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It has previously been shown that the energy levels of valence electrons in atoms, molecules, and solids
can be calculated from a weak net effective pseudopotential V~. In V„most of the large negative potential
energy of an electron, when inside the ion core of an atom, has been canceled against the large positive
kinetic energy which the electron has there. It has recently been shown that there are several diferent
forms which the pseudopotential can take. The theory is now developed from a different point of view,
and it is shown that there exists an even wider class of pseudopotentials which all give the same valence
energy levels. One of these, previously derived as an approximation, is now seen to be an exact form of the
pseudopotential. Since it is much simpler and more convenient than other forms, its properties are investi-
gated further with a view to its use for detailed numerical calculations. Finally, it is shown how the pseudo-
potential can be used not only for calculating valence energy levels, but also for the scattering of electrons
by phonons and impurities in solids and by the disorder in liquid metals.

I. INTRODUCTION
' 'I has recently been emphasized' ' that in an atom,

- molecule, or solid, there is almost complete cancel-
lation between the large negative potential energy V(r)
felt by a valence electron when inside the core of an
atom, and its large positive kinetic energy which is
inherent in the oscillations of its wave function f„there.
Mathematically the cancellation can be demonstrated
by showing that the wave equation

can be transformed into

the eigenvalues and eigenfunctions of II with the
quantum numbers of states in the core of the atom,
i.e., c= ls, 2s, 2p„2p„, 2p, for sodium: in the case of a
polyatomic system, we shall take the summation over
c to include summing over all the atoms, and shall
assume the f,'s from neighboring atoms do not overlap
appreciably. Cohen and Heine4 then showed that there
are actually several forms which can be taken for Vz,
in particular

V GHEE= (V+ V CH)y

= Vy P, (P„V@)—P.+Vg, (g„rt)P„(4)
where

(II+ Vn)4. = (&+V+ Vr;)q4—= I'-'»4», (2) V= (P, V+ Vng)/(P, P).

when Vg is a nonlocal repulsive potential which cancels
off most of V, leaving a weak net potential (V+Vg)
which we shall refer to as the pseudopotential V„. In
(2), p„ is a pseudo-wave function which is equal to P,
outside the atomic core, but inside the core has the
oscillations of lt„removed; e.g., for a sodium atom the

functions, corresponding to the 3s, 4s, ~

valence levels, have the general shape of 1s, 2s,
wave functions with zero, one, radial nodes.

Phillips and Kleinman, ' ' also AntonBk, ' first showed
that Vz could be defined by

4"=Z (&. &)(0 rt")0

(3)

which we shall call the PK theorem, where E„ tP, are
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Dropping the last term of (4), they suggested as an
approximation

V "4'= (V+ V ")O'= V4' Z.(4'. V4')0' (6)

The present work was initiated when one of us (B.J.A.)
noticed that (6) is not an approximation at all, but is
still a valid form for V„satisfying (2). It is by far the
simplest form of the pseudopotential that has been
developed. In particular, it gets rid of the awkward
term in V which can only be defined self-consistently
in terms of the g„which one is trying to calculate. The
importance of the form (6) is that it really turns the
use of pseudopotentials from a qualitative or formal
justification of the nearly free electron approximation
and similar crude models, 4 into a useful method of
doing quantitative calculations.

In Sec. 2 we shall state and prove what we call the
general pseudopotential theorem. It exhibits the most
general form that can be taken for VIr, containing (6),
(3), and (4) as special cases. It also throws new light
onto what happens to the core eigenstates of H when
one transforms to the pseudopotential formalism, and

' Since completing this manuscript, we have noticed that the
form (6) had previously been written down by F. Bassani and
V. Celli [J. Phys. Chem. Solids 20, 64 (1961)j using an incom-
plete form of the theorem of Sec. 2. There is otherwise no overlap
with the present work.
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the special role played here by the form V&PK (3) of Vii.
Although one can generate an infinite number of valid
forms of V&, not all of them are equally useful insofar
as they do not all produce equally rapid convergence
if one expands p„ in, say, a series of plane waves in the
case of a metal. In Sec. 3, we shall therefore discuss,
from this point of view, the p" generated by the use of
our form Vir" (6).

Finally, we shall discuss the transition probability
for scattering. What we have in mind is the scattering
of electrons by a distortion of a solid produced by a
lattice vibration (electron-phonon interaction), the
scattering by an impurity atom in a solid such as gold
in silver, and the scattering of electrons in a liquid
metal when we start from a free-electron model and
introduce the atoms as weak scatterers. ' Although the
PK theorem and its generalization only assert that the
correct eigenvalues of II can be calculated from the
pseudopotential V„, it is super6cially obvious that V„
can also be used to calculate scattering matrix elements.
However, it took Sham~ a considerable amount of
algebra to show that the particular case of the electron-
phonon interaction is correctly given by the use of the
particular form V~ . One trouble is that Vg is not
exactly a Hermitian operator, although, clearly, the
resulting transition probability between two states of
g„r and @„smust be the same in both directions. Further-
more, the p, 's are no longer orthogonal, in general, nor
is it completely obvious how they should be normalized.
In view of these uncertainties, we shall show in Sec. 4
that scattering probabilities can be correctly calculated
from the pseudopotential in any of its forms in all the
situations mentioned above, and shall develop the
correct formulas for handling them. In Sec. 5 we relate
the calculation of scattering amplitudes in the pseudo-
potential formalism to that in the orthogonalized
plane-wave formalism.

Vied =Z.(E.A)4 ' (7)

Here, the Ii, are completely arbitrary functions. We
shall denote the eigenvalues and eigenfunctions of B
by E„, lt„, writing ri=c or e if we want to restrict
ourselves to core or valence states. The corresponding
eigenvalues and eigenfunctions of the pseudo-Hamil-
tonian II„=II+Vir we shall denote by E„, p„, again
with n= c or v

H~p„= (H+V g)p =E„p—„. (8)

Let us first consider the core states and expand p, in
terms of the complete orthonormal set of functions f„:

Qc =pc' rro4'c'+ Qv rrwQe.

' L. J. Sham, Proc. Phys. Soc. {London) 78, 895 (1961).
s [. M. Ziman, Phil. Nag. 6, 1013 (1961).

2. GENERAL PSEUDOPOTENTIAL THEOREM

Let us start by calculating the eigenvalues and
eigenfunctions of H+ Vri, where Vz is defined by

Qv=Qc crcfc+Qe' crv'fv' ~ (12)

Substituting into (7) and (8), we obtain

Z 2"t (E. E.)~-+-(F.A")l~"4 +Z.(E A)~A"

+(E. E.)~A"+—E (E" E)~"4"—

+ Z Z (F A )~"lt =o (13)

From the coeKcient of P„we have E„=E,. From the
coefIicient of P„we have n„=0 unless there is some
degeneracy. Thus, P„has the form

(14)

where from (13) the n, 's are determined by the set of
linear equations

2"L(E.—E.)~-+(E.,~, )l "=—(E.,a.). (15)

Comparison with (11) shows that (15) has a unique
solution unless there is some accidental degeneracy
between E, and an E,. Throughout this proof, if some
degeneracy does occur, it results in a degree of arbi-
trariness in the wave functions which may, however,
still be chosen in the form described above.

We have therefore the general pseudopotential theo-
rem:—The pseudo-Hamiltonian H~=II+ Vir, where
Vir is given by (7), has the same valence eigenvalues
E, as H does, the eigenfunctions being given by (14)
and. (15); the "core" eigenfunctions of II„are linear

'combinations of the core eigenfunctions of H and their
energies are given by (11). Moreover it is clear from
the proof of the theorem that the essential property
that Vir must have is that it projects any p onto the
space spanned by the P, 's. Since (7) is the most general
operator of this type, (7) with arbitrary functions P,
represents the most general form for Vg.

Finally, we tak.e the matrix element of (14) with lt,
and obtain n.= (P„p„).Thus, we can write (14) in the

Substituting into (7) and (8), we obtain

2"Z" L(E" E—.)6""+(P"4")3~"4"
+Z" Z .(P",~.)O"+E.(E. E-.) .a.=0. (1o)

In this the coefficient of every f„must vanish. Thus,
unless there is some accidental degeneracy between B,
and some E„, we have that all n, =0. Thus, @, is a
linear combination of the P.'s, and its energy E, is
given by the secular equation

det
~
(E. —E.)6, , + (Il:,P, ) ~

=0. (11)

It should be noted that this discussion of "core"
solutions of (8) is purely formal and is of no interest in
discussing the real core states of the atom. However,
these "core" solutions do exist and are relevant at
three places below in discussing the valence levels.

We now calculate the valence states by expanding
them similarly in terms of the f„'s:
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in (7), we obtain the Austin form V~" (6), which we
have therefore proved to be a valid form for the
pseudopotential. Similarly, the forms V~PE (3), V~oH

(4), and other forms given in I are all seen to be
special cases of P). We can also take over from I the
use of a model potential V~ which is completely open
to choice; we have then for the pseudopotential

(V+V~)y= V~@+I (V V~)e—
-Z.(~., (V-V )~)~.l (»)

In I, it was rather implied that the core eigenstates
somehow completely disappeared when one went to the
pseudo-Hamiltonian form. This is now seen to be
incorrect; indeed, we have in (11) derived an equation
for the eigenvalues B,. However, it remains important
for the practical application of pseudopotentials that
the lowest valence states of H should become the lowest
eigenstates of H+ Vg, because one wants to set up, for
instance, secular equations in terms of plane waves
whose lowest eigenvalues converge to the E„'s and not
to some lower core states. Thus, it becomes important
where the E, lie. In the case of the pseudopotential
(6) we note that (11) becomes Hermitian and 8, real,
and we have from the diagonal elements

(P.,V4.)= (P.,2'4.—) (19)

Here, T is the kinetic energy operator, and we have used

(T+V)f,=E,p, . (20)

The off-diagonal elements of (11) become (P„TP, )
which are rather smaller because of the orthogonality
of the g.'s. Now, very roughly,

Q.,&N.) = l~. l. (21)

We therefore have that the "core" levels Z, of H+ Vg"
lie about as high up in the continuum as the real core
levels E. of H lie below the valence levels. However,
if the outermost valence level is rather loosely bound,
some care may be needed in calculating excited valence
states in order not to pick up one of the spurious
levels B,.

To get the form Vgpx (3), we put in (7)

See footnote 27 of I.

e.=k.+Z.(f.A.)f' (16)

It is important to note that this does not imply any
particular value of the n, 's; p, varies with n, in such a
way that (16) is automatically true for any n, 's. It
really expresses the orthogonality of g„and g„and
cannot be taken as a full deffnition of p„ in terms of f„
and the P.'s.'

If we now take

where E.o is the particular valence level one is wanting
to calculate. It then follows from (11) or by direct
substitution that all the g, become eigenstates of
H+ Vzpz with pseudo-energy R, all equal to E,o. The
a, in (14) can then be chosen arbitrarily because of
the degeneracy. Note that this arbitrariness, 6rst
pointed out by Kohn, ' applies only to the PK form of
the pseudopotential. ' If we denote by P„x the pseudo-
wave function obtained from a particular form Vg,
then the arbitrariness means that any g„x is auto-
matically a PPK, and we have from (2), (16), (20),
and (3)

(23)

We can, therefore, regard Vz in two di6erent ways. %e
can either regard Vz as always being the same operator,
a particular form then being obtained by defining a
particular set of e.'s, and thus a particular representa-
tion of the operator. This is rather the approach used
in I, where we fix the representation by fixing the
matrix elements (P„Vgg), as in Eqs. (21) and (22) of I.
Alternatively we can regard the various forms as
different operators all satisfying (2), with V+PE having
some special properties because of the degeneracy
between the Z.'s and E„which is more our present
attitude.

3. SMOOTHNESS OF P,"
As is well known in the orthogonalized plane-wave

(OPW) method of calculating band structures in solids,
one can in (14) eliminate the radial oscillations of g„
inside the core by choosing the n, appropriately. '"
Indeed the whole purpose of using pseudopotentials is
to work in terms of functions p„which are quite smooth
inside the core, so that in the case of solids or liquid
metals, for instance, they can be represented well by
only a few plane waves. We therefore have to ask, if
we use the particular form V~" (6) of the pseudo-
potential, how smooth does the resulting function P,"
turn out to be? In view of the importance of this
particular form, we shall approach the question from
two different angles.

We first note that V„" can be generated from a
variational principle in the manner of I. 9i'e shall omit
the detailed derivation, since it follows closely Eqs.
(17) to (23) of I. The quantity to vary is

-(e, (V+ V.)e)= (e,T~) &.(~,
—e); (—24)

i.e., the @„"given by V„"is such that it automatically
minimizes (24). This is not the usual form of a varia-

' C. Herring, Phys. Rev, 57, 1169 (1940).
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tional principle as used in I, because we have not
divided by the normalization (p,p). We assume here
that p has the form (14), i.e., that p is so normalized
that its projection on p„ is unity when f, is normalized
to one. Thus, from (14) or (16) P is normalized to

(~,~) = 1+2.l~.l'= 1+2.l Q.,~) I', (25)

where the second term is typically about 0.1. Since it
is so small, minimizing (24) is very nearly the same as
mlnlrmzlng

T= (4»T&)l 8»&) = I ~e I'd l(4 A) (26)

Now, as mentioned in I, minimizing (26) generates the
smoothest @ possible, and thus the pA generated by
V„"is very nearly the smoothest p.

We can compare pA with the smoothest Q more
quantitatively as follows. From (2), (5), and (25) we

have

T+ V =E„=const, (27)

so that minimizing T (26) is the same as maximizing V.
In I the latter condition was used to generate V~oH (4).
We have therefore that the Pen given by V~oH is the
smoothest P possible, the smoothness being measured

by the kinetic energy T (26). Now the difference
between V„" (6) and V„oH (4) is just the small V term
contained in (4), and the increase in kinetic energy
produced by dropping it can be calculated by pertur-
bation theory. We put

into (2), (4), and (6), giving

(29)

By way of a very rough approximation, we obtain from
the diagonal elements of the secular equation (29)

V(P y cH)

(4'.,T4'.)—~.
(30)

There are no first-order terms in AT, because T is the
minimum value of (25). In practice, the extra waviness

of @"corresponding to AT results, of course, in a slower

convergence if one is expanding p in some series of
functions. By way of illustration, we have estimated
the magnitude of the effect for the levels F», 8'~, 8 2',

and lV3 in the band-structure calculation of solid

The increase AT in kinetic energy is to second order

(0",T@')
AT= —T

(yA @A)

P.*P"(4.,Tit" )=Z -Z. T . (»)
c cr CH CH CH CH

aluminum. "Putting (21) into (30) and (31), we obtain
AT=0.001, 0.01, 0.001, and 0.002 rydberg as regards
order of magnitude for these levels. This is comparable
with the ordinary contributions of the higher states in
the secular equation, "and in each case is less than 1%
of the amount of kinetic energy (@,Vzg)/(p, Q) which
has been canceled off by Vz. We conclude that for
practical purposes gA is not seriously less smooth than
poH, the smoothest p.

The usefulness of V„~ can also be gauged from a
direct comparison with the OPW method" in solids.
We first introduce a slight modification of (6), obtained
by putting VAr equal to a constant Vp in (18):

v."~=v~ —Z.(4., (v—vo)~)4. (32)

Vp ——Eg—k'.

In practice, if we put

(35)

~0 +k=op (36)

then (35) is very nearly satisfied for all k, at least in
comparison with the Z, in (33), (34). We conclude,
therefore, that the secular equation for B„in terms of
plane waves, using (32) and (34), shows the sam, e
convergence to a first approximation as the secular
equation of the orthogonalized plane wave method. It
has the advantage over the latter that the required
energy E& does not appear in the off-diagonal elements,
but the disadvantage that the equation is not Hermitian
(see also below).

"V.Heine, Proc. Roy. Soc. (London) A240, 361 (1957).
"V.Heine, Proc. Roy. Soc. (London) A240, 354 (195'7).

It is now invariant to a change in the zero from which
V is measured, which (6) is not. We then set up a
secular equation for H„(=T+V~A) in terms of plane
waves with wave vectors k and k+g„, where the g„'s
are the reciprocal lattice vectors, and use this to
calculate the energy of the lowest state 8&. The use of
(32) results, of course, in a non-Hermitian secular
equation, and it is important to note that in first-order
perturbation theory the coefficient of the wave k+g
mixed into the lowest state is given by the matrix
element (H~) z+s, z from the first column, not by
(H„)~,~++ from the first row. We have

(Hn)~+s, ~

= v,+, ,—Z.(pwk+g, p.)g „(v—v.) pwk)
= V~+s, ~+K.(k'+ Vo —~.) (PWk+g 4'.) (4.,Pwk),

(33)

where we have used V=H Tand (20). Th—e corre-
sponding element in the OP% calculation is

(OPWk+g, (H—Ek) OPWk)= Vg~s, g

+g, (z,—z.)(Pwk+g, it,)(it„Pwk). (34)

Comparing this with (32), we see that they become
identical if we choose
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P~ eikl r+f(0 $.)eiklr/r (3g)

where f(8,&) then gives the scattering amplitude. Here
f is an eigenfunction of H satisfying the scattering
type of boundary conditions, so that we can apply the
pseudopotential theorem to it and construct a corre-
sponding g which is an eigenfunction of H~. This p is
the wave function which one would obtain if one did a
scattering calculation with V„, since it satisfies the
required boundary conditions. From (14), @ and P are
identical outside the range of the P„and thus give the
scattering amplitude for an isolated atom. The same
argument can now be applied to the scattering by one
or more atoms in a solid or liquid, or in a solid disturbed
by a phonon, or any other rearrangement of atoms. In
this case, the incident wave is a Bloch function of the
pure solvent or undisturbed solid. The scattering is
defined by constructing an eigenfunction g of H with
boundary conditions (38) for the scattered wavelet
emanating from each atom. This is not yet an exact
eigenfunction of H because it only includes single
scattering: one really has to go on to take the scattered
wavelets and scatter them in turn by the atoms they
hit, and so on. The point is that at each stage there is
a corresponding function g derivable from H„, which is
the same as g in the "free" region between the cores,
because we have previously shown that the scattered
wavelets from each individual atom are the same when
calculated from H or H~. In order to get the Aux of
electrons right, it is clearly necessary to normalize the
@ so that f and p are identical in the region between
the cores, i.e., according to (25), which proves the
theorem.

%e therefore wish to calculate the scattering pro-
duced by a change in the pseudopotential 6U„due to
inserting, removing, substituting, or displacing atoms.

4. TRABSITION PROBABILITIES

The transition probability per unit time from a state
Pr to a state Ps is, as usual,

1/r= (2s/A) i
Wsii'0(E), (37)

where Wsi is the scattering amplitude and N(E) the
density of states, and where 1/r and N (E) are expressed
per unit solid angle or other suitable angular range
around the direction of P&. Since the energy eigenvalues
E„ofthe Hamiltonian H and of the pseudo-Hamiltonian
H~ are the same, e(E) is also the same and we need
only concern ourselves with the calculation of H/'».

We erst prove the scattering amplitude theorem:
the scattering amplitude for any system of atoms is the
same when calculated from V or V„, provided the
pseudo wave functions are normalized as in (25), i.e.,
normalized so that the projection of P. on P„ is unity
when P„ is normalized to unity. In the case of a single
atom, the scattering amplitude is defined by taking an
incident plane wave at infinity and constructing a wave
function which at large distances behaves like

As shown in I and in Sec. 3, V~ can be chosen so that
V~ is a weak potential. Hence, 6U„ is also weak and
we can use perturbation theory to calculate the scatter-
ing by it. The kind of situation we have in mind is, for
instance, gold atoms dissolved in silver. Here the actual
change of potential 6V is large, so large, of course, that
it results in an extra radial node in the wave function,
and this would render a perturbation calculation based
on 8V practically useless. However, the actual scattering
of electrons by the gold atoms is small, corresponding
to a small 6V„ in which the change in the number of
radial nodes has all been canceled oG. Thus, we wish
to calculate the scattering amplitude H/'» of 8V„between
two pseudostates pi and g& of the unperturbed system.
This is not simply the matrix element (&2,5V„&i)
because the p„'s do not form an orthonormal set. We
define the reciprocal functions P" with the property

(4"A )=4 (39)

In terms of these, the erst-order perturbation expansion
is easily verified to be

8",~V,e )
gr(perturbed)=Pi+ g

ng].
(4o)

where we have used E„because the summation runs
over all core states with E,QE, as well as over the
valence states. The scattering amplitude is therefore"

W =8',&V.~). (41)

Wsi ——(g s,8 Vg i), (43)

and this should reduce algebraically to (42) without
having to appeal to the general arguments used in
proving the scattering amplitude theorem. The required
manipulations turn out to be somewhat tortuous,
involving as they do also the first-order changes in iP,
and in Vg, and we record them in the Appendix as a
check on the general theory.

As it stands, (42) is not obviously Hermitian between
ps and pr. Indeed, Vz (7) itself is not, in general, a
Hermitian operator. However, we shall prove that it

"L. D. Landau and E. M. Lifshitz, QNuntum 3fechaeics
(Pergamon Press, New York, 1958), pp. 147, 149.

It is straightforward but tedious to construct the set g"
systematically from (39), so we shall simply verify by
inspection from (14), (39), and from p, being a linear
combination of the g.'s, that g" is in fact just g„.
Thus from (16), (41) becomes

W21 (4'& 5VA i) 2 (AA ) (0 5VA'r) (42)

which is our final result for the scattering amplitude to
erst order in 8V„. In practice, the second term in (42)
will be very small, particularly if one uses the form
U„",because then V„and 6V„are already as near zero
as possible over the region of the g, 's.

When 6U is itself small enough to be treated by
first-order perturbation theory, we have
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has the Hermitian property

(y„V~y2) = (y„V~y,)*, (44)

if &1 and p2 are pseudo-wave functions belonging to the
same energy E, which we take to lie in the continuum
as in a scattering problem. We can expand @1,g2 about
each scattering atom in terms of spherical harmonics
I')

41 Zrl ~1 l Vl (|A)fl-(»; K),
(45)

@2 Ql +2lV,l (f7 0)fl (» ~2)

or in terms of Kubic harmonics or other symmetry
functions as appropriate. Here Tl (0,$)fl (»; F) is the
solution of the pseudo-Schrodinger equation with
symmetry I'& and energy E, integrated outwards from
&=finite at »=0. Similarly in Vll (7), the p, can be
sorted out according to the symmetry of the system,
namely, the 7'1 in our example, and then (p2,p,)
picks out from (45) only the term with the same l and
m. If V& is to preserve the spherical or other symmetry
of the system, then F, in (7) has to have the sa,me
symmetry properties as g. and (F„&1) picks out the
corresponding term from (45). We have, therefore,

(Q2& VRQ1) P lm +2, lm +1, lm

+2 (fl (» +2)Vl 4' 1 )(F.l-, V1 fl-(»; ~1)), (46)

from which (44) immediately follows if and only if
E&——E2, in general. If the symmetry is other than
spherical, the summation in (45) is over all the compo-
nents of all the irreducible representations, and the
orthogonality of the representations preserves the
result as before. '4 The same reasoning can be applied
to the scattering amplitude (42). Since in an elastic
scattering problem &1 and g2 always do have the same
energy, we obtain therefore the property

determination of energy levels and eigenfunctions is
concerned. The ideas of OPW'S can also be applied to
calculating scattering amplitudes, "" and we can
compare this approach here with the results of Sec. 4.
Consider again the case of scattering by a small concen-
tration of gold atoms dissolved in silver. We start by
doing a band-structure calculation for pure silver and
obtain the conduction-band wave function P„. Using
(14), (16) we can construct from each P„a corresponding
smooth function Q. at each of the atomic sites where we
are going to substitute gold atoms; if the band-structure
calculation. is done using the OPW method, P appears
automatically as a linear combination of some plane
waves. We have

where the summation includes summing over the sites
of interest. We now substitute the gold atoms, and
using (14), (16) again, we insert into p the atomic-like
oscillations appropriate to gold, which gives functions

Z.(0..A—-A.)f.,A' (49)

These are Bloch-like travelling waves with a single
direction, but with the appropriate oscillations at each
silver or gold atom. An electron is not scattered strongly
by the gold atoms so that it has a long mean free path,
and speaking pictorially we can say that f„ is the
on-going unscattered part of the wave function. It is
the f„'s that we use as a basis set if, for instance, we
want to set up a Boltzmann equation for the electrons.
Clearly, the f„'s are not eigenfunctions of the system,
nor are they exactly orthogonal, and to obtain the
scattering we have to calculate the effect of the full
Hamiltonian II on f„.Using the expansion

(47) f(t) =g„a„(t)p„exp (—iH, „t/f2), (50)

required by the principle of microscopic reversibility.
Incidentally, the original PK form (3) of Vs is

rather ambiguous in regard to Hermiticity. V&PK is a
completely Hermitian operator if we regard E„as a
fixed parameter, for instance, the energy of some
definite level which is to be calculated. Thus, if we use
H+Vrlp to set up a secular equation for F.„ in terms
of plane waves, we get4 the OPW secular equation
which is Hermitian. However, in general, a more
consistent interpretation of Vll~K as in (23) and in I
would be that Z„refers to the energy of the P following
on the right. In that case, Vgp~ is not Hermitian
although we again have the property (44) if F1 F2. ——

5. RELATION TO OPW CALCULATION

There is a close connection between the pseudo-
potential approach and the OPW method which has
been mentioned above and elsewhere' ' as far as the

~4V. Heine, Group Theory in Quantum Mechanics (Pergamon
Press, New York, 1960), pp. 42, 121.

where Jl„ is the diagonal element of H with respect to
P„we obtain for the scattering amplitude

IV21 (g'2 (+ +11)pl) (51)

"%.D. Knight, A. G. Berger, and V. Heine, Ann. Phys. 8,
173 (1959).

~6'&his approach has also been talked about for some years
among other people familiar with OPW's. We include here its
application to impurity scattering because of its relation to Sec. 4
and because this application does not appear to have been set
down before, without any claim to priority of invention.

to first order in the off-diagonal elements of H and in
the overlap. From (49) and (3), we obtain

(42 (ff +)4'1) (42 (If0 ~)4'1)+ (42 VA $1)
+Z.(&—&..A-) (42,|t..A.) (4.,A.A 1)

=(~, (&. F)~)+(~-., V...:~), (52)

where Ho includes the kinetic energy and the potential
energy at the unreplaced silver atoms, and V&„and
V„+„Erefer to all the replaced sites. Similarly, from
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(48) we have
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From (7) we have

o=(e., (~..-&)a )
=(y, (&o—&)e)+Q., V, ..' e ), (53)

where the whole expression is zero because g2 and Pi
are eigenfunctions of the Hamiltonian Bp„ in pure
silver. Substracting (53) from (52) and putting Ei 82-—
=H», we obtain finally from (51)

which is very similar to (42). The difference is that the
small second term of (42) does not appear in this
formulation, and that in (54) it is always the PK form
of the pseudopotential that appears because we have
used an OPW approach. The difference persists even
if we use the PK pseudopotential in (42); this is due to
the slight ambiguity in de6ning what one means by the
on-going part of the wave function or the unscattered
basis states, when these are not exact eigenfunctions
(in the f form) of any Hamiltonian. We can apply
(54) to scattering in a liquid metal" by taking an
empty lattice as the unperturbed system and inserting
the atoms. We obtain

~.i= (~., V;K~ ), (55)

with V„ including all the atoms. (55) is now identical
with (42) because there are no P,'s of the unperturbed
system. Analogous results can be derived for electron-
phonon scattering. v

APPENDIX

We wish to show that (42) reduces to (43) when

8V is small. Let us subtract the expression (42) from

(43), writing the difference as X which we want to show
identically zero. Substituting (16) in (43), we have

&=—(A,~V~4 i)+Z.(4 ~4")(N. ,~V~4»)

-Z.(~.,~VS.) (~.,~.)
+Z.,;(~.,~.)(~.,~V~:)(~:,~.). (A1)

~V.~=a.(F.,~)V.+Z.(~F.,~)~.,

which we substitute into (A1), giving

(A2)

&=—& (02 V.)9'.A i)+Z., "(e2,0.) Q.N. )(j";,qh)
—Z.(42,~VS")8"A i)
+z., "(424")(4.,~Vk") (f"A i) (A3)

(7). d(23) .h. .
(F'A i) = (&i—&.) (4.A i),

which substituted into (A3) gives

(A4)

X= —E.(e~,~4.) (&i—&.) (k.A i)
+Z.,"828.)9",V")(&i—&")(0"8 i)
-Z.(~.,~V~.)(~.,~ )

+Z... (42,4.) (4.,~VI") (0"A i) (A5)

hf, is given by ordinary perturbation theory as

V. =2::(~-,~V~")~-/(~" F-.), -
which gives

9",V")=o if c=c',
(A7)= Q „"OVAL;)//E. E„ if cg c—'.

From (16) we have

4=6+2"9"A2)0",

which combined with (A6) gives

(AS)

(4 2 ~4")= L(A,&VS")/%.—&2)]
+2"».(424")9",~V0.)/(&. &") (A9)—

We now substitute (A9) into the first term of (A5),
(A7) into the second term, and (AS) into the third
term. If we then put By=82, all the pieces will be seen
to cancel out, which proves our results.


