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The notion of time duration is considered within the framework of S-matrix theory. It is shown that
Wigner s definition of the time delay, —ihL(d InS/dF) j, for a scattering process permits one to define
time duration in a "coarse-grained" sense.

I. GENERAL DISCUSSION

HE time development of the state of a quantum
mechanical system described by a wave function

lf (t) and Hamiltonian K is given by the Schrodinger
equation,

dpi = —(idt/Pt) self. (1)

This fundamental dynamic principle determines the
change in the state P for aribtrarily small time intervals
dt. The question has often been raised, however, whether
processes of macroscopic measurement may limit one' s
ability to observe changes in P over very short inter-
vals, and hence to verify Eq. (1).

Most experimental situations are concerned with
measurements that involve, on the appropriate atomic
or nuclear scale, extremely long-time intervals, Such
considerations prompted Heisenberg to propose that
fundamental theory might yield directly the collision
matrix 5.' Such a theory would provide a relation only
between asymptotic states of a system (i.e., the relation
between states in the remote past and the remote
future) and would presumably not assign physical
meaning to the continuous development of the system
in time. In addition, one would never speak of the
"Quctuations off the energy shell" of a physical system.

Considerable progress has been made in recent years
toward the goal proposed by Heisenberg of obtaining
the 5 matrix without a Schrodinger equation. ' Such
studies have not, however, provided a basis for dis-
cussing macroscopic time intervals that are essential in
common experience and in the processes of making
physical measurements. We should like to argue that
the 5 matrix does provide a "coarse-grained" definition

of time interval. This coarse-grained notion of interval
seems adequate to account for a semiclassical dynamics,
and thus for the macroscopic dynamic phenomena of
common experience. Whether it is also adequate for aH

physical processes, or whether it is in fact possible to
verify Eq. (1) in detail, is a much deeper question to
which we do not adress ourselves here.

The basis for our considerations is provided by
Wigner's representation of time delay in a scattering
event. ' If S(E) is a matrix element of the S matrix
connecting two precise asymptotic states of an inter-
acting system (we suppress all labels except the total
barycentric energy E), the time delay relative to the
free-Bight time between the states is

Q = ift(d/dE) inS(E—). (2)

To introduce the notion of a sequence of events and
time intervals, we suppose a particle undergoes a series
of g scatterings as illustrated in Fig. 1. Consistent with
the Schrodinger Eq. (1), we may observe the state of
the system at times to, t», . . ., t~ occurring between
scattering events, By this, we mean that to is before the
first event, t» is after the first but before the second, etc.
At a given time t„(rt=0, 1, . . ., 1V) we may determine
the wave function to be f„.The Schrodinger equation
enables us to relate the P's as follows:

lf „=exPP —iE(t —t„r)/h]U(t„, t„r)g„r, (3)

where E is the kinetic energy operator and U(k„,t„r)
is the unitary operator defined by

U(t, t') =e pxiLEt t/]texpr —iX(t—t')/P]t
Xexp L

—iEt'/5], (4)
and P„ is given by

f2

FIG. 1. A sequence of
scat terings to illustrate
Eq (6)

P„=expfiEt„r/A]lf „.
If the time intervals (t„—t„r) are large enough that

~ This work was done partly under Air Force contract (M.L.G.
and K.M.W.) and partly under the auspices of the U. S. Atomic
Energy Commission (K.M.W.).' W. Heisenberg, Z. Physik 120, 513 and 673 (1943).

'We refer here principally to the development of dispersion
theory. See, for example, the articles by M. L. Goldberger and
G. F. Chew, in Dispersion Theory and Elementary Particles, edited
by C. DeWitt and R. Omnes (John Wiley fk Sons, Inc. , New
York, 1961).

' E. P. Wigner, Phys. Rev. 98, 145 (1955). In the general case
when ~S~ W1, Eq. (2) must be replaced by the equation,
Q=Re( —hd lnS(E)/dEg. LSee L. Eisenbud, dissertation,
Princeton University, June, 1948 (unpublished) where the concept
of time dela was first discussed; and F.T. Smith, Phys. Rev. 118,
349 (1960). For simplicity of presentation, we shall use Eq. (2) in
our discussion, it being remembered that the results are generalized
by merely replacing the expression on the right-hand side of (2)
by its real part.
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the system is close to the energy shell between scatter-
ings, we may set

where
Q„= i'—(d/dE) lnS„

U(t„,t„ i) =5„, (6)

the S matrix for the eth scattering event. By definition
S= U(eo, —oo), so what we are assuming is that all
irrelevant transients have disappeared already at finite
times. In this case Eqs. (3) and (6) permit, us to write

= expL —i (E/)i) (ttt —to)] g SA'o,
n=l

a relation which connects the initial state tPs, prior to
any of the scatterings, to the final state tt(it following all
of the scatterings. The S matrix for the entire process
has the form

N

S=g 5„.
n 1

(8)

„=s„P„i,

s„=exp) —i (E/5) (t,„t„i)]S., — (10)

to determine the wave functions iP„at times inter-
mediate between the interactions. We emphasize that
the conditions of Eqs. (8) through (10) are assumed to
be valid quite independently of whether or not there
is a Schrodinger equation.

Now the Wigner relation, Eq. (2), and our expression
for the 5 matrix, Eq. (8), enable us to write the total
time delay Q as

Q= N(d/dE) lnS(E) =Q—„Q„, (11)

' In general case, the product (8) is a matrix product, involving
sums over spin substates, etc. For simplicity, we suppose our
system to be simple enough that (7) is an algebraic product. Then
in the general case, Eq. (2) applies to each matrix element of a
given S in Eq. (g).

Thus, if a complex process involves a sequence of inter-
actions suKciently separated in time that Eqs. (6) are
valid, the S matrix for the complete event factors into
a product of S matrices for the separate interactions.
This group property of the S matrix is essential for the
subsequent discussion.

It is reasonable to suppose —and we shall do so—that
Eq. (8) is a general property of the 5 matrix, valid even
in theories not based on the Schrodinger Eq. (1).' We
shall also suppose that it is meaningful to talk about the
free-Qight time of wave packets over macroscopic inter-
vals defined by

~tfree= d/vq

where d is the distance traveled and v is the packet
velocity. In the S-matrix theory, we expect the recur-
rence relation

is the time delay for the eth interaction. From expres-
sions (8) and (12) we find that the time duration asso-
ciated with the nth scattering is

(13)

where d„ is the distance traveled and v is the asymp-
totic velocity. '

This expression, Eq. (13), is our fundamental result.
It provides a defilitiott of the time duration for each of
the interactions illustrated in Fig. 1.It therefore permits
us to attach a time label to points on the orbit of the
scattered particle. This definition of time interval and
the recurrence relation, Eqs. (10), provide a macro-
scopic dynamic principle limited by the coarseness of
our time mesh.

The factorization (8) of the 5 matrix is rigorous, of
course, only in the limit that the scattering interactions
are separated by very large distances. From the present
viewpoint, time duration is defined for real processes
only to within a precision determined by the accuracy
with which the factorization (8) approximates the exact
S matrix. If this were a correct point of view, then
limitations on the processes of measurement would not
permit a more precise definition of time duration.

It is interesting to rewrite Eqs. (10) and (13) in a
"Schrodinger-like" form. First, we express Eq. ( 3) as

8„=(d„/v) L1—(iv/d„) A(d/dE) lnS„]
= (bt„)t„,L1—(its/d„) (d/dp) lnS„],

where we have used the relations v=dE/dp, and
(Q„)t...——d„/v, the free-flight time. ' Thus, ot„ is ex-
pressed in terms of the free-Right time and the S-matrix
element for the eth scattering S„.

Next, we write from Eqs. (10),

which is equivalent to

iA(g/itt) = LE+ifi(lnS„/bt„)]ttt. (16)

Since lnS„and bt„are constant in each interval, by
integrating Eq. (16) over an interval, we recover
Eq. (10).

This result, Eq. (16), has the formal appearance of a
Schrodinger equation with a potential ijt(lnS„)/6t„
that depends only on the free-Right time and on S„.It
is rigorously equivalent to the Schrodinger equation
in the asymptotic regions between scatterings; of

' When the system is degenerate, we must suppose (just as in
the Schrodinger theory) that an observation of the state is made
at each time t„.Then the S in Eq. (12) is that matrix element of
the S matrix associated with the observed transition.

For a three-dimensional array of scatterers, the index n may
be re laced by a "coarse-grained" coordinate r and an S-matrix
S(r,p defined. Then Eq. (14) takes the appealing form
tt„= (st„)t„,(1 t7t~„~„lnS). —
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course, it does not describe in the Schrodinger sense the
wave function in the "near-Geld region" where the
scattering occurs.

Our description has been rather schematic and we
now illustrate it with two examples.

II. A RESONANCE REACTION

Consider the excitation of a resonance level of a
nucleus A by a p ray. The nucleus decays to a lower
excited state by p-ray emission, and then to its ground
state by neutron emission. The reaction envisaged is
then

y+A -+ A*~ A**+y'~ A'+y'+n (17)

The total energy is 8= sr+8'e, where e„ is the incident
p-ray energy and 5'0 is the energy of nucleus A. The
energies of the excited nuclei A*, A** are 8 ~ and 8'2,
respectively. The energy of the emitted p ray is e~', and
that of the neutron e„.

The 5-matrix element for the process is

(e„,e, ,A' )S) e„A).

We assume that each virtual state is suKciently long-
lived that the one-level resonance formula may be used.
Then'

E PV +e„.)+il'—„/2 E—IV +il'„/2
(18)=—52$g.

The quantities a„, I"„, and F~ are considered to be
slowly varying functions of energy. We find then from
Eq. (12):

Qi
——Re( —i7td lnsr/dE}

Very close to resonance, these expressions become

Qi =25/I'„

Q, = 2ts/I'„,
(20)

as expected.
In this simple example we ha, ve predicted the ex-

pected lifetime of each state from the 5 matrix without
involving a Schrodinger equation. % e must emphasize,
however, that for a real process the factorization of the
S matrix implied by Eq. (18) is only approximate; we
have neglected nonresonant contributions to S. Accord-
ing to the point of view proposed above, it is only to
within the accuracy of Eq. (18) that the separate time
intervals for the two decay steps have physical meaning.

III. THE SEMICLASSICAL LIMIT

I.et us now imagine that the separate scattering
regions illustrated in Fig. I coalesce into one region of
continuous interaction. We shall suppose that the forces
acting on the particle vary slowly over a wavelength
1/p, so the orbit of the particle may be defined as in
classical mechanics.

In the usual Schrodinger description we would
represent the interaction by a potential V(r), and find
the wave function in the W.K.B. approximation. We
shall show that in this case, Eq. (16) is equivalent to the
Schrodinger equation.

To the extent that we disregard spatial derivatives of
the potential, we may treat the kinetic-energy operator
E and the potential V as commuting operators. Then'

exp) —i (t„—t.„ i) (E+V)]=exp/ —it„E]
X expL —i(t„—t„,)V] expLit„,Z],

and from Eq. (6),

S„=exp(i ibt„V}—
Hence,

=Re
8 Wi+i I—'r/2

Qs Re( ——iM InS—s/dE)
(19)

i(lnS„)/8t„= V, (21)

and within this limit, Eq. (16) is equivalent to the
Schrodinger equation.

=-R
Z-(W, +.,,)+ r„/2i

~ See, for example, Sec. 8.3 in our forthcoming book Collision
Theory (John Wiley 8z Sons, Inc. , New York, 1962), where such
two-step resonance processes are discussed.

' It is easy to write down the correction terms t.hat. arise frutti
the noncommutativity of IC and U. It is clear that they involve
powers of bt and spatial derivatives U. See, for example, M. I,.
Goldherger and E. N. Adams, J. Chem. Phys. 20, 240 (1952).

An explicit derivation of Eq. (21) in the W.K.B. approxima-
tion is given in Sec. SE of reference 7.


