes, as a rule, have anomolous
singularities of the type discussed previously by a
number of authors. The formal solution obtained in the
last section has, therefore, to be continued in the
manner discussed by Mandelstam, "and Blankenbecler
and Nambu, "in an external mass —in our case, 0—from
a normal to an anomalous case.

To illustrate the analytic continuation of the 1V/D
solution, let us assume that the two-particle scattering
amplitude P22(w), and the three-particle amplitude
P»(w, o', o) have only the right-hand cuts demanded by
unitarity. The inclusion of the left-hand cut of F» does

FIG. 2. A contribution to
M» considered by Peierls. ~

Ã* denotes the excited state
(3,3) of the nucleon.

not present any difhculties, but simply complicates the
algebra. The left-hand cut of M33 arising from the
disconnected graphs in which one of the pions is
noninteracting would give rise to the isobar formation in
the production process. This mechanism —the (3,3)
isobar formation following the pion production —has
been much discussed in the literature. ' '" Another
interesting diagram is the one in which the (3,3) isobar
and the pion scatter with a nucleon exchange, a process
whose effect on the pion production has been considered

by Peierls (see Fig. 2). While these diagrams will

produce further complexities, we believe the simple ex-
ample we shall discuss below is adequate to demonstrate
the general procedure of continuation.

If we had a representation of the production ampli-
tude in Ave variables comparable to the Mandelstam
representation for the scattering amplitude, we would
have a complete knowledge of the left-hand cut. In the
absence of such a representation, the best thing we can
do is to choose a certain set of diagrams and to evaluate
the left-hand cut. Let us consider the one-pion-exchange
diagram (see Fig. 3). The singularities of the partial
wave amplitudes P28'(w, o.) associated with the one-pion
exchange are well known. For o (2@2(1+))3/2n8), the

~ S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
~R. Blankenbecler and Y. Nambu, Nuovo cimento 18, 595

(1.960).
~ R. M. Sternheimer and S. J. Lindenbaum, Phys. Rev. 123,

333 (1961).Additional references are given in this paper.
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branch point we(o) lying farthest to the right is

wrr(o) = (2nz'+o.

+[a(4nz' t —') ( ~—+4u')/t ']'")"'/~& (49)

Let us increase o. When o reaches 2tz (1+ra/ ),
branch point we is at the elastic threshold wz ——nz+ru. If
we give a small positive imaginary part to 0- and increase
0- further, the branch point moves as indicated by t e
l'ne in Fig. 4. When 0-=4p, ', the branch point is atline in ig.
m, ~ p~=qnz p,(4 z) = ' '+2 ')'I' and as o is increased further, t e
branch point moves into the complex plane as indicate
in Fig. 4:
we(o+ie) = (2nz'+o.

—z[o.(4nz' —tzz) (n —4tz')/tz']'r'}'r'/V2, (50)
—(zr/2) (argwc(o. +ie) (0, o &4ru'.

When a small negative imaginary part, —ie, is attai attached
t the curve in Fig. 4 is rejected about the real m axis.oo, e

1 rit inThe particular conhguration of the singu ari y in
Fig. 4 is of importance because it crosses the real m axis
above w=nz+tz. It follows that any quantity which
involves an integral in w over Azz(w, o) from w=nz+tz to
z = ~ is no longer defined. We must thus discuss the
proper continuation of N and D. Since D»'(w, o) an
Dzz" (w,o,o') are defined by integrals extending from

FIG. 3. One-pion
exchange diagram for
3f32. The dashed
lines are pions, the
solid line nucleons.

w= nz+2ru to w = ~, the only consideration involved for
them is the proper continuation of Xzz'(w, o) and
1Vzz" (w, o.,o'). However, Dzz(w) and Dzz'(w, o) must be

roperly continued, as well as E»(w) and 1V»'(w, o).proper
We first consider the continuation oi

X»'(w o) Dzz(w), and Dzz'(w o). Recalling Eq. (36),
we would expect the discontinuity of E»(w) and
Ezz'(w, o) to be nonzero along a cut similar to that
shown in Fig. 4. Further, Dzz(w) and D»'(w, o.) will now
exhibit anomalous cuts since the contours in Eq. ( )
must be appropriately deformed. Let us make these
remarks more precise.

F E (36) we may calculate the discontinuities ofrom q.
~ 0 Fo 4N»(w) along the anonzalous cut (the heavy line in ig.

real and complex).

[disclVzz(w)].
= (1/2z) [&»(w+) —&»(w-)]

BRANCH CUT 2 ti2
w ~(Q +2p. )

W- PLANE

w~ M++

Fro. 4. The contour of integration of D~z(w) and Dms(w, rr). The
h 1' ' d'cates the intruding singularities of N22(m) andcavy Ine in ica e
N23 m,o, the dashed lines are the deformed contour for D22 and
Dza(w, o).

+zr do nzz(wr o+ie)Dzz(wr o ie)=0— (51c).
4~0

The same remarks hold also for Xzz(w, o).
Thus, we write proper analytic continuation of X»(w)

and Szz(wr(T) as

W2

1%rT»(w) = do
d5)

Azz'(w', o+ie)
R1

W2

&&Der(w'r o.—ze)+
rr

0(a+i') ~

&&AzP(w'r o+ie)D»(w'r o ie)—,

(52)

E»(w) does, thus the first term on the right; (2) the
discontinuity of F»(w) along the anomalous cut is
written as

[discFzz(w, o)].=vr[Az, "(w,o)+nz, (w,o)], (51b)

where —A»"(w, o) is the continuation of Azz(w, o),
defined for o.(2tz'(1+tz/2nz), to o &2p,'(1+p/2nz), when
w is on the anomalous cut, and nzz(w, o) is in fact defined
b E (51b). We shall denote the continuation o
A» w, o) for o &2tz'(1+tz/2nz) when w is on the norma 1

Equation (51a) is quite unsatisfactory since the ex-
pression for E22 is expressed in terms of o,~3, which can be
found only after Fez(w, o) is known. It will be assumed,
and verified a posteriori to be consistent with unitarity
and given analyticity on the left-hand cut, that

F»(w) [dkscDQz(w)]a

=Fzz[discDzz(w)]. +zr da[Azp(w o+ie)
4pm

+n»(wr o+ze)]Dzz(wr o —ze), (51a)

where m~ are as shown in Fig. 4, and the superscript l,
and the accompanying summation, are suppressed.
Several points must be emphasized: (1) We anticipate
that Dzz(w) develops anomalous singularities where

E»(w, o) = do
4p

A '(w' o'+ze)

dzo
)&Dzz(w', a' —ze, o.)+

Wo(O' +it)

&&ABP(w, o. +ze)Dzz(w'r o' —ze, o)
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w —PLANE

Zm~& o

1
'

the square brackets are along

).

tb df d
inte rations from K~=m p o

(w) and Dzz(w, o mus edefinitions of D~~,KI,

d the intruding singularities o
h h ferefore t epa so '

be deformed as indicated by the dashe ine in
Thus, we obtain

INTEGRATION PATH OF N3p
Dpp (w)

DEFORMED INTERGRATIOM

PATH TO DEFINE D&&{w)

dK'
(w')1Vzz(w')Dzz(w) =1—

1
oz2 ZV KI D~~(w), N~, (

ration of 37» and Ã» is indicated by the
fD dD '

h d
d b the dashed line to secure themust be deformed as indicate y e

proper continuation.

tOQ dKI 1

zLpz'(w')7'
4p, up(0'+ie) K1

1 ~

X& "(w' ~'+za)D, z(w', ~ —za )
(53)

dKI

pz ~(w') 1Vzz (w', o)Dzz(w, o) =— ' is the continuation of D22 K' galon the
().Th

integration in Kq. 53 as in ica e
in Fig. 5. Then

dm'
2 do' i[pzi(w')]'

4@2 up(o'+is) K'

1 ~

XA "( ' o'+za)D (w, —za, ), 1

A zz'(w', o )Dzzr (w')1Vzz(w, o.) ='nof theK»z' is the analytic continuation

Dzz(w, o.) contain anoma
The complex cuts exten
plane. The discontinuitie
given by

[dkscDzz(w)].

A. zz" (w', o)
1

~p(0) KI —
ZV

=2m'z[pz ~ (w)]'
4~2

[dlscDzz (wpo)]g'
=2~'z[p, '(w)]'

1Vzz(w, o',o)
1

A zz'(w', o')Dzz'(w', o)00

1 ~ 1 ~do-'A "(w o'+ze)D„(w, o —ze, o).
4 2

dKI

ious (rea
d to infinity in the lower half K

D i (w') 2zri[p—z(w')]'1V zzrr (w')], (55)s across e ath anomalous cuts are X[Dzz w zrz pz

KI D2g K' ) an d 1V ii(w) are boundary
( ) p }I tllvalues of Dzz(w) 1VKl and 22 KI as KI

Fi . 5. 1Vzz(w, o,o)z~ boun aries as in
'

indicated by arrows in ig.
can be continued likewise:

1Vzz(w, a) =
de'

A, zr (w', a.)D„(w')
K' —'M1

Azz" (w', o)[Dzz(w')]', (54)
1

~p(zr) KI —KI

E . (51.c) and a similar equationTherefore, we see, from q. .c
for [discD„(w, a.)]., that if

o 51.d)n w o) = —2zri[pP(w)]'F„(w)A, ; (w,o„28 1 Z

The continuation of 1Vzz~w, o. an
uires consi era e c'd bl care. Formally we write

+ Azz" ( 'w~')
1

~o(o')

X Dzz" (w' ~)—2zri[pz(w )] 1Vzzw'~ — ' ' ' "w'o)] (56)[
'0- areas written down in q. 3'1 .D„(w,a) and Dz, (w,~,~) are a

re is a very interesting property o t e
n to be noted: ie

the cut from wz ——zzz+zz to aa."We reca t a

(48)deto(w) =D(w)h(w).

6 t noted in a conversation
th tho I'o Sbetween R. Blankenb

t'„g,".'"h" th' L"' ""' -"h, 'R',, 124 i258 (1961)Vaughn, R. Aaron, R. D. Amado, P ys. ev.
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D(w) is seen to be analytic in the w-plane cut from
zrz+2/2 to ~, by construction, Eq. (44). Let us take the
discontinuity of h(w) across the anomalous cut [see
Fig. 6]:
[discA (w)].

= [a(w+) A—(w )]/2i

2 I/2
(M +2p ) (M ~~)2

Wt

w-

22, W

W+

W" PLANE

=
izr [pz (w)]' do Azzrh(w, ~+i2)D22(w, s—ze)

Fxo. 6. The de6nition of m+ across the anomalous cuts.

do' do" A22" (w, 0+zc)

XD22(w) 0 zt)0 +z'r:)G(wq 0' zEq rr +zE)

XD,2(w, 0" ie)—=0. (57)

This has an important consequence. Adopting the
matrix notation, write the S matrix as

singularities, the cut of ¹2(w) is exactly canceled by
the left-hand cut of the term Q„„X,2„(w)G~„(w)D„2(w)
The same thing is true for F22(w) also.

While it has been shown"' that the E/D solution
satis6es the symmetry properties of the T matrix,
Pzm(w) —Py~z (w) which follows from the time reversal
invariance, it has yet to be shown that this property of
the T matrix is preserved in the course of analytic
continuation. In the matrix notation,

S=1+22rzg»2pph/2 (58)

6(w zE)D(w zE)
detS(w) =

6 (w+ z E)D (w+ zc)
(60)

Taking the logarithmic derivatives of both sides of Eq.
(60) and integrating from w2 to ~, we obtain in the
usual manner

ln detS(wz) —ln detS(~) = (zz —zzo. D.D.)zr, (61)

where m is the number of bound states having the
quantum number J, II, (number of zeros of detD) and
e&.D.D. is the number of Castillejo-Dalitz-Dyson poles
of detD. Equation (61) is a multichannel extension of
the Levinson theorem, " since ln detS(w) is the sum of
the eigenphase-shifts in the (J,II) sector. It should be
emphasized that this sum includes the phase shifts, not
only from two-particle channels, but from three-particle
channels as well."While this theorem is proved under a
restrictive condition (A22

——A22 ——0), we believe this
generally valid.

The reader can ascertain for himself that, while the
expression for F»(w), Eq. (47), apparently has left-hand

where the rows and columns are labeled by the channel
i =2, 3, the angular momentum quantum numbers l, and

$, and the continuous variable 0, and ph/2 is the diagonal
matrix whose elements are [pz (w)]'" and [pz' (w,o)]"'.
Since

FD=N,

Eq. (58) may be rewritten as

ph/2S (w) = [D(w)+ 2zrz~N (w)]D (w)
—hgh/2

=D (w i 2)D (—w+i 2) hthh/2— (59)

Hence, taking the determinants of both sides, we obtain

F2„(w) =—[6p N2.G.„+(p E2.G.,D,2)

X (Q D,G. ) X2 Q D,G„—]. (62)

[dh scP2~ (w)]g

= [P»(w+, ~)—P»(w, ~)]/2z
=zrA22" (w)0)[1—2zrz[pz (w)]'F22(w)]. (63)

On the other hand

1
Fm2(W) P m2 P +mnGnrDr2].

S)0
(64)

Since E 2 and Ã „are discontinuous across the branch
cut, we see that

[dhscF„2(w)].

= [F22(w+,~)—F22(w, ~)]/2i

1
zrA$2 (w)0) ([D22 Q D2t' GrrDa2]

r, e

—2Z[P2 ]'[¹2 Q Xzr"Gr.D.2]). (65)

Since both 6(w) and F22(w) are analytic in this region,

' J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250
(1961).

Let us compute the discontinuity of this function across
the anomalous cut (w+, w as indicated in Fig. 6):
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we can write

D»" (w) —2 Ds."(w)(=-(w)D.s(w) =A(w),

+22 (w) Q Dsr (w)Gt's(w)D82(w) ~(w)F22(w)y
0', S

so that"

Fss~"'(w o) —+ const,

as w —+ m+fz or m+ (o-)"'.
(67)

In relativistic field theory, the threshold behavior of the
production amplitude, Eq. (67), does not in general
hold at w= m+zz, but, as will be shown in the following
paper, the amplitude Fss~"'(w, o.) behaves as

lim Fss~n'(w o) =constLP(s)$ —'r s
~na+p,

(68)

whenever there is an anomalous singularity arising from
the one-pion-exchange diagram LFig. 3$.Let us examine
how this discrepancy arises. Equation (67) is derived
under the assumption that the potential, or the inter-
action is of short range, so that outside a certain
"interaction radius" particles propagate essentially as
free particles. The anomalous branch cut is connected
with the fact that the exchanged pion in Fig. 3 is on the
mass shell when w=m+zz. Since the exchanged pion is
on the mass shell, it can propagate an infinite distance
without damping, and the "potential" associated with
the one-pion exchange in the production process can no
longer be considered as short range,

"These relations, Eqs. (63) and (66), can be veri6ed for the
one-channel case; see R. Blankenbecler, M. I. Goldberger, S. W.
MacDowell, and S. B. Treiman, Phys. Rev. 123, 692 (1961) or
references 22, 23.

"See, e.g., L. Fonda and R. G. Newton, Phys. Rev. 119, 1394
(1960).

ldiscF„s(w) j.
=zrAsz" (w, o)$1 2—zriTpg(w)]'F»(w)5 (66)

Therefore, insofar as A»r'(w, o)=Assrr(w, o), the dis-
continuities of Fs (w) and F s(w) are the same across
the anomalous cut. This, combined with the result of
Bjorken and Nauenberg, "establishes the symmetry of
the T matrix.

Furthermore, comparison of Eq. (63) and Eq. (51.b)
gives

ass(w, ~)= —2zrz[jos (w)1'Fss(w)Ass" (w, ~),

which is identically Eq. (51.d). Hence the consistency of
the assumption, Eq. (51.c), is now established.

In concluding this section, we remark on the threshold
behavior of the production amplitude when there is an
anomalous singularity of the type discussed in this
section. In nonrelativistic theory" one can deduce the
threshold behavior as

VI. CONCLUDING REMARKS

We have developed a formalism in which one can
discuss the relation between elastic scattering and pro-
duction processes. When we discuss higher resonances in
pion-nucleon scattering, for instance, a number of
models or approximations can be considered within this
framework. If, for example, 233 is set equal to zero, we
obtain what is essentially a generalization of the model
of Ball and Frazer, 4 but, whereas they had to limit the
size of the inelastic contribution to elastic scattering to
satisfy the unitarity condition, the feedback implied by
unitarity is automatically contained in the present
formalism, so that the resulting amplitudes are guar-
anteed to satisfy unitarity.

In addition, if 333, computed from the disconnected
graphs in which one of the pions is not, interacting, is
included, we obtain the relativistic version of the
Carruthers'-Goebel-Schnitzer' model, including the ini-
tial state rescattering effect. In this case, it might be
more convenient to use, simultaneously, two schemes of
coupling three angular momenta, i.e., the L(zrzr) tXjtu
scheme and the L(zrX) pr]qn scheme in the conventional
terminology. The relativistic recoupling algebra for this
case has been worked out in the helicity representation
by Wick."

We have obtained the 1V/D solution for the T matrix
in the presence of anomalous singularities by analytic
continuation in the external mass (T. The correctness of
our procedure can be checked quite independently by
noting that the T matrix so deduced has correct analytic
properties, satisfies unitarity, and has the correct dis-
continuities across anomalous singularities.

During the completion of this paper, we became
aware of a related study by Nauenberg and Pais" who
concentrate on the cusp behavior due to production
channel rather than the more formal aspects treated
here.
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