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crossed channel we see that the terms, g(i), are energy
independent. For all values of l such that the first
Regge pole is at a value of I greater than zero, therefore,
the term from g(t) in Eq. (10) will be dominated by

the Regge term. The conclusion of the foregoing work
is that in the high-energy limit the crossed bubble
diagrams of Fig. 2 will always be dominated by a
Regge pole from the ladder graphs of Fig. 1.
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The spherical model of a lattice gas has recently been treated by W. Pressman and J. B. Keller, utilizing
the relationship between the grand partition function of the spherical lattice gas and the partition function
of the spherical model of a ferromagnet. A phase transition in three dimensions was found for the lattice
gas, but no description of the transition region was possible. Here we give some features of the canonical
partition function for the same model. The equation of state is obtained for all densities and temperatures,
and predicts that the pressure remains constant in the transition region. The particle correlations and
fluctuations are calculated, and their behavior in this region is shown to be consistent with a phase transition.
A physical interpretation of the normal modes of the spherical model indicates that the model contains the
general aspects of clustering of particles. The origin of an anomalous behavior of the model, mentioned by
Pressman and Keller, consisting of the pressure becoming negative for all temperatures at sufficiently large
specific volumes, is described and a method for eliminating it is introduced.

I. INTRODUCTION

A RECENT paper by Pressman and Keller de-
scribes the behavior of this simplified model of

an imperfect gas. The description is made by using the
well-known relation between the partition function for
the Ising model of a ferromagnet and the grand parti-
tion function of the lattice gas. ' These relations hold
as well for the spherical model (abbreviated SM hence-
forth) of both lattice gas and ferromagnet. The SM of
a ferromagnet, introduced by Berlin and Kac,' leads
to a partition function which has been evaluated by
them for one, two, and three dimensions. It then be-
comes a straightforward matter to apply their results
to the grand partition function for the SM of a lattice
gas, and this was done in reference 1. Since the SM of
a ferromagnet exhibits spontaneous magnetization in
three dimensions below a critical temperature, a phase
transition is found for the SM of a lattice gas in three
dimensions. However, the transition region itself is not
described by this method, so that one does not know
how the pressure behaves in this region. Also this formal
identi6cation does not give any indication of the physi-
cal nature of the correspondence between lattice gas
and the SM of a lattice gas.

*Present address: The Rockefeller Institute, New York 21,
New York.

' W. Pressman and J. B. Keller, Phys. Rev. 120, 22 (1960).' C. N. Yang and T. D. Lee, Phys. Rev. 87, 410 (1952).' T. H. BerHn and M. Kac, Phys. Rev. 86, 821 (1952).

The spherical model of a lattice gas was treated by
one of us (HAG) some time ago as part of a doctoral
dissertation. 4 Here, the canonical partition function was
used, in order to be able to describe the behavior of the
system right through the transition region and in order
to have available a better understanding of the mecha-
nism responsible for the transition. The present work is
devoted to pointing out some features that were ob-
tained in the description via the canonical ensemble
which are not revealed by the work of Pressman and
Keller. In particular, the canonical ensemble predicts
that the pressure remains constant inside the transition
region, and that the fluctuations and correlations have
the proper over-all behavior to be expected in this
region. In addition, one can see clearly the origin of
the anomalous effect of the pressure going negative at
suSciently large specific volume for all temperatures
and how a simple modification of the model allows re-
moving this nonphysical behavior, without affecting
the qualitative aspects of the phase transition.

In Sec. II, the canonical partition function for the
SM is introduced. Some connections between the lattice
gas and the SM of the lattice gas are discussed. Section
III contains the evaluation of the partition function for
all densities by the method of steepest descents. Since
the formal development parallels that already re-

4H. A. Gersch, Ph.D. thesis, The Johns Hopkins University,
1953 (unpublished).
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ported' ' only an abbreviated version. is given. Section
IV is devoted to the behavior of the fluctuations and
correlations in the transition region. In Sec. V we
indicate the origin of the nonphysical negative pressure
at large specific velumes for all temperatures, and indi-
cate a method for eliminating it.

=A r~ exp(MP2) . . dxl. dxx
A".

xexp ——Q a;2(x;—xg,)2, (5)
16 ~, 1

II. CANONICAL ENSEMBLE FOR SPHERICAL
LATTICE GAS

The lattice gas is a cell model of an imperfect gas in
which the volume tj' containing Ã particles is subdivided
into E cells, each of fixed volume r, r = U/E. The vol-
ume v. has to be chosen sufficiently small to reproduce
the essential features of the interparticle potential
energy. For gas condensation these properties are
supposed to be a short range attraction outside of a
repulsive core. The simplest choice consistent with these
characteristics is to take ~ small enough so that con-
figurations having more than one particle per cell con-
tribute negligibly to the partition function. This
amounts to assuming the interaction between particles
in the same cell to be infinite. The short-range attrac-
tion may then be represented by taking U(R& ) the
interaction between particles in cells k and m equal to
—e if km are nearest neighbors, and zero otherwise. In
this way one gets the configurational partition function
(c.p.f.) for the lattice gas to be

P=r~ Q exp —p a;2n, 222
~

( n;) 2 2, 2 j
where P=1/kT, the sum is over all sets of integers
{e;},22; zero or one, subject to the restriction p; 1~'I, =
=N, and a;& is given by

a;&,
——1, if j, k are nearest neighbors;

a, A, =O, otherwise.

It is a convenience to introduce new variables x,
defined by

=A r~ eXp(lVZpe)
Et

Zxj 2N—K,Zx)2=K

dxy' ' 'dS&

Xexp ——P a,2(x;—xl, )2 . (6)
16 j,~

In details, the system described by this c.p.f. cannot
agree with that for the lattice gas, since the statistical
variables, the x;, are now allowed to be continuous,
whereas for the lattice gas they are discrete variables.
However, in general aspects, some important features
of the model seem to be quite similar to those attribu-
table to the real gas. Such a feature is the interpretation
of the normal modes which enter in when the quadratic
form P;,la, 2x,x2 is diagonalized. As shown in reference

3, the diagonalization of the quadratic form in the
exponential of Eq. (6) is affected by the transformation
to normal coordinates (y;} defined by

x;=&2 &, 2y2

The quadratic form in the exponential now becomes

—Z av(x' —x~)'= 2 ~FrP.
16 ', ~

where A is a normalization constant.
Finally, the region of integration over 0 is replaced

by the intersection of the hyperplane p, lxx; =2K K—
with the E dimensional sphere g; lxx12=E. This now

gives the partition function for the spherical model as

In terms of these variables, the c.p.f. for the lattice
gas can then be written in the form

=r~ exp(Esp2) g exp ——p a, l. (x,—x~,)2, (4)
16 ~, &

where 2s is the number of nearest neighbors.
The spherical model of the lattice gas is obtained by

treating the discrete variables x, as if they were con-
tinuous, and replacing the sum over the coordinates x;
by an integration throughout the volume 0 of the E—1.

dimensional figure described by —1 &x; &+1 and
P;=lxx, =2K E. Thus, the c.p.f. for—this model is

27t-

+Sill (jill+ j2k2+ j2k8)E'
2xj1

p) =— 3—cos —cos
x~

2~j2 2~j3—cos E: '

The characteristic vectors t; y, and characteristic values

v,~ have been determined by Berlin and Kac in refer-
ence 3. In three dimensions their results are equivalent
in the limit E~ to the simple forms

2x .
3 2=E ~ COS (jill+ j2~2+j2~8)

Ek

Qerpn L. ~itten, and H. p. Gersch, ph s. Rev g2 where for simplicity, we let j and k on the left sides of
189 (1953). these last two equations stand for the triples (jl,j2,j2)
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and (ki, k2, k2). The SM c.p.f. now reads

Z~
=-A-r" exp(31VPe) . . dy, dyx

gf

III. STEEPEST DESCENT EVALUATION
QF PARTITION FUNCTION

The restriction on the region of integration of the
variables {y;}expressed by Eq. (12) may be relaxed by
means of the delta function, using the representation

8p+ioo

x-pI -pg. ,-y ], (11) ~Le-(py, )q=- ds
Sp—Ao

where the volume 0' is de6ned by g, Pyj=E,
E&yx= (2S K) o—r

X—1

x-pLs(&'- p y,')j. (14)

P yP =4%(1 1V/E)—=82.
Because E is positive, we may write

(12)

(U) = —31Ve+Q v'(y') (13)

Concerning the physical content of the model, we can
note the following expression for the total potential
energy (U),

~N

2V t 2xi

Sp+ioc

ds e»'{g L &(s+p.j')-&j}, (1s)
p &oo

where B=Ar~ exp31VPe.
For the limit 1V, E~ ~, K/1V =e/r the limiting

form of the integrand in Eq. (15) is required. The
product may be written

For given X, E, and temperature T there will be a
certain distribution of mean square amplitudes (ys2)

among the normal modes. Large values of (yP) for a
particular mode imply a large expectation for the corre-
sponding configuration of the x;. We will briefiy con-
sider the correspondence between lattice gas configura-
tions and those which correspond to the various normal
modes.

For the three-dimensional lattice gas, every face of a
cubic cell which separates two opposite values for xj
contributes one unit to the nodal surface area (taking
the lattice spacing as unity). A configuration having
total nodal surface area equal to I. has energy ~~&I.

above the minimum value —3Ee. For the SM the
energy is given by U= —31Ve+P,vjyg. For the modes
with small j, the energy for a fixed amplitude yj is

small, and the nodal surface area is small. Thus, there
are large groups of cells for which each cell of the group
has the same sign for the variable xj. These variaMes
are continuous; we do not have x,=&1 only. If we

identify xj&0 with x;= 1 and x, =..0 with x, = 4, then for
these condgurations there are large groups of cells con-
taining particles and large groups of empty cells. As

j increases, the energy for a fixed y; increases, and the
nodal surface area increases, so that the regions for
which the x; are all of the same sign become smaller.
Clearly, long wavelength modes correspond to lattice
gas configurations having only a small number of bound-
aries separating cells containing one particle and cells
containing none; that is, long wavelength modes corre-
spond to large clusters,

The expectation values for the mean square ampli-
tudes are determined as by-products in the solution of
the c.p.f. given by Eq. (11), to which we now turn.

II (S+Pv') '=expl: —
2 Z»(S+P")l (16)

1 A=1

G2(S) = lim —Q ln(s+Pvg). (17)

Then, as shown in reference 3,

G2(S) = (22r)-2 dMld~2d~8 lnLS+pv (COI Q&2 ~2)$

&max

f2(v) ln(s+Pv')dv.

Here

v ((a)i,Q&2)cv2) = gt(3 —cos(di —cos&02—cos(d2)

and f2(v) is the density of normal modes for three
dimensions, given by

f2(v) =
dS3

lgradvl2

where d53 is the element of area on the surface
v (cubi, cv2, &02) =constant, and

I
g»dv I

2= L(»/~~i)'+ (~v/~~2)'+ (»/~~2)'j'.

Let s denote the algebraically smallest value of pv'.
If the s plane is cut from s= —~ to s= —s along the
real axis, then the integrand in Eq. (18) is analytic in
the cut plane. To correctly describe the behavior of the
integral in Eq. (15) in the neighborhood of s= —s, we

must separate out from the sum in Eq. (17) the terms
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2
G3(5) =—ln(s+s)+

E f3(v) ln(s+Pv')dv (.20)

for which Pv' is equal to s. As shown in reference 5 there
are two such terms, because the algebraically smallest
eigenvalue is doubly degenerate. This gives,

I io. 1.Path af steep-
est descent in the transi-
tion region.

S-Plane

(;UT -S

Therefore, we must evaluate the integral
where v„,, =3e/2. This ec!uation determines the dis-
tribution of mean square amplitudes among the normal
modes. It is clear from Eqs. (11) and (15) that

where

~$z-,'
2mi

exp[lVga(s) j, (21)
(s+s)

vrnsx

(r')=L2(s+Pv') j ',

so that the saddle point equation may be written

(30)

g, (5) =4(1—E/E)s-
2iVg 0

f, (v) ln(s+Pv')dv. (22) (31)

The method of steepest descents gives the result

Z~ Brr&x & exp[Xg3(s, )j
X! (s,+s)[~E(8'g3/»') j&

(23)

if a saddle point s, can be found such that s, is real,
positive, to the right of the singularities of the inte-
grand, and with

(Bg3/Bs j,,=0 [8'g~/Bs'j, ,)0 . (24)

The constant A in B=Ar'v exp31VPe shall be deter-
mined by normalizing to the lattice gas when &=0 and
1V =E/2, for which case Z~i~~=r~E!/[(E/2) ~j' For
the model, we have a;~=0 for all j, k, so that v;=0 for
all j.Then one finds

gq(s) =4(1 rp)s ln—s, —
2rp

(~g~/») .=4(1 rp) (2rp—s.) '—= o,

(8'gs/»'), = (2rpsx2) ')0.

The solution of the saddle point equation is

s.=[g p(1 —p)j '

It is found, that for IV, E, -+ ~, E/IV = v/r,

(25)

(26)

'V—lnA =—ln(2/me).
Ã 2r

(27)

This yields for the limiting free energy per particle the
result

'v 2
PP3 1nr (27rrl—/Ph')' ——"+ ln-+ga (s,)+—3Pe. (28)

2r e

(s,+Pv' ') 'f3(v)dv =I(s„T), --(29)—

%e now investigate the existence of a solution to the
saddle point equation

The integral I(s„T) is a monotone decreasing function
of s, which is finite for s,,= —s=0. ln fact, '

&max f3(v)
I(O,T) =— -dv= —(0.50546).

p o v' pe
(32)

The integral is finite because f3(v) v' as v —+0. The
corresponding integrals for one and two dimensions
would diverge, because, in general, if s is the number of
dimensions, f, (v) v ' as v goes to zero.

The consequence is that the three-dimensional gas
exhibits a transition for temperatures below the critical
temperature given by

kT,/e= [2(0.50546)j '. (33)

The density at which the transition occurs are the two
solutions of the equation

Srp�(1
rp) = (4/Pe—) (0.50546) (34)

The critical density is p, =1/2r, a,nd the two solutions

pg p& for the transition densities are given by pg+pz,
=2p.. These relations are characteristics of the lattice
gas.

Supposing that pa&pl„we must now find Z~ for
pg&p(pL, , i.e., inside the transition region. The inte-
grand in Eq. (21) has a branch point at s= —s=0. A

path of steepest descents can still be found in the
neighborhood of the branch point. To find this path, the
behavior of g3(s) near the pole is required. The following
expansion for g3(s) in the neighborhood of s=0 can be
obtained. (Details are given in reference 4.)

ga(s) =gs(0)+ys+bs +O(s'),
~=4(1—")—(2")-'I(0,T), ~=-(6 )-'(g/P )' (35)

The integrand in Eq. (21) falls off rapidly from its
value at s=0 for the real part of s negative, since y&0.
On a path as shown qualitatively in Fig, 1, the imagi-
nary part of g~(s) is zero, and the path does not cvoss
the branch cut. The contributions to the integral com-
ing from the partial paths on opposite sides of the cqt
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cancel in the limit E, E—+ ~, and only the residue at
the pole contributes to the integral. %e get

Z~/N! =a~: —:expLNg, (0)] (36)

if p6 (p (pg, T(T,.
The limiting free energy per particle is then given by

that the pressure is continuous at the transitions.
The first derivative of the pressure with respect to
volume is also continuous at the transition points;
however, there is a discontinuity in the second deriva-
tive. These statements are proved in the Appendix.

IV. FLUCTUATIONS AND CORRELATIONS

P—)Pq 1n——r(2mrN/Pk') l+ l—n(2/e)+g3(0)+3Pe. (37)
2T

P 1 2—=—ln +4rs, /v' —G3 (s,)/2 A,
—

TT 2v e
(38)

The behavior for T(T. as the density is increased
toward p= pg consists in the saddle point s, decreasing
to zero. Equation (30) shows that this implies that the
mean square amplitudes for the modes with small j
increase rapidly as the density p& is approached. The
configurations of the x, which correspond to these
modes have very long wavelength, and have an in-

creasing expectation value as the density pt.-is ap-
proached. According to the previous discussion, these
configurations correspond to large clusters. The model
then predicts the rapid formation of such large clusters
as the transition density is approached.

The pressure may be obtained from Eqs. (28) and
(37) using the relation p= —(B$/B())r In t.he normal
region, specified by 0&p&pg and pr. (p&1/r for
T(T„or for all densities if T)T„ from Eq. (28) we
have

drlkdr2j S2(rib, r2j) (40)

where the position vector r~/, for one particle is inte-
grated over cell k, that for the other particle over cell j.

In terms of the normal coordinates y;, the correlation
function is given by

(41)

The equation of state is not itself a critical indicator
of the validity of a statistical model, so we turn to a
more detailed description of the physical system. Such a
description is proved by the correlation function be-
tween two cells j and k, (n, r(),) Thi.s plays the role of
the molecular pair distribution function e2(ri, r~)
=E(N L)P&(r, ,r—&). P&(r&,r,) is the probability for a
specified particle to be in the volume element dr~ sur-
rounding r~, and another specified particle to be in the
volume element dv. 2 surrounding r~. From their defini-
tions, it follows that

with the saddle point s, determined from Eq. (29).
From inspection of the saddle point equation, it is easy
to show that (Bp/B())r &0, so that we always have
stability in this region. In the transition region, de6ned

by pg(p&pr. , T &T„ from Eq. (37) we have

1 vms

P/kT= ln(2/e) ———dv f3(v) ln(v'/kT). (39)
2r 2T

where again we use a single index like j to stand for the
triple (ji,j2 j3). Making use of Eq. (8) for the com-
ponents t;( of the characteristic vectors and Eq. (30)
for the mean square amplitudes (yP) this becomes

2' 1
(n,,rl&) = (7p)'+cos (k j)——

E 4E(s+s)

Since there is no dependence of the pressure on volume,
we see that the canonical ensemble predicts that the
pressure is constant in the transition region. The iso-
therms for the three dimensional SM are then com-

pletely similar to those shown by Pressman and Keller
in their Fig. 9. However, as noted by these authors, the
pressure given by Eq. (39) will become negative at
sufficiently low temperatures. This nonphysical be-
havior comes in from the term in Eq. (39) logarithmic
in the temperature. As the temperature decreases, the
pressure at any density decreases, but the decrease
predicted is too rapid. The appearance of the loga-
rithmic term seems to be a direct result of having re-
placed the sum over discrete variables n; by an integral
over continuous variables e;, i.e., it appears to be an
unavoidable characteristic of a pure continuum model. .

At the transition volumes vl, and eg, the saddle
point 5,=0, and it follows from Eqs. (38) and (39)

If the function II;/, is defined as

B;/, = lim
IC, N~er), IC/N=v/v 4g

:(Ir—i) cosL(2n/E) (k—j) (m —1)]
x P (43)

m—1 s.+pv„'

Then, in the normal region,

1im (e)~(,)=- (rp)'+H;(„ (44)

while in the transition region,

1 k(~—i) cosL(2~/E) (k —j) (m —1)]
+ (42)

m=S s,+pv '
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2m ((N~ —(N~))') (N~') —(N~)'
lim (ri,e&)= y lim cos —(k—j) +(rp)'+H;&, (45)

X,N~ea X~ (N )'

where y is given by Eq. (35).
A more detailed distribution function is the condi-

tional average, (e;)„„.This is the average number of
particles in the jth cell when the number in the kth cell
is fixed, and is given by 4 '

1 RIc—Tp

( ). = + - Z~«(y')
4rp(1 —rp) i=i

rpL (r—pL)'+Z Z (&i~)

(rpl)'
~ (51)

P P (~,~,)=L,(I.—1)(~2)= (rp)'I. (I.—1) (52)

If particles in adjacent cells did not interact, we would
have

In the normal region,

1 RIc—gp
lim (e,)„,= rp= — H;, ,

4 rp(1 rp)—
while in the transition region

(47)

and

The average number El. is then a well-determined
macroscopic quantity.

In the transition region, the square of the relative
Ructuation in Ã& is given by

'Sy —gp
lim (e,)„,= rp+

K, v~oa 4rp(1 —rp)

2x
&& y lim cos —(k —j) +H, & . (48)

K~

(Nr. )=(g ri;) =Lrp. (49)

The average value for the square of the number of
particles is

(1VL') = rpL+P P (ri;ni) (50)

The square of the relative Quctuations in Sl. is then

Both (e,mi, ) and (n;)„„were also computed in refer-
ence 5 for the model treated in that work with results
completely equivalent to those given here. As was
found previously, the important difference in the be-
havior of both these averages in the normal and transi-
tion regions is due to the existence of the term y in
the transition region. This term has the effect of ex-
tending the inQuence of a particle in one cell out to
very great distances. For example, if there is one particle
in the kth cell, then the average number in all sur-
rounding cells out to distances of the order of the linear
dimensions of the containing vessel is increased, due to
the presence of the term p. Conversely, if there are no
particles in the kth cell, the average number in all sur-
rounding cells is decreased due to the term y.

There is another aspect of the long range correlation
which concerns the Quctuations in the number of par-
ticles in a region which contains many cells of volume ~.
The average number of particles in a volume Lr is
given by

(N I,')—(N I,)' 1—rp

(N.) (Lrp)'

)&Q g y lim cos —(k—j) +H i, . (54)
jQk K~oo

B;I, goes to zero as the distance between the kth and
jth cells becomes large. By taking the volume Lv sufi™
ciently large, the second term on the right will become
of order one, and the Auctuations in Xg about its
average (Nl, ) of order (Nl, ) will no longer be negligible.
In this case, (Nl) ceases to be a well determined macro-
scopic quantity, as one expects for a system when
(BI'/Bit) r approaches zero.

V. NEGATIVE PRESSURE

In Sec. III, we mentioned the nonphysical behavior
characterized by the pressure becoming negative for
suKciently low temperatures. As Pressman and Keller
have noted, there is another distinct type of negative
pressure occurring in the model, namely, for all tem-
peratures at su%.ciently large volumes. Whereas, the
low-temperature failure of the model seems dificult to
remove, this second behavior appears to be more easily
rectifiable.

It has its origin in the fact that the region of integra-
tion for the SM, which according to Eq. (6) is the com-
mon volume defined by the two constraints, Px;
= 2N —k and PxP =E goes to zero for N ~ 0 or
cV—+E. This is in contrast to the c.p.f. for the lattice
gas, which goes to the value one for these limiting cases.
This apparently small difference in the relative be-
haviors has a crucial eA'ect at low densities. To demon-
strate this, consider the case when ~=0, so there is no
interaction between particles in diferent cells. Then
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for the lattice gas we have the c.p.f.

~N
~N

N!(E N)!—(55)

,25,while for the SM, we have, from Eqs. (23) and,

(56)

uantit ~ h ' ln(Z tt/r. "llf!)-1n2 when
s (LG) the spher cal

d 11 hetlcal Iiiodel (SM) wltll 'the

'
n of r/v for the lattice gas

model (SM, no correction) and t e sp erica m
modified constraint given by Eq. (59).

Fro. 4. Behavior of rP/kT when e=0 as a function of v/r for the
lattice gas and the spherical model.

quantity reaches a maximum or rpfor r 0.2 and then de-
creases or smaf mailer values of the density. This implies

a eh t the pressure becomes zero at this ensi y an
negative or smat' f smaller values of the density. ig
shows the pressure from the two models.

To eliminate this behavior in a simple fashion, one
needs to ensure or ef th SM a nonzero region of integra-

l ~

as lV approaches zero or E. This n y dma be done in a
in the constraintrather heuristic fashion by modifying e

ga, =2N Eso that —it reads

Q x, =2N E+a(1 2;tty/—E). — (5$

of the added term is chosen to preserve theTheformo t ea e
model symmetry about the value A = . o
parameter o. posi ive, it' t ensures a nonvanishing integra-
tion region for E=o or E=E. The parameter n may
be chosen so that (1/E) 1n(Zv/r~Ã!) —+ 0 for the SAI
as it does for the lattice gas. It is a simple exercise to
show that this yields for n the value

n =E(1—%3/2). (58)

So that our constraint of total numm er of articlesP
now reads

20

l6 ~

Figure 2 shows the quantity (1/E) 1n(,&/(Z r/r~N!) 1n2-
approaches minus infinity as pp

h E This has the eRect on exp' —ltIapproac es . is
=(Zv/r~N!)'~~shown in Fig. 3. For the

t2

ir v3
Q a;=—(2N —E)

2
(59)

lO.

4h+
I

I
I6' I

I

I
i

I

l

','S M

r

O

Z r+SI "+ when e 0 as a function oVIo. 3. Behavior of (Z~/r )
r/s for the lattice gas and the spherica mo e wi
modification of the constraint.

In Figs. 2, 3, and 4 the improvement aRected by this
mo 1 cation is s own.

n' "d 1 ~as" region. Moreover, thisositive in t is i ea
~ ~ t

fd t ffect the qualitative behavior omodification oes no a ec
nt so t at ourhthe model when interactions are prese

'
ll affected.previevious results are not materia y a ec e .

VI. CONCLUSIONS

Th herical model of a lattice gas leads to a phasee sp eri
bv con-transition ln Ithree dimensions characterized

stant condensation pressure.
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The interpretation of. the normal modes shows that
the model contains the general aspect of the clustering
of particles. The distribution of mean square ampli-
tudes among the various modes depends on density and
temperature in a way similar to what one expects for
the distribution of clusters of various sizes in an im-

perfect gas.
The very large Quctuations. and the long range corre-

lation are characteristics to be expected for the con-
densation process, and are consistent with the fact
that the pressure is constant.

2 4r j.—=—ln—+—s,——G~(s,),
kT 2r e e~ 2r

(A1)

where s, is determined from the saddle point, Eq. (29),
which we write in the equivalent form

8r r dG3
(A2)

Then successive differentiation of p with respect to v

yields the equations

APPENDIX. BEHAVIOR OF THE PRESSURE
AT TRANSITION VOLUMES

This Appendix shows that Bp/Bv is continuous and
B'p/Bv' is discontinuous at the transition volumes vI,

and vg. Since p is constant in the transition region, we
have only to show that Bp/Bv approaches zero while
B'p/Bv2 goes to a nonzero value as the speciiic volume v

tends to eg or vg from outside the transition region.
Ke start with Eq. (38) for the pressure in the normal

region

B's r( r ) (d'GB)

Be' e'k v I kdS'J

8 t'2 ~
'd'G d'G

——
i

—1
i

. (A6)
v'k v j dS' dS'

The function G3(s) is related to g~(s) through Eq. (22),

e(
Gg(s)=-—g8(s)+8-i 1-- s.

e& e
(A7)

3T
dGa/dS~I (0,T)— bs&, —

3r
d'Gs/dS2~ ———Bs

—i,
2 8

3r
d'G3/dS'~- —Bs l.

4v

(AS)

Putting these into Eqs. (A5) and (A6), we get the results

Bs,
lim —=0,

8$
(A9)

BSg 2 'e STt
lim =- —

~

2-—1
Bv 9'tl 'e" ~ 0

In the neighborhood of the branch point, s=0, we may
use for gs(s) the expansion given by Eq. (35) to obtain

2r
Gs (s)~G3 (0)+I(0,T)s——5s l,

(A3)
Consequently,

1 B'P 4 r )B's, 4 r Bs,=- 2-—1
~

——6-—1 —+24—s,. (A4)
kT Be' v v I Bv' e' v Bv e4

The volume derivatives of s, follow from Eq. (A2),
dropping the subscript s,

BI'
lim —=0,

88

B'P 8( r
lim =4vsP' —

~

2-—1
~"~ Bv' ve'E v t'

(A10)

(A11)

measures the discontinuity in the second derivative of

(A5) pressure with respect to volume at the transition vol-
umes 'vy and 80.


