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Methods developed in modern 6eld theory are applied to deuteron stripping. The contribution associated
with the direct interaction mechanism is written as the product of two parts, one representing deuteron
disassociation in the 6eld of the target and the other nucleon capture by the target. The capture amplitude
is written as a dispersion relation and evaluated in terms of the bound-state wave function and the optical
model phase shifts for nucleon-nucleus scattering in the capturing channel. The disassociation is also ex-
pressed as a dispersion relation and evaluated in terms of the same nucleon-nucleus scattering and also
deuteron-target scattering on the energy shell. It is shown that the formalism allows for the distortion of
the capture vertex characterized normally by an unusually large nuclear radius, and also explains the
persistence of an angular distribution typical of the cutoG Born approximation in spite of a fluctuating
yield for the reaction.

I. INTRODUCTION larly as it sometimes shows considerable variation with
bombarding energy in spite of the continuing fairly
rigid conformity of the angular distribution to the
cutoff Born approximation. Of course, the yield pre-
dicted by a Born approximation shows no such varia-
tion. In particular, this variation often shows some
correlation with the variations in the total deuteron-A
scattering cross section. ' Since an optical model fitted
to the experimental deuteron-A scattering is used in
the distorted wave theory, these oscillations in yield are
often accounted for by that theory, but not in a very
transparent way. At least part of the problem then of
any theory should be to justify the apparent contra-
diction of an angular distribution 6tted at least approxi-
mately by the Born approximation and a yield given
in terms of something related to deuteron-A scattering.
Furthermore, it would be interesting to have some
justi6cation for the role of the cutoff in the Butler
theory and some method for obtaining it from theory,
or from some independent experiment rather than using
it as a fitting parameter.

Formally stripping is much more complex than elastic
scattering, which we can describe by a potential and
hence reduce to simple numerical solution or perhaps
even exact solution. No exact solution of stripping
exists and even in a potential model there are serious
formal problem. In elastic scattering if no exact solu-
tion exists, the Born series often serves as a convenient
formal solution for investigating the structure of ampli-
tudes. In rearrangement collisions this series has no
validity, since both of the two potentials essential to
the problem are strong enough to support bound states. '
In stripping, these are the neutron-proton potential and
the neutron-A potential with bound states d and 8,
respectively. In addition, to making the Born series
invalid even as a formal tool, this fact coupled with the
identity of the particles in the target (A) and the neu-
tron and proton of the deuteron make the usual methods
of adiabatic switching very dificult to apply. A further
problem peculiar to the formal theory of rearrangement

~HE theory and practice of nuclear direct reactions
has received much attention. ' These reactions

offer a wide range of striking experimental character-
istics, many of which have simple structural interpreta-
tions. To the theoretist these reactions offer both the
practical challenge of disentangling this structure and
also the formal problem of describing the reactions in
general. In this paper we present a theory of direct
nuclear reactions based on techniques recently de-
veloped in the theory of elementary particles which
helps to clarify the formal problems and also provides
a new basis for analysis of experiment.

The classic nuclear direct reaction is deuteron strip-
ping, and we shall concentrate on it. Much of what we

say, however, is of wider validity. In a deuteron strip-
ping reaction of the type A(d, p)B the basic process is
the removal of the neutron from the deuteron and its
capture directly into the bound state B.This process is
described without frills in the Born approximation. The
success of this approximation or better of the modified
or cutoff Born approximation of Butler' in accounting
for angular distributions and in ai.ding the extraction
of information on nuclear structure is embarassingly
good. However, the success is certainly not perfect and
a number of attempts to improve the theory have been
made. The most extensive is the distorted-wave Born
approximation, ' in which both incoming and outgoing
waves are corrected for elastic rescattering. This calcu-
lation involves a number of parameters and assump-
tions, such as an optical model for deuteron-A scattering
and further involves much computation, so that the
effect of these parameters is difficult to control. Never-
theless, it gives an even better account of the data,
again particularly for angular distributions. The total
yield of the reaction is not so easily obtained, particu-
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collisions is the multiplicity of initial and final Hamil-
tonians describing the initial and Anal asymptotic
states and the concomitant lack of orthogonality of
these states. '

These problems are very similar to ones which are
met in elementary particle theory some even in elastic
scattering. For example, in stripping, if we try to reduce
the magnitude of the neutron-proton interaction in
order to make the Born series valid, the deuteron itself
disintegrates. This is similar to the problem of x-nucleon
scattering where if one reduces the +-nucleon inter-
action the nucleon itself disintegrates as it is also in
some sense composed of pions and nucleons. These
problems have been met in field theory by the methods
of asymptotic operators, contraction rules, and dis-
persion relations. ' In this paper, we apply these methods
to stripping.

In attempting to carry these techniques over from
Geld theory we encounter a number of problems. First,
we find that the amplitude we are led to by a straight-
forward application of the analogy to field theory is
zero, while other terms of opaque structure which are
zero in field theory contain the entire stripping ampli-
tude. This difficulty can be overcome by making the
analogy closer through changing some of the bound
particles into elementary particles, particularly B. The
method for making such a replacement and the partial
justification for it has been given by Vaughn, Aaron,
and Amado. ~ We make no further justification of the
method here but feel certain that the final answer is
correct independent of the use of this construction.
One might be concerned whether in doing this, or in
making other assumptions about bound states and
analytic properties, we encounter anomalous thresh-
olds. ' We assume that by putting in Schrodinger wave
functions, where necessary, and by using nonrelativistic
forms throughout, we never meet them. '

The approach we shall use to the stripping problem
is the same as the one which has proved successful in
solving V—0 scattering in the Lee model. "The basic
process in stripping is the capture of the neutron from
the deuteron by A directly into the state B. In order
for this to occur, the deuteron must first disassociate.
If it does independently of the Geld of A, and if the
neutron is captured into 8 independently of the proton,
the process can be described by the Born approximation.
In our formulation, capture of the neutron by A always
occurs independently of the proton but it is not a free
neutron that is captured rather one that is allowed to
scatter from A as well. The capture process is described

' Compare S. Sunakawa, Progr. Theoret. Phys, (Kyoto) 24,
963 (1960).

'A review of these methods and extensive references will be
found in Dispersion Relations and Elementary Particles, edited by
DeWitt and Omnes (John Wiley Br Sons, New York, 1960).

~ M. T. Uaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).

8Karplus, SommerGeld, and Wichman, Phys. Rev. 111, 1187
(1958).' R. Blankenbecler and L. F.Cook, Phys. Rev. 119, 1745 (1960).

's R. D. Amado, Phys. Rev. 122, 696 (1961).

in terms of the bound-state wave function of the neu-
tron in 8 and of the on-the™energy-shell scattering
amplitude for neutron-A optical model scattering in the
channel with the quantum numbers of B. The bound-
state wave function can be obtained from some model.
The scattering amplitude is in principle obtainable from
experiment. To calculate the capture vertex taking re-
scattering into account, it is not necessary to solve any
Schrodinger equation to obtain the scattering state.
The capture amplitude will differ from the Born
approximation, which is given just by the wave func-
tion, in that rescattering previous to capture is included.
In the usual Butler theory of stripping this is taken
into account phenomenologically by cutting oR the
capture at some adjustable radius. No such parameter
is necessary here.

The major part of the calculation is devoted to
calculating the amplitude for disassociation of the
deuteron in the field of A. This can occur either inde-
pendently of 2 (Horn approximation) or through inter-
action with A. The essence of the direct interaction
process is that between the final break-up of the deu-
teron and the capture of the neutron in 8 neither the
neutron nor A are interfered with by the proton. Thus,
we neglect neutron-proton rescattering corrections to
the disassociation and proton-A rescattering or dis-
association contributions. We keep the contribution to
both from the neutron-A interaction since it is this that
subsequently gives the capture. Furthermore, we keep
exactly the effect of deuteron-A rescattering on the
disassociation, without assuming this to be purely
elastic. This rescattering, as well as the neutron-A
interaction, is expressed in terms of the measurable
scattering amplitude on the energy shell. There is no
need to solve for a wave function for the deuteron-A
scattering state. This is a decided advantage, since any
reasonably manageable attempt to do this neglects the
eRects of the very 6nite size of the deuteron by using a
deuteron-A optical model.

It might be thought that by excluding the proton-
neutron and proton-A contributions to the disassocia-
tion we are leaving out Anal-state interactions. This is
not the case. It is only in a distorted wave treatment
that bo/h final- and initial-state rescattering must be
taken into account, ' and then only elastic scattering
can be included. In the formal theory of scattering"
it is usually sufhcient to include only initial- or final-
state interactions so long as all processes, that is elastic
and inelastic, are allowed. We do just that in putting
in the full deuteron-A scattering corrections from ex-
periment. What we are neglecting are the contributions
of the neutron-proton and proton-A interactions to the
final deuteron break-up just before the capture of the
neutron into B.How some of the proton-A interactions
could also be included is discussed in the Appendix.

Thus, finally we are able to express deuteron stripping
in terms of deuteron-A and neutron-A scattering on the

"B.A. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950)
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energy shell, and in terms of the wave function for the
neutron in B. The first two are accessible from experi-
ment and the third may be computed fairly well from
a model up to a multiplicative constant (essentially the
reduced width). This constant we take as a fitting
parameter; it is the only one in the theory. The form
for the amplitude we obtain is relatively complex, but
its essential features can be recognized. In a simple
model we see that neutron-A scattering does indeed
distort the capture vertex making the nuclear radius
apparently increase, but that a part of this distortion
effect is canceled in the total stripping amplitude by
the corresponding distortion of the amplitude for dis-
association of the deuteron. The effect of deuteron-A
rescattering can be easily examined if we assume that
since the scattering is largely forward, we need only
take the forward scattering into account. Doing this,
we find an expression for the stripping amplitude in
which the usual modified Born approximation, a func-
tion of momentum transfer only, appears multiplied by
an energy dependent factor which is simply related to
the deuteron-A total cross section. To obtain this form
it is necessary to simplify the theory enormously, but
the qualitative features of this simplified result should
still be true of a fuller analysis and hence it is possible
to understand the peristence of the form of the angular
distribution given in the Born approximation in spite
of variations in yield.

The formal theory necessary to obtain these results
is set forth in Sec. II. In Sec. III the vertex for captur-
ing the neutron into 8 in the presence of neutron-A
rescattering is computed. The amplitude for disin-
tegration of the deuteron in the field of A is calculated
in Sec. IV. It is here that a number of well-defined
approximations are made and also that a cavalier
approach is taken toward the analtic properties of the
amplitudes. In Sec. V the results are discussed and some
simplifying assumptions are made in order to examine
the properties of the amplitudes in detail.

Il. FORMAL METHODS

In this section we will be interested in deriving a
I,ow-type equation ' describing the nuclear stripping
reaction A+d ~ p+B. Our attention will be confined
to stripping reactions although this in no way exhausts
the generality of this approach. In describing the
collision of composite particles the powerful tool of
contraction rules will be used. " Since this is a rather
unfamiliar procedure in the present context, the ele-
ments will be reviewed where necessary. ""

"F.W. Low, Phys. Rev. 97, 1592 (1955).
»H. Lehmann, K. Symanzik, and %. Zimmermann, Nuovo

cimento 1, 205 (1955); R. Haag, Phys. Rev. 112, 669 (1958);
W. Zimmermann, Nuovo cimento 10, 597 (1958); W. Brenig and
R. Haag, Fortschr. Physik 7, 183 (1959).

'4 Some forma1 considerations wi11 be found in P. Redmond and
J. Uretsky, Ann. Phys. (New York) 9, 109 (1960).

'~ An account of many of the methods used in this paper will
be found in the article by M. L. Goldberger in reference 6.

@(» t) —eirrip(x) e rHi-
which leads to the equation of motion

(2.3)

(2.4)

The "in" and "out" states may be defined in terms of
the asymptotic condition according to

lim &~ I +-t(t)
I 0)= &v IPn"')

i~&el+-(t) IP}=&& ' 'lP),

(2.5)

where, for example, IPnt+&) is the interacting state
which is a plane wave at t= —ao. The creation and
annihilation operators for single-particle states, 4 (t),
have been defined as" "

%' (t)= dsx f *(x,t)@(x,t), (2.6)

where we have introduced the function f (x,t), which
is a properly normalized (in a unit box) solutions of the
Schrodinger equation describing the center-of-mass
motion of the, in general, composite particle o, i.e.,

A2

i—f (x,t)= — Pf (x,t) —e.g (x,t),
Bt 2m

(2 "/)

where e, is the (positive) binding energy of particle n.
For a composite particle the operators corresponding
to (2.6) are defined in an analogous manner,

C „(t)= dsX f.*(X,t)C.(X,t), (2.8)

where X is the center-of-mass coordinate of the system
and

C -(X,t) = d'yr" .d'yN a-(»".y~)

yi+ +yiv)
Xt'I X— I+(yr, t)" +(y, t) (29)]

The S-matrix element of interest is

&pg&-i
I
dg i+&) (2 1)

The wave functions for these interacting states must be
constructed. In order to carry out this program it is
convenient to introduce the formalism of second quan-
tization. Commutation relations for the nucleons are
chosen to be

(it (x),Pt(x')) =8(x—x'),

(~(x),~(")& =(~t(x),~'(")& =o, (2.2)

where spin and isotopic spin indices have been sup-
pressed. We assume the system is described by a Hamil-
tonian, II, but do not need to prescribe its form for the
present. Heisenberg operators are introduced according
to
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Here g„(yr y)))) is any properly normalized and sym-
metrized function of the relative coordinates which
allows the condition

lim(0)C (t) (n)=1 (2.10)

Integrating by parts with respect to the time limit,
using " BP(t)

dt,limF(t) = lim Ji(t)+ (2.11)

and assuming that f»(X,t) is a plane wave, we find

(S—1)„»,d~ —— i dt d'X exp—(iEi)t —iKi) X)

to be satisfied. "It is otherwise arbitrary. This latitude
is possible since our states need only be defined asymp-
totically. If a Schrodinger Hamiltonian is chosen, then
the bound-state wave function is a natural choice for
g, but even here any function with unit overlap with
the bound state will do as well so long as there is only
one bound state. If there is more than one a more re-
stricted latitude is still allowed. The operators defined

by (2.6), (2.8), and (2.9) have a simple interpretation.
First, the required number of free nucleons is created
or annihilated by the single-particle operators and then
these are folded together with the appropriate weight-
ing function to produce the coherent mixture corre-
sponding to the composite system.

We proceed now to a derivation of the transition
amplitude. The S-matrix defined by Eq. (2.1) can be
written as

S= lim(p
~
C» (t)

~

dA i+&).

In order to isolate the most interesting contributions
to the stripping reaction, it is convenient to retain the
field operator description and to contract a second
particle. The choice as to which particle to contract is
not unique and leads to several distinct and interesting
expansions for the transition matrix. We shall be par-
ticularly interested in the form resulting from the con-
traction of the proton. Use of the asymptotic conditions
for the proton leads to

2'=lim(0~%~(t)J»(0) ~dAf+)). (2.16)

It is convenient to rewrite this in terms of an advanced
commutator (or anticommutator) and to integrate the
time limit by parts; then"

T= —z de ~iEyt—imp y

XI i E„[(0[8—(t)—L@„(y,t),J»(0)]~[dA i+&) (2..17)
(.'

Bt

The presence of g(t) makes the contribution from the
limit at very large negative times zero. The anticom-
mutator is taken if 8 contains an odd number of nu-
cleons and the commutator otherwise since the proton
is a fermion. The extra term introduced by the second
ordering in the commutator is

lim(0
~
J»(0)@,(t)

~
dA i+&).

Inserting a complete set of states, this may be written

Q(0( J»(0) ($)lim($~%~(t) ~dAi+&)

)r 8
X~ i Ea)(P~ea(X t)fdic—' '). (212)

&at

Finally, introducing the transition matrix T as

(S—1)ye, rgb
—2rri5(E&+Ep E~ Er&)T, (2.13)— —

and using the equations of motion for C»(X, t) leads to

r=(p~ J~(0) ~dA i+&), (2.14)
where

Ji&(t) = O'X exp(iE»t —iK» X)

=r(0I J~(0) IS)(Sp' & ldA'+&). (2.1g)

The only state S with the proper energy and quantum
numbers that can contribute is the state S=B, since
the second matrix element conserves energy. But
(0~ J&)(0)

~
3)=0 as may be veri6ed from the equations

of motion. Thus, the second term gives zero and may be
freely added to 2'.

If the time differentiations in (2.17) are carried out,
two terms emerge. The erst arises when the time de-
rivative acts on the theta function and yields a delta
function on time. This gives an equal time commutator
of 0 „and J~ which we neglect. The second term gives
J„.Therefore, the final form of the transition matrix is

In analogy with electromagnetic theory this is called
the source current or current for the 8 field. The form
(2.14) for the transition matrix can easily be shown to
be equivalent to the usual formulation in the case of a
Schrodinger Hamiltonian if the field operators are
eliminated in favor of the Schrodinger wave functions. "

dt e'~&'(0
~
8(t) (J~(t),Ji& (0)]+~

dA i+&). (2.19)

Hy neglecting the equal-time commutator and keeping
the form (2.19), we make an assumption about the
form of the Hamiltonian. It is shown by Vaughn,
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Aaron, and Amado' in a very similar example that if the
8 state is a bound state in a nonrelativistic potential
theory, the T matrix of (2.19) is identically zero since
for any state S, &0 I Jz(0) I S)=0 in that case. Stripping
will occur, of course, but is given entirely by the equal-
time commutator, which we have neglected. If, however,
8 is an elementary particle, that is makes its appearance
as a basic Geld in the Hamiltonian, the equal-time com-
mutator is zero and (2.19) the entire amplitude. It is
further shown that for elastic scattering, at least,
composite-particle theories may be obtained as the
limit of theories with elementary particles. We believe
it reasonable that this is also true for inelastic ampli-
tudes. Thus, we shall compute T of (2.19) taking B to
be elementary when necessary. This freedom will allow
us to obtain a nontrivial but soluble equation for T.
It is assumed that the final answer will not depend on
taking 8 as elementary, this choice acting only as a
catalyst in obtaining equations.

A physical interpretation of the processes contribut-
ing to the reaction of interest is simplified, if a complete
set of interacting states (eigenstates of H) is inserted
into (2.19) and the time integration is performed:

ol J„(o)ls&&sl J.(o) I~A&+~&
T=P

S Ey Esyze—

&oI Jn(o) Is&(sl J„(0)IdA&+')
(2.20)

Es—Es+ze

Up to this point the treatment has been quite general.
Thus, (2.20) may be used to describe any reaction
simply by changing labels on the operators since we
have thus far used nothing specific to deuteron stripping.

We now begin to put in some of the physics of strip-
ping. The contribution from the first term in (2.20)
may be neglected. The states S which contribute must
have the quantum numbers of a proton. The one proton
state itself is excluded, since &0 I J„Ip) =0. In a potential
theory, this is all there could be. In a meson theory,
the state of proton plus one meson is admissible, but
this would have a large energy denominator in (2.20)
and would thus be negligible.

Consider the second term of T. This term represents
a factoring of the amplitude as shown in Fig. 1(a). The
states which can contribute to the sum in (2.20) are
all those with the quantum numbers of 8 except 8
itself since &ol JnlB)=0. There are many such states,
but it is essential to the direct reaction method to
assume that 8 is formed from a neutron and A in its
ground state. Thus from all the states S, we wish to
project just those parts containing a neutron and A in
its ground state. This is just what is done in the optical
model state for neutron-A scattering. "That is, we keep
just these projections if we replace S by the state of a

'7 See N. C. Francis and K. M. Watson, Phys. Rev. 92, 291
(1953);Phys. Rev. 93, 313 (1954).

(o) (b)

I n. 1. Schematic representations of the factorization of the
deuteron stripping T matrix. (a) Eq. (2.20), second term; (b) Eq.
(2.21).

neutron scattering from A represented as an optical
potential. This state is not quite an eigenstate of the
total Hamiltonian, but it should be a fairly good ap-
proximation to one for energies below the particle
production threshold in neutron-A scattering. Alter™
nately, we can say that the replacement of the sum over
S by the neutron-A optical model scattering state con-
sists in replacing the total Hamiltonian of the system by
one in which neutron-A scattering is treated via an
optical model potential. Such a Hamiltonian is not
strictly Hermitian, but for low energies (below the
particle threshold) the imaginary part is small. Thus,
we proceed by replacing the sum over states in the
second term of (2.20) by the optical model scattering
state nA»('+). ' %e obtain

(ol Jn(0) I
zzAi&+&&&zzAi&+&

I J„(0)I
dA &+&)

2'= Z . (2.21)
ndI EN+EAi EB

The notation A» indicates the nucleus A in its ground
state but with, in general, a diGerent asymptotic mo-
mentum from the target A. This form for the amplitude
is represented in Fig. 1(b). It expresses stripping as the
product of two parts. First the amplitude for the
breakup of the deuteron 8+A —+ zz+p+A and then
for the capture process zz+A —+B. Thus, we must
obtain the dependence of the amplitudes

I'=&ol Jn(0) I
zzAr&+1&, (2.22)

Cd»

&oI J~(0) I~i&-"'+'&&dr&'+'I J.(o) I~A'+')
(2.24)

~B ~df ~O

where, as before, d» represents the deuteron in a dif-

"We may take either the "plus" or "minus" states, since
they each independently form a complete set;,

F=&zzAr&+il J„(0)ldA&+&&, (2.23)

on the energy of the eA» state. It should be noted that
since B will have a definite spin and parity (Jzr), only
that part of the neutron-A scattering state corre-
sponding to the Jzr partial wave will contribute. In
order to simplify the algebra, we will assume that 8 is
an s state and neglect spins. These restrictions are
easily relaxed.

Another intermediate state which can contribute to
the second term of (2.20) is, the state of a deuteron and
nucleus C, where C has one less proton than A. The
contribution of this term may be written
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ferent state of asymptotic momentum from d. It is
clear that in the lowest-order approximation in which

&d,c(+&lz„(0)lda(+»=5. ,..&clz, (0) l~&,

matrix element, the 8 current J~ is then

(3.5)

this term represents the contribution of "heavy
particle" stripping or exchange stripping. " We will

not consider it further in our analysis but it can be
included by the techniques which we shall outline in
the following sections.

III. THE VERTEX FUNCTION

We now turn to the problem of evaluating the vertex
function (2.22). Recall it is assumed that 8 is an s
state so that only the s-wave part of eA&'+) is needed.
If the neutron is contracted, we find

r= —z d3y g
—i(Zn&—ll y)

((' 8
x~1,—+s.)(oslo( —~&p, (o&,o.(xi&3, ~1-4,&, (o.n

d'y e"'(oil Je(0),k-'(y) j~l~l)

«e ""'(oil ~~(0),~-'(t))+ I
~ &. (3.2)

To study I' further it is convenient to use states
normalized in a box of unit volume and to work in the
rest frame of 8, that is, the center-of-mass system of the
neutron and A~. We can then factor a momentum-
conserving Kronecker delta function from I". In this
frame the interaction of the neutron, A and 8, recalling
that 8 is considered to be elementary, can be written:

a..=Z C (~')IV"(0)~~(n)4(—.)

+0 (0)0 '( )4 '(—)j, (33)

1t(h) = d'x P(x)e—'~ * (3.4)

where the momentum space operators are defined by

and C (e') is the form factor describing the interaction.
Up to self-mass terms, which do not contribute in our

"L.Madansky and G. E. Owen, Phys. Rev. 99, 1608 (1955);
G. E. Owen and L. Madansky, Phys. Rev. 105, 1766 (1957).

'0We take units in which fi=1 and 2m=1 where m is the
nucleon mass,

where we have called the neutron momentum n,"and
where now the neutron field is defined with respect to
an optical model Hamiltonian for the neutron-A inter-
action. The extra term introduced by the commutator
gives zero. Carrying out the time differentiation yields
two terms:

If the elementary particle theory is really to be used to
represent a bound state, then it is shown by Vaughn,
Aaron, and Amado' that C (I') should be related to the
Fourier transform of the bound-state wave function.
That is,

@(Ns) —(Ns+eB) dsg e(n ~

x(3I&B(x), (3 7)

where ee is the (positive) binding energy of the neutron
in 8 and (t&e(x) is the normalized wave function of the
state. We shall assume later that C (es) is an analytic
function of e' in the entire rP plane except for a cut
running from m'= —eg —) to —~; ) a positive real
number depending on the details of the strength and
range of the potential which binds 8.' For the present,
all we need is that C (rP) is real for positive I' and goes
to zero sufficiently rapidly for large e'. The factor
e'+ee in (3.7) removes the pole that is otherwise
present in the Fourier transform of (te at n'= —ee.
Hence, C(—ee) is the residue at that pole, we shall
call it I'0. This quantity is the natural invariant quan-
tity associated with the strength of the process 8+~
a+A, that is to say the coupling constant for the
process. It is related by kinematical factors to the
reduced width of 8.Although we might be able to calcu-
late the form of C (e'), at least for small Ns which is all
we really need, from some model, we do not expect to
be able to calculate I'0. We shall keep it as a parameter
to be discovered by measuring stripping. Thus, we
write

C(")=l.f( ') f(—")=1

In the bound-state limit, Z —& 0; we shall side-step
this difficulty by assuming I'0 to be slightly less than
the value associated with the bound state limit, and
therefore Z small but not zero. We can then compute
I' and T and finally let Z be zero at the end, when in
fact it shall have canceled out.

We can now write for (3.2)

I'0
I'(n') = f(es)+i C—t—

Z

0&0( t)e '""(0—
I [Jl&(0),J„t(t)]~

I
2 l). (3.8)

It is natural to assume thy, t this de6nes a function

where Z is the wave function renormalization constant
associated with the 8 field. Thus, for the first term of
1' in (3.2) we obtain

I
d'y e"'&0 I Pe(0)A.'(y) a+ I &l)= —-C'(~') (3.6)

Z



NEW METHODS IN DIRECT INTERACTION THEORY 267

re 1 " ImI'(x)
I'(e') = ——f(e')+ — dx

Z 7l p S—S —Z6

analytic intheupper-half e plane. Thus, we may write where P is given in terms of the s-wave scattering
amplitude by P=sin5 expib. If 5 is real 5=qk The in-
tegral equation (3.14) (or mapping problem) is well
known in dispersion theory. The solution is"

where by using the limits 0 to ~ we have anticipated
the fact that the absorptive part of F coming from the
second term of (3.2) is nonzero only for e')0. Since

f(n') is real in that region, the absorptive part is indeed
the imaginary part. We deliberately leave out of con-
sideration the question of anomalous thresholds since
these occur only in a relativistic theory and we believe
they are completely avoided in our work by explicit
use of the bound-state wave function in f(N'). '

In the usual way we evaluate the imaginary part of
I' by writing 0(—t) =—', +~e(—t) 2' and associating the
imaginary part with the first term" We have

z 00

Iml'(I') =— dt e '""(OILJe(0),J„t(t)]~IA&). (3.10)2-

where

"f(x) sing(x)e '&'&d x)
(3.16)

x—e'—ie )'
I' "4(y)

p(x) =— dy
p g—S

(3.17)

and where we have made some assumptions about the
asymptotic behavior of F for large e'. These assump-
tions, particularly that the integral for p converges,
may not be valid, at least in the bound-state limit.
They may be put right by a subtraction. We define

Inserting a complete set of interacting states and using
the fact that (OI 2JIS)=0 for any state in a non-
relativistic model, we have

Iml'(n') =—m- P 5 (e'+Eg, Es)—
S

x&0IJ,(0) Is)(sI J„t(0)IA,). (3.11)

and then

P oo

0 S = X 6gg—
4b)dy

(y —*)(a+ en)
(3.18)

The only state which can contribute to the sum is the
eA scattering state, and we take the "plus" state. The
threshold for its contribution begins at E =0. We
obtain

Iml'(e') = —7r g 8(rP+Eg E. Eg )——
n'A'

x(0I Jg(0) I&'A'+&)(&'A'+'I J-'(o) IAr), (3»)
which relates Imi' to I" itself through a factor which is
the m-A scattering T matrix. This scattering amplitude
is on the energy shell by virtue of the delta func-
tion. Further, since 8 is an s-state, the factor
(0I Je(0) In'A'(+&) projects out the s-wave part of the
m'A' state so that knowledge of the scattering is needed
only in that partial wave. ImF must be real and there-
fore I' itself must have the phase tt of s wave neutron A
scattering in the optical model. Thus,

ImI'(x) = I'(x) sing(x) expL —g(x)], (3.13)
ol

I'ef(&t') 1 "e—'«*& sing(x)1'(x)dx
I'(e') = — + (3.14)

Z 7l Q X Q ZC

The phase @ is related to the, in general complex, phase
shift 5 by""

tang =ReP/(1 —ImP), (3.15)
"e(t) =1 for t)0; e(t) = —1 for t&0.
"M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178

(1958l.

"sing(x)e-'('&f(x)dx)

)
(3.19)

S S Z6

The two terms of (3.19) are easily interpreted. The
first is just the Fourier transform of the bound-state
wave function and represents the probability amplitude
for a neutron capturing into A to form 8 in the absence
of distortion. The second term gives the eIIfect of dis-
tortion on the neutron as it comes in to be captured.

Having obtained (3.19) by taking 8 to be elementary,
we can drop this replacement and assume that this form
of the vertex is still valid in the limit that 8 is com-
posite, except of course we do not yet let Z tend to 0.

IV. BREAKUP AMPLITUDE

We now attach the rn.ore formidable task of calculat-
ing the breakup amplitude of (2.23), defined as

F=(eA&~+&
I J„(0)IdAi+&).

In order to calculate the sum in (2.21) we need to know
the dependence of this factor on the energy of the eA &

state only, keeping the momenta of the proton, deu-
teron, and A fixed. As it stands, Ii does not depend only
on the energy of the eA & state but also on the momenta
in this state. This dependence on momenta is removed
when F is folded with the s-wave vertex function in the

23 N. I. Muskhelishvili, SingNLar IntegraL Eqlations (P. Noord-
hoQ, N. V. Groningen, Holland, 1953);R. Omnea, Nnovo cimento
8, 316 (1958),
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sum; that is, when the s wave part of the mA» state is
projected out. If we continue to work in the center-of-
mass frame of the e—A» system, that is, the rest frame
of 8, we can easily perform this s-wave projection and
we need only study

P(E.,) =P,(nA, &+
I J„(O)IdA~+&)

1
dn„(nAg&+&

I J„(0)I
dA &+&&, (4.1)

4m

where 0„ is the solid angle of n and we have written
F(E~,) understanding that all the other momenta are
kept Axed save that of the neutron and 2, which are
n and —n respectively by momentum conservation.
Again a Kronecker delta for momentum conservation
is factored out.

To get an equation for F, we proceed as in V-0
scattering in the Lee model. " We shall not have to
assume that 8 is elementary in this calculation. Con-
tinuing the convention of box normalization, we may
write

F= lid(nlrb„(t)J„(0) ldA&+&)

= »m(nip„(t), J„(0)]ldA&+&)

+(n I J„(o)I
d&s, ,&,. (4.2)

The second term comes from the extra factor intro-
duced by the commutator and follows from the defini-
tion of the "in" state. For simplicity, we assume that
A is a boson. Using the now familiar techniques, we
obtain for (4.2)

F=(nl Jn(0) ld»A, ~,+(nip~ (0),Jn(0)]1dA"'&

+i dt 0( t)e'E»'(n—
l P~, (t),J„(0)]I

dA &+&&, (4.3)

more detail and describe how it may be relaxed to
some extent.

Dropping the equal-time commutator, we can pro-
ceed to studying the analytic properties implied by
(4.3). The immediate temptation to guess that the
third term defines a function analytic in the lower half
8&, plane is not justified since this term is not a func-
tion of E&, only. This hurdle is easily passed, however,
by introducing the projection operator of (4.1), we
then get

Fi(Eg,)= P, (nl J„(0)I d&ba, p. ,

+i dt 0(—t)e'~»'P, (nl [J~,(t),J~(0)]dA ~+~&. (4A)

We shall now presume that the second term does
indeed define a function of E~, analytic in the lower half
plane which further has the proper asymptotic prop-
perties to allow us to write

F(Eg,) =P,(nl J„(0)Id&ba.t,
1 " A(x)

dx, (4.5)
„x—Eg,+i e

where the absorptive part of It, is given as before by

00

A (Eg,) = dt-2-
Xe'e" lp, (n I

I'Jg, (t),J„(0)]I
dA &+'&. (4.6)

Inserting a complete set of interacting states and doing
the time integrals, we obtain

A (Eg,)

=~P. Z(nl J~, (o) ls&(sl J.(0) I
dA'+'&

where the equal time commutator arises as usual from
the time differentiation of the 0 function. It represents
breakup of the deuteron through an explicit proton-2
interaction. If no such interaction exists, it should be
noted that it is not essential to the occurrence of
stripping, the commutator will be zero. We shall
assume we may neglect it. This does not mean that we
are neglecting initial or final interactions. In fact, since
we shall later use the exact experimental deuteron-2
scattering amplitude to take into account these inter-
actions, the actual contribution of a proton-A inter-
action to the initial and final state rescattering will be
taken into account. What is left out by neglecting the
commutator is the contribution of this interaction to
the process d+A ~p+n+A. This is consistent with
the direct interaction idea that the neutron is captured
directly by 2 so that the proton is essentially free
during the deuteron breakup and the neutron capture.
In the Appendix we will discuss this approximation in

x~(E.,+E.—E.)—p. p(nl J.(0) Is)

x(sl J~,(0) I
dA'+'&~(E~ +E. E. E~) (4.7—)—

In the first term the permissible states are just 8 and
eA. The mA term will make a phase correction to F
just as described in the previous section for the vertex.
The term with 8 will give back the stripping T matrix,
but in the coordinate system we have chosen (rest
frame of 8), the T matrix will not depend in E~„and
hence will not need to be known to do the sum in
(2.21). Finally, we shall obtain an algebraic equation
for T, which we can solve. In the second term of (4.7)
the states which can occur are d and n-p. The 6rst will

represent the effect of the initial state rescattering on
the breakup, and through it on the full amplitude. In
this formulation there is no need to include final-state
interactions as well. This asymmetry is well known in
the usual formal theory of scattering. "The n pinter--
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mediate state represents neutron-proton rescattering
corrections to the breakup. We neglect this as we
neglect proton-A corrections. This approximation is
surely in the direct-interaction spirit both since the

neutron-proton rescattering interferes with the direct
capture of the neutron and because the neutron-proton
interaction is much less effective than the neutron-A
interaction. In this approximation we may write for A

A(E„)=~P,(~l J„(0)IB)(BIJ„(O)IdA&+&)S(E„+E„—E,)
+~P.P [&~l J„(0)I~'A'&+&}&~~'A'&+&

I J„(0)ldA&+&)~(E„+E„—E,.—E„.)j
nfAI

sP—,[('ll J„(0)I di)&di I Jg, (0) I
dA &+&)5(Eg,+Ea, Eg —Ea)j—(4.8)

There is no sum in the first or third term since mo-
mentum conservation 6xes the momentum of 8 to be
zero and of d& to be n+ p. We are neglecting the trivial
but algebraically annoying complication of the spin
of the deuteron, and of the neutron and proton for that
matter. The projection operator is unnecessary in the
first term, this already being a function of EA, only.
In the second term it picks out the s-wave part of e-A
scattering, as we would expect. In the third term its
function is not so trivial, and it is largely for this term
that it is introduced.

Vertex functions of the form &el J'„(0)ld) or the
corresponding &I I J&,(0) I B) appear in this analysis. We
must relate these to the quantities defined in the
previous section. Let us study

(4.9)

If we express JA, in terms of the commutator with the
Hamiltonian, we obtain

V= (E E Eg ) —d'xe"—*&IIf'(x) I B). (4.Ã)

If one goes over to Schrodinger wave functions, we see
that V is just the Fourier transform of the bound state.

That is, in the rest frame of B, V= —I'Of(yP), where we
have factored out a Kronecker delta for momentum
conservation. Furthermore, we know that V(—e»)
= —

F&&. Correspondingly &Nl J„(0)ld) is the Fourier
transform of the deuteron wave function. Let us call

&~IJ.(0) Id) I ~.+~.=~.= —vo,

the effective coupling constant or invariant reduced
width of the deuteron. It is known in terms of the
effective range and scattering length of neutron-proton
triplet scattering. '4 We may write

&~ I
J„(0)I d) = —sofa[(n —p)'/4]. (4.11)

fq is the Fourier transform of the deuteron wave func-
tion with the pole removed normalized so that fr=1
at E„+E~=Ez.Since the deuteron is very spread out,
fz(&I') will be approximately one for a large range of &t'

near the binding energy. If the deuteron were completely
asymptotic fz would be 1. For simplicity we shall put
it equal to 1, that is, take the deuteron to be all asymp-
totic. T'his approximation is on the same footing as
neglecting spins. We make it to clarify the algebra, it is
easily relaxed in as much as the actual deuteron wave
function in momentum space may be taken as known.

We may now write for (4.8)

A (E„)= ~P,r Or&(E„+—E„—Es)+~P, p [&~ I J„(0)I
e'A'&+&) P(E&')s(E&,yE„—E& —E„)j

n'A'

+7rP.yo&d& I J~, (0) I
dA &+&)&&(E@,+Eg, Ed Eg), (4—.12)—

where we have set &Bl J~(0) ldA&+')= T, the stripping
amplitude, and have recognized that with the projec-
tion factor present, the second factor in the second term
is F. Only I'0 appears in the first term since

f(~')~(E~,+En EI&) = ~ (E~,+En E—s). —

The other two delta functions serve to put e-A and
d-A scattering on to the energy shell. We define the
s-wave e-A scattering amplitude by

P,&el Jg, (0) In'A'&+&)8(Eg, +E„—Eg.—E„)
= t, (Eg,)5 (Eg,+E L~'g E), (4.13)——

and also define the d-A scattering amplitude by

&d& I Jg, (0) Id'A')8(Eg, +Eg, Eg —Ed)—
= 7'(Epp, (d—d&)')8(Eg~+Eg) E+ Ed). (4.14)

We have written r explicitly as a function of energy
Eq~, and of momentum transfer (d—d&)'= (d—n —p)'.
It is only in the momentum transfer dependence that
n or EA, enters.

Substituting (4.12) into (4.5) and writing P now as a
function of e' we have

r,1'
&,,(~")F(e")

&(~')= —voPAA, A, —
B +6 &~&' fl —I +Ze

r(E.~, (d- n —p)')—yoP, . (4.15)
Ed+EX EAx Edx

'4 J. M. Blatt and V. I". Weisskopf, Theoretical Nuclear I'hysics
(John Wiley R Sons, Inc. , New York, 1952), p. 611.
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Expressing the third term in terms of the phase r&r. of
(3.15) and changing the sum to an integral, we get

1 "e'&(*) sinrt (x)F(x)dx
F(N2) =g(222)+— (4.16)

X 22 +Le

where

g(22') =&. -yp4. ,)t,—
22 +eB

vo (E. ,(d—n —I&)')
(4.17)

Ed+EA Edr EAr—

first depends on m' through the delta function, and in a
more complete theory on the known internal structure
of the deuteron. The second term depends on e' only
through the denominator, FOT being constants so far
as dependence on e' is concerned. The third term de-
pends on rP both through the denominator and through
the assumed known momentum transfer dependence of
7-. The solution of this equation, making the usual
assumptions about asymptotic behavior, is"

JP(222) =g(222)
1 "e '(*& sing(x)g(x)(Ex

+ a(n2) or)r(no-)

2r p x 222+—ie

This is just the complex conjugate form of (3.14) and where o is defined in (3.18). When this is written out
itssolutionreQectsonlythisdifference. Thethreeterms and the trivial integral involving the delta-function
making up g(222) have a known dependence on 222. The term in g is performed, we obtain

2-(EdA, ((I—n)')
P(~2)= —~,f', S,,,+

Ed+EA Edi

0 (n&)—iy (e2)

2~ sing(q2)e a(a )+a(n ) rr)r(n )

q(q' —222+ie)

p X—222+ie

"e-'(*) sing(x) 2.(EdA, ((I—n,)')
P, dx

Ed+EA —Ed.—EA.

—r,T
j.

222+ eB

Ba(no) ir)r(n2)— oo e a(n) Sing(X—)(fX
(4.19)

p (x s +le) (x+eB)

where we have called the momentum transfer in the stripping reaction q= d —p. Ed„ ti„etc., refer to values of
these quantities corresponding to a neutron wave number whose square is x.

We must now do the sum in (2.21), which we write as

We get

I (~2)P(~2)

222+ eB
(4.20)

—
G(q2) &

—a(22) sing(qs) oo G(N2)&a(n2) —r'd(no)22d)22+0~0T-
Z(1—CI'p') q'+eB (q' 222+ ie—) (222+ eB)

~(EAA, (a—n.)')
X&. , (4.21)

Ed+EA —Ed.—EA.—
where we have written I'(222) = —I'pG()22)/Z, and where

oo G(222)22d222 &(EdA ((I n)2) 1 oo G(62)Nd)22 oo ()tX Ba(n )—a(n) —oo)(n ) Sing(X)
+ f'B

22r p n +eB Ed EA Ed, EA, 22r —
p 2—2 +eB— X—S +se

1 "G()22)nd222 1
C=

2 ', o'+ (o'+ r

ea("" 'd("') " 8 (' Sing(X)dX
!

2r 2 (x 222+i e) (—x+ eB)I
(4.22)

G(—eB) Vprp

(1—CI'p') Z
(4.24)VpI'pf(q')lq'+eB, (4.23)

The first'term of (4.21) is easily recognized as con- amplitude. " In fact (4.21) has such a pole, but the
taining the lowest order Born approximation, which is residue is

neglecting the deuteron structure. This term has a pole
at q'= —e~ with residue Fg0, and so must the entire

"G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959);
R. D. Amsdo, Phys. Rev. Letters 2, 399 (1959l.
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To make this residue I'0y0, it must be that

Z(1—Cl"s') =G(—ea). $(R

This is fortunate since it allows us to do away with the
cumbersome factor 1—C'I's' and with the unknown
wave function renormalization Z. We thus may write
for Tq

+OI 0

(4.26)

where the square brackets represent the quantity in
square brackets in (4.21). Having eliminated Z in this
way, we may take the bound-state limit of vanishing Z.
Inspection of the quantities involved in (4.26) will
show that they all converge and hence no damage is
done in taking this limit. That (4.26) is meaningful in
this limit may be questioned, but we believe that since
the limit exists it represents the T matrix of interest
and that the construct of taking 8 to be an elementary
particle may now be dropped.

The T matrix for deuteron stripping has now been
expressed as an integral over known quantities; the
strength of deuteron disassociation, 70, the dependence
of neutron capture into 8 on neutron momentum,
f(rs'), the d-2 and n caela-stic scattering amplitudes on
the energy shell, and the one parameter I'0. There is no
need to solve for scattering wave functions as in the
distorted-wave theory, ' or to assume an optical po-
tential for d-A scattering. The first approximation in-
volved in getting this result occurs at (2.21), where
from all the possible states with the quantum numbers
of a neutron and A we assume the capture into 8 to
proceed from the e-A state itself. This is the direct-
interaction approximation. It leads us to use an optical
model for the m-A state and thus reduces this part of
the problem to a potential problem. From this point,
the approximations involved are the neglect of I-p
rescattering on the deuteron break-up, and the neglect
of an explicit p-A interaction on the break-up, but not
on d-A scattering, since this is taken directly from
experiment. This later approximation is explored further
in the Appendix. We have also made some plausible,
but by no means established conjectures about analytic
properties of the amplitudes involved. In doing this,
we have been guided in part by relativistic and non-
relativistic' theory but largely by the Iee model. "
This has led to a hybrid formulation in which some
amplitudes occur on the energy shell in dispersion rela-
tions, while in (2.21) we deal with amplitudes off the
energy shell. This technique allows us to introduce wave
functions in a simple way —thus, avoiding a discussion
of them in terms of dispersion relations, complex inter-
mediate states, and anomalous thresholds. ' For this
we pay the price of an asymmetric formulation and of
having to assign simple analytic properties to some very
complex objects. It is hoped that in doing so we have
adequately described the most important part of the

FIG. 2. The form of hard-sphere phase shift chosen in (5.4).

physics. Finally, we have made a number of easily
relaxed simplifications, such as dropping spin and
treating the deuteron as all asymptotic. In the next
section we shall simplify (4.26) further in order to
extract some of its meaning. But let us keep in mind
that these simplifications are by no means necessary to
the use of (4.26). Given the input information it could
be used directly to compute T.

1 1
—sin(7rr/R), I'(R

(2~R) i I

0,

(5.1)

where R is the radius of'. the potential. The corre-
sponding Fourier transform defined as in (3.7) is, up
to a multiplicative constant,

(sinkR)/kR. (5.2)

We now wish to consider capture into this state without
fretting too much about just what it means to have
capture into an infinite square well from a scattering
state. This model is only meant to represent an ex-
aggerated picture in which to examine the effects of
distortion. The s-wave phase shift for wave number k
on an infinite square well attractive or repulsive, real
or complex, is given by

tang = tankR. (5.3)

This equation has many solutions, and which one we
take depends on the condition of the problem. We wish
to consider an optical model potential with some ab-
sorption. It is clear that in that case the denominator

V. DISCUSSION OF RESULTS

In the last section we obtained a form for the strip-
ping T matrix valid for the direct interaction part of
the amplitude, that is, when proton-A and neutron-
proton interactions are neglected during the stripping
process itself. To use this T matrix we need know only
neutron-A scattering, deuteron-A scattering, and the
neutron bound-state wave function in 8. Because the
form given in (4.26) is quite complex, it might be well

to simplify it still further in order to extract some of its
essential features.

First let us investigate the effects of distortion on
the vertex as given in Sec. III in a simple model. Con-
sider a particle bound in the lowest state in a very
deep, that is, infinite, potential. The bound-state wave
function is
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of (3.15) cannot vanish and hence —2r/2&p&pr/2.
This restriction will give

y=kR, —~/2 &kR&~/2,
=kR —pr, pr/2 &kR &32r/2, etc. ,

(5.4)

as shown in Fig. (2). We now use this form of P to
compute the vertex function of (3.19). Since p as
defined above is periodic, it is convenient to expand it
in a Fourier series. We obtain

00 sin 2ekR
e(kR) =E(—1)"+'

n=l
(5.5)

For (3.18) we have

o-(k2)+iy (kR)

1= (k'+ ei))—
y(yR)dy2

(y'+ e&) (y' —k' —ie)

(k'+ ei)) ydy sin2eyR
. , (5 7)

„(y—k —ie) (y+k+ie) (y+is) (y—ii()

where we have dined ~=op'. Writing the sine in
exponential form and taking the obvious contours in
the complex y-plane, we find for (5.7)

so that

t(22inA:B g
—2naB

) (5.8)

( 1)n+1

O (k2) +iy (k))
—g (e2~nkB O 2nxB)—

4 (yR)ydy= (k'+ ei))— (5.6)
„(y'+ei)) (y—k—ie) (y+k+ie)

since p is odd in y. Substituting (5.5) into (5.6) and
integrating term by term, we find we must evaluate
integrals of the form

x plane. The contributions from the poles of the tangent
cancel so that

and thus
8=e'"~ (tankR)/kR (5.13)

P =C(sinkR/kR+ (tankR/kR)
I
coskR I

e'(e+'~) )
=2C(sinkR/kR) cosine'&

(5.14)

where C is a constant depending on Z, 1 g, etc. In fact,
the reduced width is zero for an infinite potential, but
as was explained above we ignore these difhculties in
this simple model. The absolute square of (5.14),
which is what would enter a cross section, is then given

by
sin'kR cospp tt'sin2kR~2

IP I'=4c' =c'I I, (5.15)
kR )'(kR)'

since cospg=cos'kR. This is just the form of the undis-
torted vertex (5.2) except that R —+ 2R. Such a replace-
ment is familiar in ordinary cutoff stripping theory
where the capture probability is written down in un-
distorted form but the incoming neutron plane wave is
cutoff at some radius. ' This cutoff is supposed to
represent the fact that inside it the neutron is so badly
scattered about that it cannot be captured. The cuto8
radius needed to fit experiment is found to be con-
siderably larger than the nuclear radius. This connection
between the cutofI Born approximation for the capture
and our formalism is certainly not complete, but that
distortion of the incoming neutron is associated with
larger effective values of the radius (in our case twice
the nuclear radius) seems suggestive.

The eGect of neutron-A scattering is not taken into
account only in the capture vertex, but also in the
breakup amplitude, Ii. The combined effects, inde-

pendently of deuteron-A scattering are dealt with in
the erst and second terms of the square bracket in
(4.21), that is, in

We then have

n=1

= in (1+e2(&)2/1+e—2n&) (5.9)
G(q') e «') sing(q2)

B(q') = +
q +ei) qpr

o (k') =Re ln (1+e""~/1+e 2 "~)

=ln(2IcoskRI/1+e 2'~). (5.10)

cn G(222)en(n ) ie(n )22d-222

p (q' —I'+ ie) (222+ es)
(5.16)

tanxR sinxEdx00

„(2:—k —ie) (2:+A+i e)
(5.12)

This integral can again be done by writing the sine in
exponential form and taking contours in the complex

Putting this into (3.19), we must evaluate the integral

1 " sing(xR) sinxR F2
g=— (5.11)

I
cosxR

I (xR) (pp2 k' ie)— —

We see from the definition of Q that sing/Icosp:RI
= tanxR so that

We can calculate B(q2) in the infinite well model using
the forms of o., and Q found above and putting G=P/C
from (5.14). We must evaluate the integral

1 " de' sinmE. cos'1'.

2rR p (222+ es) (n2 —q' —ie)
(5.17)

where we have used the fact that cospI cosnRI =cos'NR.
Writing the sine and cosine in exponential form and
using the evenness of the integrand in I, we can again
evaluate the integrals by choosing contours in the
upper or lower half 22 planes, and we get for (5.17)

(e"p)2 cosqR e '""coshKR)/2R—(q-'+ ei)). (5.18)
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Substituting this into (5.16) along with the forms of o

and G, we obtain after using some trigonometric
identities

B(q )= (1/q +ee) (sinqR/qR)

)& (1+e s"~(coshsR/cosqR)]. (5.19)

"D(x)
f(n') =-

m ), y—e'
(5.20)

where D(y) is the discontinuity in f across the cut, and
where we have assumed f goes to zero for large ns

D(y) is real. Using the analytic properties of exp(o++)
and f, the integral in the expression (3.19) for the vertex
may be expressed first as an integral around the cut
from 0 to eo, due to exp(o++), and then deformed
around to the cut, due to f, so that finally we obtain
for the vertex

e ( )+'o( ) — e—( )D(g)(fg
G(n') = (5.21)

71 g S fP

This is clearly a solution of the mapping problem de-
fined by (3.14), since here G has the phase @ along the
positive real axis and the discontinuity D across the
negative cut. This simpler form of G is not appropriate
to the hard-sphere case, since the Fourier transform
cannot be written as in (5.20), nor is it appropriate to
actual nuclear physics calculations, since usually some
approximation is used to obtain the wave function which

The first term is just the undistorted vertex. Thus,
the combined effects of distortion on the capture and
on the deuteron disassociation have canceled. This is
disconcerting, but as we shall see not fatal. The second
term is even more troublesome since it blows up at
cosqR=O, but it clearly has its origins in the singular
nature of the potential. It is probably best to assume q
su%ciently small and e& sufFiciently large, so that we
can neglect it or at worse ignore it. Thus, in the absence
of deuteron-A rescattering corrections, we have re-
covered the Born approximation in the hard-sphere
theory. But we need not neglect deuteron-A scattering,
and it is just the fact that our formalism is particularly
suited to including it which makes it interesting even
if the neutron-A rescattering corrections cancel in
this model.

Before putting in the deuteron-A scattering, however,
we must investigate whether this cancellation occurs in
general. To do this, we first obtain a simpler form for
G(n'). We assume that for well-behaved potentials, the
Fourier transform of the bound state f(n'), will be real
for positive e2 and analytic in the entire e~ plane except
for a cut from —A, to —Dc, where ) is a positive param-
eter related to the potential parameters, but X)eg.'
Thus, we may write

is a good approximation for positive n' but may very
well not have the correct analytic properties. If reason-
able approximations to bound states could be found in
terms of their left-hand discontinuities as for example
replacing the cut by a pole as is done in the Hulthhn
wave function for the deuteron, ss then (5.20) could be
used to put the vertex more simply.

The general effects of distortion are easily formulated
in terms of (5.21). We obtain for the general form of
B(q')

~~(a2)+~4 (a2)

B(q') =
q +sr

-"e
—'(')D(x)dx e '«') -sing(qs)

X—
X—

q q

1 "n(fns G(n')e'(n') 'o("')
(5.22)

sr p (ns+ si)) (n' —q' —ie)

This defines a function analytic in the cut q'-plane with
a pole at qs= —ss with residue G(—ee), which is real.
There is a cut from 0 to co due to exp(o. +i(t) in the
first term and the integral in the second. There is also
a cut from —) to —~ from the integral in the first
term. The factor sing exp( —o) = —Irn expL —(a++)]
is real for q' real and positive. We shall make the usual
assumption about the analyticity of partial wave
amplitudes' and say that this factor has a cut from —p,

to —~, where p is some positive constant generally
close to X and certainly greater than e&. Thus, we may
write for the general form of 8

G(—ee) 1 "ImB (g)
B(q') =- +— ch

q+eB sr p g q

1 "ImB(x)
dx, (5.23)

S—
q

where n is the smaller of X and p. The imaginary part
of the second term of (5.22) for real positive q' comes
entirely from the small detour introduced by the ie in
the denominator, since all the other factors are real.
It is easily seen that this just cancels the imaginary part
of the first term so that in fact ImB(x) =0, x)0. Thus,
only the pole and the left-hand cut survive. This can-
cellation must occur in order that the stripping ampli-
tude not have a cut in momentum transfer for physical
values of the momentum transfer. '~

"L. Hulth6n and M. Sugawara, EmcyclopoChu of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 34.

'r S. Mandelstam, Phys. Rev. 112, 1344 (1958); R. Blanken-
becler, M. L. Goldberger, N. N. Khuri, and S. B.Treiman, Ann.
Phys. (New York) 10, 62 (1960); A. Klein, J. Math. Phys. 1, 41
(1960),
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From the 6rst integral in (5.22), we get that ImB(x)
= —D(x), —X&x(—~, which substituted in (5.23)
gives the wave function. In the hard-sphere case the
singularities from sing exp —o. do not add anything
significant. In general, there is no reason to believe this
will be the case. Only in a simple model where the
scattering all proceeds via the intermediate bound state,
as in A"-0 scattering in the Lee model, "will the bound-
state and scattering left-hand cuts be trivially related.
In general, the cuts will be diGerent, particularly in an
optical model where the potentials for the bound state
and for the scattering will usually be different. To
summarize, it is expected that, in general, B(q ) will

be real for real positive q', but it is not expected that
the effect of e-A rescattering will disappear completely,
and, in fact, we would expect to see the apparent in-
crease in nuclear radius so characteristic of direct
interactions emerge from this distortion.

We now turn to the problem of including the deu-
teron-2 interaction. From (4.21), we see that we must
compute integrals involving

pgr(+dA& (q n) )//E+d+FA +dg +Ag+Ze] (5 24)

&d+&A —&d,—&A,
= (q —n) I (q+n)/a —(q —n)/2+dj, (5.25)

where a is the atomic number of nucleus A. Thus, we

expect the major contribution to the integrals involving
(5.24) to come from q=n, particularly for small q'

where functions like G(q') are peaked. Replacing n or
n, by q in the slowly varying parts of (4.26), we get

where

r=y, r,/G( ,)B(q )(1ye), —

1 (~dA, (q—n)')
ede' I',

(q—n) (d+2q/a)+ie2' p

(5.26)

r (EdA, (q—n)')
d~Ã

(q —n) (d+2q/a)+ie
(5.27)

The angular integration is easily done and we obtain

r(&dA, y')
ydy

2~ 0 [d+2q/a)
's T. D. Lee, Phys. Rev. 95, 1329 (1954lr,

where we have written in explicitly the imaginary
part of the denominator coming from (4.5). At moderate
energies deuteron-A scattering will be largely di6rac-
tive, that is r(EAA, (q —n)s) will be large only for
(q—n)' small and will oscillate as (q—n)' increases.
Furthermore, q —a=0 is the place the denominator
vanishes. This can be seen by writing in the momenta

To evaluate the remaining integral, let us assume that
the diffraction peak of deuteron-A scattering has a
narrow width, constant in momentum transfer, so that

We get

r(E ys) 7 (E,O), y'(ns
=0, y'&cP.

(5.28)

g= —(s/4w)r(EAA, O)n'/~ d+2q/a~. (5.29)

The width n' of the diffraction peak should be of the
order of the deuteron binding energy.

If deuteron-A scattering is purely diffractive, then
r(E,O) is pure imaginary and may be related to the
total cross-section by the optical theorem. In this case
we obtain for the stripping amplitude

VoI's ( &dA nr(&dA)n')
T= B(q')i 1— (5.30)

G(—;) I 8~ ~d+2q/a~)

where E~~ is the relative deuteron-A wave member and
o.r(E) the total deuteron-A cross section for energy E.

In (5.30) we have succeeded in writing the amplitude
for stripping as a function of the momentum transfer
&el'eB(q')/G( —e&) times a function of the energy and
momentum transfer. The first factor is just the Born
approximation rnodi6ed by the effects of neutron-A
rescattering. It is expected that this term will be very
similar to the cutoff Born approximation of Butler"
and hence will account for the characteristic angular
distribution of stripping. The second factor depends
only weakly on momentum transfer, but it depends
fairly strongly on the energy through the total cross
section. The form (5.30) for T then explains, quali-
tatively at least, how the angular distribution or better
distribution in momentum transfer in stripping can be
accounted for by a modified Born approximation, while

the yield is described by a more violently varying func-
tion of energy with variation related to the total deu-
teron-A cross section.

The question of reduced width I'p obtained from
(5.30) is of more doubt. The magnitude of I'e obtained
using the correction due to deuteron-A scattering may
be greater or less than without, depending on the size
of the correction. If r(Z, O) is not pure imaginary, the
situation is more complex. More perpelxing is the fact
that the residue will be energy dependent. This is in-
correct and arises from the manifestly incorrect analytic
structure assigned to r in getting (5.26) and in (5.30).
Nevertheless, it points to the problems which might
arise from simple methods for getting the residue which
neglect rescattering. "

We will not pursue further the properties of (5.30),
since it represents only a crude approximation to the
form of the full amplitude given in (4.26), but it is
clear that many of the qualitative features of (5.30)
should persist in a calculation based on the full
amplitude.
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There are still a large number of questions. To what
extent will (4.26) account for the experimental data?
What is its relation to distorted-wave theory?' How
can it be improved? What modi6cations are needed
for other direct reactions? Can one give a better justi-
Qcation of the analytic properties assumed in Sec. IV?
What is the relation of the simplified forms discussed
in this section to the semiclassical ray-tracing theories?"
It is hoped they will soon receive answers.
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APPENDIX. PROTON-A INTERACTION

In a potential formalism the only interactions essen-
tial to deuteron stripping are the neutron-proton inter-
action (to bind the deuteron) and the neutron-A inter-
action (to bind 8). Of course, in nature there is also a
proton-A interaction. In the formalism of this paper
we have allowed implicitly for the contribution of this
interaction to deuteron-A scattering by using the full
experimental amplitude for this process, but have
neglected with the equal time commutator of (4.3) its
contribution to the stripping process itself.

In our formulation of stripping, the deuteron and A
come together and interact in all possible ways until
finally the proton goes off freely leaving behind an
interacting neutron-A state which coalesces into B. To
this point the analysis is exact, whether or not there is
a proton-A interaction. We have claimed that the sig-
nature of a direct interaction is determined by what
happens just previous to this disassociation into free
proton and neutron-A state. We are not claiming that
all sorts of things do not happen, but rather that if they
do a direct reaction will not occur-. In order for the
neutron and A to form 8 they must interact. Thus, if
the deuteron disassociation is brought about by the
proton interacting with A, it is necessary for the proton
to escape and for the neutron to "6nd" A. This seems
an unlikely way for the direct reaction to proceed, but
this is just the process described by the equal-time

"See S. T. Butler, N. Austern, and C. Pearson, Phys. Rev.
112, 1227 (1958).

commutator. To see this let us suppose that the proton-
A interaction is described by the potential U. The
equal time commutator 8 of (4.3) can be then written,

d'x e '"i'(&VI [P~(x),J„(0)j I
dA ~+&&

d'xd'ye '""' ' '"U(l x—yl)

Xy'I4A(x)4y(y) IdA'+'&. (&.1)

This describes the process in which an interacting deu-
teron and A turn into a free neutron, free proton, and
free A. The last process before this being an interaction
of the proton and A via U. If we analyze this further by
contracting the A from the right and inserting states,
we obtain,

d'&d'y O'I1t'n(x) Id)U(l x—yl)e"" ""'*"r

+ d'xd'y e '"'* "'rU(l" yl)

(&If'~(x) g~(y) I
~)(5'I ~~'(0) I d&

X (A.2)
~S ~A Ed—26

The first term comes from an equal-time commutator
and represents the lowest order contribution to the
process we have described, that is, break-up of the free
deuteron through an interaction of the proton with A.
It is easily evaluated in terms of the Fourier transform
of U and of the deuteron wave function and may be
added to the inhomogeneous term in (4.16) if one wishes.
The other term may be described in terms of the states
S, the most obvious being dA, pB, and npA. All of
these represent complicated contributions to the basic
deuteron break-up via the proton-A interaction and can
probably be evaluated in some simple cases, for ex-
ample, if the deuteron-A interaction occurs strongly in
some partial wave, but not in general. We again insist
that neglect of the p Bstate in this p-lace is not neglect
of Anal state rescattering but rather to say that the
chain of processes d+A ~P+3 ~ [I+P+Aj~P+j3,
where in the step [I+p+A j the neutron is free and the
proton interacts with A, is unlikely.


