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Therefore, in the quadrant Reh) 0, Imh &0,

LStS], .~e—smarm& —esrlrm&l

Thus, the positive diagonal elementsof S~S are bounded.
Since the two diagonal elements are lS~zl'+lSzsl'

IS»l'+'IS»l'z each element of the S matrix is
bounded in this quadrant, for physical E.

6. CONCLUSIONS

It has been shown that Froissart's work on single-
channel scattering can be generalized to the many-
channel case. The singularities of the Jost matrix were
discussed in detail and appear in Eqs. (27) and (28).

Since the S matrix is given by the quotient of the two
Jost matrices, the singularities of S will include the
origin, those in Eqs. (27) and (28) and poles which
arise at points where the determinant of one Jost
matrix vanishes. Thus, in particular, for a potential of
type (2), S(X,E) is meromorphic in the entire X plane
except for an essential singularity at infinity.
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It is shown that the Bethe-Salpeter scattering amplitude in the ladder approximation is meromorphic
in the complex angular momentum half-plane, Rett& —3/2. There is always at least one Regge pole in this
region.

The T matrix element for complex l can be written in the form, E~DI, ', where Ãg and D~ have convergent
perturbation expansions. D& has only a right-hand cut in the squared energy variable, with a branch point
at the elastic scattering threshold and at each production threshold. E~ has a left-hand cut, and in addition
a right-hand cut beginning from the erst three-particle threshold. The Regge poles are zeros of D~. Much of
the information about the trajectories of Regge poles is contained in the lowest-order expression for D&. The
general properties of the trajectories are the same as for the case of scattering from a Yukawa potential.
For suKciently small coupling constant a Regge trajectory a(s) may apparently be expanded in a pertur-
bation series, valid except near thresholds in s.

The connection between the Regge poles of the ladder graphs and the high-energy behavior of the "strip"
graphs is discussed. In the X&' theory it is shown that the second-order expression for the leading Regge
trajectory, for the sum of the ladder graphs, determines the leading term in the high-energy limit of the
eth order strip graph. This relationship has been checked in fourth-order perturbation theory, and is evidence
for the consistency of a perturbation approach to the calculation of Regge trajectories.

1. INTRODUCTION

T has been suggested recently that the ideas of
~ ~ Regge, ' ' concerning certain asymptotic properties
of potential scattering amplitudes, may be applicable

* This research was supported in whole or in part by the United
States Air Force under Grant No. AF-AFOSR-61-19 monitored
by the Air Force @fence of Scientific Research of the Air Research
and Development Command.

)Permanent address; supported at this institution by the
Atomic Energy Commission.

f Permanent address; supported in part by the Research Com-
mittee of the University of Wisconsin with funds provided by the
Wisconsin Alumni Research Foundation.' T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960).' A. Bottino, A. Longoni and T. Regge (to be published).

in elementary particle physics. ' ' Their applicability
depends on the nature of the behavior of elementary
particle scattering amplitudes in the complex angular
momentum plane. Though a certain domain of analy-
ticity in the 1 plane follows from a,ssuming the validity
of the Mandelstam representation, ' it is doubtful that

' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7„394
(1961);8, 41 (1962); Phys. Rev. 123, 1478 (1961).

4 V. N. Gribov, J. Exptl, Theoret. Phys. (U.S.S.R.) 41, 667
(1961) Ltranslation, Soviet Phys. —JETP 14, 478 (1962)j.' S. C. Frautschi, M. Gell-Mann, F. Zachariasen, Phys. Rev.
126, 2204 (1962).

R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766

' K. Bardakci, Phys. Rev. 127, 1832 (1962).' A. O. Barut and D. E. 7wanziger, Phys. Rev. 127, 974 (1962).
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such general considerations can establish the nature and
the location of the singularities in the / plane. The
investigation of Regge poles in field theory must there-
fore fall back on the examination of approximation
schemes.

In the present work we have investigated the be-
havior in the complex angular momentum plane of the
Bethe-Salpeter scattering amplitude in the ladder
approximation. The resulting set of graphs includes, in
addition to relativistic eGects, some limited contri-
butions from states with more than two particles. For
simplicity, we consider the scattering of two bosons
through the mechanism of boson exchange.

In Secs. 2 and 3 it is shown that the scattering ampli-
tude has only poles in the half plane, Ref) —3/2. The
proof involves writing the T matrix in the form XD ',
where E and D have convergent perturbation expan-
sions and are explicitly analytic in the angular mo-

mentum variable. In Sec. 4 we show the relation of
this ED ' factorization to the conventional one in
which S has no right-hand cut and D no left-hand cut.

In Sec. 5 we study the trajectory of the first Regge
pole in the high energy limit and in the weak coupling
limit. Section 6 deals with the relation between this
leading Regge term and the high energy limit of the
"strip" approximation graphs. In Sec. 7 the results are
generalized to include exchange of systems with con-
tinuous mass distributions.

2. THE BETHE-SALPETER EQUATION

We consider the scattering of two distinguishable
bosons, a and b, both of mass m, These interact through
exchange of a third boson of mass y with coupling
constant g to both particles a and b. The two-body
Green's function is defined as

G(xz, xs, xs, x4)

=(ol rg. (xt) v s(xz) p.(xs) v»(x4) I0&

d4pd4qd4WG(p, q,W) expCip(xt xs)—
i q(Xs X4)+—',i W(Xz—+Xz X-s X4)) (—1)— .

ladder approximation is~"

C(P+s W)'+~' ze—]C(P l W—)-'+z~' z—jG(p, q, W)

d4p/

G(P', q, W). (2)
(p

' —p) +'Zz '—ie
In the center-of-mass system we have, W = (gs,0,0,0).

The T matrix element is determined from the Green's
function by the following hmit,

T=»m~(p, ps, g)CG(p, av'~) —~'(P —c)/~(p, Ps,~)j
XF(q,qp, s), (3)

where

~(p, po, ~) =Lp'+~' —ie —(Po—su'~)'J
X Cp"+ZZ-Z' ie—(P—II+-,'QS)'j (4)

and the limit in Eq. (3) is to be taken as

p ~ llf (4s —zzz')I q —+ n, (4s—zzz')"*

qo~ 0

Here, n; and nf are unit vectors in the directions of the
initial and the final momenta.

From Eqs. (2) and (3), we may solve for the T matrix
element in the form,

&flTlz&=&p, 0I&(1—14) 'lq, o&,

&»Ps II~ I
p' Ps'& = (2x) Y/C(p —P')'+z '—ze]

(2zr)
—4g'

(p,psl&l p', Po') =. , (6)
zI'(p, Po s)C(P—P')'+z '—ze3

8 and E are here to be considered as integral operators
in a four-dimensional space, in which operat. or products
are defined by

&p,pol»l p', Po'&= d'P" (p,pol~ I
p",Po"&

x&p",Po"
I
~

I
p', Po'&.

Taking the partial wave projection of Eq. (3) we

obtain, for integral l,"
T,=&lpl, ola, (1—Z,)-zl lpl, o&, (7)

In momentum space the Bethe-Salpeter equation in the where

4' llnI'+IN'I'+~'-"-(0o —p~')')
&II I,psl&zl Ip'I, ps')= ()zl

(2 )' & 2lpl li'I

g I p I'+
I
p'I'+z '—ie—(Po—Po')')

&lpl, psl«(g) I II'l,Po'&=. , Qz
i(2x)'~(lpl, po, g) 2lpl II'I

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 435 (1951).
'4 S. Okubo, D. Feldrnan, Phys. Rev. 117, 279, 292 (1960)."G. C. Wick, Phys. Rev. 96, 1124 (1952).
"N. N. Khuri, Nuovo cimento 5, 1023 (1961).
"The dehnition oi our T(cosg) and 7'~ are such that 2'(cosg) = (1/4mp')Z(21+1)T~Pz(cosg), T~= (2/zr)'p(p'+zzz')'"e44& sing~.
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8» and E» are now to be considered as integral operators
in a two-dimensional space in which operator products
are defined by

& I p I,ps I ~Ill I
p'I, ps'&

&Po"&IPI,PoI~ I II I"Po"&

X&II I"Po"
I
a

I I
P'I, P '&

The appropriate continuation of T» into the complex
angular momentum plane will be the one provided by
Eqs. (7) and (8). Qi(x), the Legendre function of the
second kind, is analytic in / except for poles at the
negative integers.

3. MEROMORPHY OF THE T MATRIX

The expression for Ti, Eq. (7), can be developed as
the ratio of two series by substitution in (7) of the
identity'4

(1—Ei)-'= —L(3/3Eir) Det(1 —Ei))/Det(1 —Ei). (9)

The series expansions of numerator and denominator
may be read off from the expansion, in powers of E», of

Det(1 —Ei)= exp Tr log(1 —Ei).
Ke write T» in the form,

Ti(s) =iVi(s)Di(s) ',
where

,0 I
a,t (3/3E,r)D,E I I p l,O&,

(10)
Di(s) =Bet(1—Ei).

This will be a useful representation if the series for
D» converges. The terms in the expansion of D» are of
the form

It is possible to see from Eq. (8) and from the properties
of Qi(x) that the integrals involved in Tr(Ei) con-
verge in the half-plane Rel) —3/2."It can be further

shown that the series expansions of D» and E» converge
for Rel) —3/2. Here we outline the argument; the
details are in the appendix.

We consider first the region,
~
Regs~ (2m. In this

region the contours for all the p, integrations in TrEi
may be rotated counterclockwise to the imaginary axis,
following Kick." Beginning with the new kernel re-
sulting from this distortion, we now make changes of
variable which reduce the problem to one with a 6nite
region of integration and a bounded kernel X». Con-
vergence of the series for both iV~(s) and Di(s) now
follows from standard results. Convergence for all s not
on the real axis between s=4m' and s= ~ follows from
suitably deforming the ps integration contours.

Since E» is explicitly analytic in /, the only singularity
in the half / plane, Ret) —3/2, of either iV i or D~, is the
fixed pole of Qi(x) at /= —1. It is shown below that
both IVY(s) and Di(s) have simple poles at /= —1. The
singularities of Ti(s) for Rel) —3/2 are, therefore, only
poles located at the zeros of Di(s).

When Rel( —3/2, the traces of (Ei) diverge. A
continuation procedure, such as that devised by
Froissart for potential scattering, " is required for the
investigation of the analytic properties of T» in this
region. Term by term continuation of the series for D»
is not sufficient for a proof, since the continued series
may not converge. Nevertheless, it seems likely that
the singularities of D» in this region will be the singu-
larities of the term by term continuation, a result
which is true for the Yukawa potential case." The
first term in the expansion of D» shows poles in the
l plane at each negative integer, as in the Yukawa case.

4. SINGULARITIES OF N» AND D» IN
THE s PLANE

We now show how our factorization T» ——E»D» ' is
related to the conventional one in which g» has only
a left-hand cut and D» has only a right-hand cut. Ke
begin by considering the singularities of D». A typical
trace occurring in the series development of D» is

»%"(~)=La'/s(2~)' j" dory' ' 'dg

2gyg2

A standard Landau type of analysis may be followed
to locate the singularities of (11) in the variable s.is

'4 M. Baker, Ann. Phys. (New York) 4, 271 (1958). See also,
J. Schwinger, Phys. Rev. 93, 615 (1954); 94, 1362 (1954).

"The only properties of Qi(x) which are needed here are the
behavior at infinity, Qi(x) ~constx ' ', and the fact that the
singularities of Q»(x) at x= &1 are logarithmic.

"M. Froissart (to be published).
'i S. Mandelstam (to be published).

(a) Two zeros of F(q;,oi, ,s) may pinch the oi; inte-
gration contour. This happens when s=4m' and pro-
vides the beginning of the two-particle cut in Di(s).

(b) Singularities arise from pinches of the ~o inte-
gration contours between branch points of the Qi's and

's L. D. Landau, Nuclear Phys. 13, 181 (1959); R. J. Eden,
Proc. Roy. Soc. (London) A210, 388 (1952).
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zeros of the denominators. These give branch points at
s= (2stt+tt)s, (2stt+2tt)', etc. , that is, at the thresholds
for the production of different numbers of the exchanged
particles.

(c) There will be additional singularities following
from the pinch analysis. It is shown in the Appendix
that Di(s) has in fact only the right-hand cut, that is,
that the additional singularities lie on unphysical
sheets.

In the region 4sst'&s&(2stt+tt)' we may evaluate
the discontinuity of Di(s) across the cut by means of
Cutkosky's method, which involves the following
replacement, "
[F(q, te,s)]-' ~ ( 2sri)'8[q'+sit' ((e———,'Qs)']

X5[q'+fN' —(re+-,'gs)'] ( )

The replacement is to be made in all possible ways in
integrals such as that of Eq. (11), including simul-
taneous replacement for several factors F '. The re-
culting sum of terms will equal the discontinuity of
Di(s).

What is to be shown is that Xt(s) as defined in Eq.
(10) has no cut in the region, 4m'&s & (2stt+tt)'. One
way to show this is to write out the mth order terms in
the series for Xt(s) defined by Eq. (10), take the
discontinuity using Cutkosky's method and see that
all terms cancel. Writing out terms can be avoided by
the following equivalent formal manipulation,

Di(s i e) /D t(
—s+i e)

=Det[1—Ei(s—ie)]/[1 —Et(s+ie)]
=Det(1+ [Et(s+ie) —Ei(s—ie)]

X [1—Ei(s+is)]—'). (13)

Cutkosky's method amounts to the replacement,

(qre l Et(s+ie) —Ei(s—ie)
l

q're') —+ -(2sri)'
i(2sr) s

X8[qs+ Sit' —(M —is/S) ]5[q'+tS' —(to+-', /S)']
q +q +tt 'le ((e te )

XQi . (14)

~

~

This will be valid for the region 4'' &s & (2sit+tt)', in
accord with the above remarks. Noting that

$[qs+stts —(re —res) ]$[q +tts (te+rgs) ]
8[q—(-,'S—Sit')'"]8 (ee)

(15)
[S(-,'S—ftt')]its

the right-hand side of Eq. (13) may be evaluated as

Di(s —ie) 27r'

. =1+, (P, 0IBt(1—Ei) 'lP, o)
D, (s+ie) [s(-',s—sst')]'t'

'

(16)
' R. K. Cutkosky, J. Math. Phys. 1, 429 (1960).

The infinite determinant in Eq. (13) was evaluated by
noting that aside from the ones along the diagonal,
there is only one nonvanishing column of the matrix
of which the determinant is being taken, as indicated
by the 8 functions in Eq. (15). From Eqs. (7) and (16)
it now follows that, in the region, 4stt' &s & (2ttt+tt)',

Di(s —te)/Dt(s+te) =e'""" (17)

This suffices to show the identity of our ED ' factori-
zation with the conventional one in the elastic region. '
We note that in the elastic region our amplitude T~
satisfies a two-particle unitarity condition extended to
complex angular momentum. "

According to the arguments of Sardakci, 7 for non-
integral l there is a kinematical cut in lilt(s), running
from s=4m' to s= —~, which can be factored out in
the form

Xt(s) = (s—4m.')'stt(s).

Here, stt(s) has a left-hand cut beginning at s= 4sst' —tt'
and a right-hand cut beginning from s= (2stt+tt)'.

Another property of Di(s) which will be required.
will be the behavior at s= ~. In the Appendix it is
shown that Di(s) —1 approaches zero faster than s '"
as s approaches infinity.

5. THE LEADING REGGE POLE

Before discussing the roots of Di(s)=0, we need to
establish the result, already mentioned, that the
singularity of Di(s) at l= —1 is a simple pole. To prove
this we separate Qt(s",) into a singular and a regular
par t,

Q, (~) = 1/(l+1)+Z(~, l).

The operator Ei(s) (Eq. (8)) is thus written as

(qre l Ei(s) l
q'ce') = 1/[(1+1)F(qo~s)]+Et(q&e, q'ce') (20)

where the operator E& is regular at t= —i. D& may be
factored in the form,

Di(s) =Det(1 —Et+Et)
XDet[1—Rt(1—Et+Rt) ']. (21)

Now we note two relations which follow from the
separability of the singular part E&—E& of the kernel
Eg.

Det(1 —Et+Et) = 1—[1/(l+1)]g'/i(2sr)'

X dqdos/F (q,os,s), (22)

(1—E,+&,)—'= 1+(Ei—Rt)/Det(1 —Et+Et). (23)

"The following statements can readily be verified: The
quantity, t(s,l) =sr'Tt(s)/(s(s 4m—') jus, is a real —analytic function
of s and l such that t*(s,l)=t(s*,P) )see also reference 21j; the
unitarity relation extended to complex values of l implies that
t(s, l) has the representation, t(s+se, l)=e"&' '& i b(sin), ts(s ie,l)—
=t*(s+ie, l*), and b"(s,l) =b(s, t*) for 4ms ~s~ (2m+is)'. See also
reference 8."D. Fivel, Phys. Rev. 125, 1085 (1962).
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$~"Ig. 1.. Lhc ladder
graphs. D, (s) =1—--—=--

S /+1)
+p(l, s). (28)

Froiu E . (22) it is seen that the first factor in Eq (g2 1
has a simple pole at l= —1. From Eq. ~ . ~ ias a si —— ~23~ it follows
that the second factor in Eq. (21) is regular at l= —1.

Therefore, we may write

~

span

'I'o oidei. g-' the solution 'to Dl(~) =

ds

gn' 4
' (s' —s)Ls'(s' —4m')7'"

(29)

Di(~) =1—f(~)/(l+ 1)—g(l, ~) (24)

where g(l, s~ is regu a,r a, :h js, ~ ular at l= —1. The condition for a
Regge pole is

l= —1+f(~)+(i+1)C(l ~) (25)

From the condition proved in the Appendix that both

f( ) d (l ) proach zero as s approaches infinity,
wesee a ith t n this limit a Regge pole moves to

el —3 2Since g(l, s) is regular in the l plane for Re )—/,
this is the only Regge pole which can lie in the hal-
plane, Rel) —3/2, in the limit of large s.

A completely analogous discussion could be made for
the poles which move to the other negative integers as
s approaches infinity. Ke shall henceforth ignore these
other poles, which lie outside our proven domain o
meromorphy, and concentrate on the leading Regge
t.CITIl.

thatIf the coupling constant is very small it is clear tha
D&(s) can vanish only near one of its singularities, eit er
in the s plane or in the / plane. Elsewhere all the terms
in the series for D&(s) except unity go to zero as g'
approaches zero. Since Di(s) is an entire function of g'

we may hope to be able to study the trajectories of the
R l f r small g2 from the lowest-order expressionReggepo es orsm
for Di(s),

D, (s) =1—
i(2~)' . F(q,~o,s) 2q'

The ~ integration in (26) may be performed to give

Di(s) =1—
2

ds 2p,

Qi 1+
,„'7s'(s' —&m')1'&' s' —4m')

X . (2S)
S S Z6

FrG. 2. The strip
gl aphs.

Again we separate that part of D~ which is singular

The term p(l, s) from Eq. (28) enters 6rst in the fourth
order, by virtue of its regularity at l= —1. The higher-
order terms in the expansion of Di(s) likewise enter the
expansion, Eq. (29), for the root, only in higher order.

integral in (29) is not bounded. Our perturbation
theor for the trajectory fails in this region, even or
arbitrarily small coupling constant. As s moves from
some point to the right of 4m' to + ~ we can again
follow the trajectory from Eq. (29). The pole returns
to /= —1 at s= ~ through complex values in the upper
half plane.

Some insight into what happens near s=4m2 can be
gained from the corresponding situation in scattering
from a Yukawa potential. In that case one may see
that even for arbitrarily small potentia streng
first Regge pole always moves at least as far to the right
as /= —1/2 at threshold. In the limit g-+ 0 the pole
moves discontinuously from —1 to —1/2 as the energy
goes through the threshold value.

6. HIGH-ENERGY LIMIT OF THE
STRIP APPROXIMATION

One of the main motivations for studying the complex
angular momentum plane is the possi le application to
high-energy limits in scattering. The poles in the com-
plex l plane are related through the formula of Regge
to the high momentum transfer limit with the energy
fixed. ' This in turn is related to the high-energy limit,
with fixed momentum transfer, of a certain crosse
reaction. ' ' In this section the consistency of this view-
point is examined in perturbation theory.

We shall assume that the behavior of our amplitudes
for l —+~ is such that we may neglect the contribution
from the large semicircle, resulting from opening up t e
Watson contour in the / plane as in reference 1.

scalar boson with coupling gy'. In the ladder graphs

corresponding to the ladder graphs of Fig. 1 are t e
strip graphs of Fig. 2.

~ This formula is analogous to one derived, for scattenng from
a, Yukavra potential, by Blankenbecler and Goldberger. See
reference 6.
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The question posed. is that of the relevance of the
perturbation expansion for the first Regge trajectory,
the first two terms of which are given in Eq. (29), to
the term by term asymptotic properties of the strip
graphs. ""

Since Eq. (29) gives a trajectory only in the vicinity
of l= -1, we need first to use a slight modification of
the Regge formula, due to Mandelstam, "in which the
vertical contour integral in the / plane has been moved
to the left of Rel= —1.

—(3/2}+e+ieo

T(s, cos8) =- dl(2l+1)T&(s)Q t i(—cos8) scca-t
87f Zp (3/2)—+e i co—

P (—1)" '2eT~ &r/2&(s)Q„(1/e)(cos8) Q (2n, +1)r,(s)Q ~,. i(—cos8) secat. (30)
4a.2p2 a=1 4/rp' f

Here e is small, real, and positive. The sum in the third
term on the right of (30) is over the Regge poles to the
right of Rel= —3/2.

The asymptotic form for large cos8, coming from the
first Regge pole is of the form

g2

ni(t) = ——
8m' ~ (t' —t)pt'(t' —4+2)g'/2

(10), (29), and (34) we find

P, = 1/(2a. )4,

(37)

—1 L2n(s)+1]
T(s, cos8)— «(s)Q--&.&-r (—co&),-"""4trp' cosan(s)

where r(s) is the residue of the first Regge pole at
l=n(s) The .asymptotic form for high energy in the
crossed channel is now obtained from the replacement,

The high-energy limit including the leading, loga-
rithmic term of the fourth order is,

g' ins g'
lim2'(s, t) = -+

(2~)4s s 2(2a)'

dr' 1
s —+$,

—cos8 ~ 1 2s/(t —4/r/'—). — (32)
— +o(g'/)+o( ') ( )

t' —t Lt'(t' —4)j'"

De&ning T as the T matrix for the crossed graphs of
Fig. 2 we obtain, using the asymptotic form for Q&(s) 2"

limT(st) =p(t)s &'&,

S~
where

P(t)=(r(t)t 2n+ij4 /a. (t—4t/t') +' cosan}

(33)

p(t) =g'pi(t)+g'pr(t)+.
n(t) = —1+g'n (t)+

The expanded form of Eq. (33) is

(35)

limT(s, t) =g'pi(t)s —'+g'pi(t)ni(t) (lns)s
—'

+g'p2(t)s '+O(g'). (36)—
It is seen from Eq. (36) that ni and pi suffice to deter-
mine the second-order high-energy limit and that part
of the fourth order which goes as s 'lns. From Eqs.

~ G. I". Chem and S. C. I'rautschi, Phys. Rev. Letters 5, 580
(2960).

D. Amati, S. Fubini, A. Stanghellini, and M. Totten (to he
pubHahed).

~~ Higher 1'ra~~scenden4$ I encl@ ns, Batemaa Manuscript
Project (McGraw-Hill Hook Company, Inc, , New York, 2953),
Vol. &, Sec, 3.9,2,

XLa'/21'( —n)/I'(-' —n)$ (34)

We now expand p and n in perturbation series,

It may easily be seen that this agrees with the high-
energy limit computed directly from the first two
Feynman graphs of Fig. 2, which are the crossed
counterparts of the first two ladder graphs. This is the
result which was anticipated. It indicates the con-
sistency of a perturbation approach to the calculation
of Regge trajectories.

The expansion in Eq. (36) is of course only a formal
one. In the limit s —+~ the (2e)th-order term goes as
s ' 1n"s and the perturbation series must fail to con-
verge. The proper approach to high-energy limits in
perturbation theory is clearly through the Regge poles.
Note that given n(s) to the second order we can com-
pute the coeKcient of the term of order s ' 1n"s in the
(2tt) th-order strip graph.

Ke have been loosely referring to the graphs of Fig.
2 as the strip graphs. However the strip approximation
usually means an approximation in which only two-
particle intermediate states are retained in a crossed
channel. As was seen from the discussion of Sec. 4, the
ladder graphs of Fig. 1 contain, in fact, many particle
intermediate states. So we do not claim to have solved
exactly the problem of the high-energy behavior of the
strip approximation. 2' '4 Nevertheless the Sethe-
Salpeter solution would seem to contain all the strip
terms plus additional contributions from many particle
states, Moreover, for the Bethe-Salpeter equation, we

begin with a proof that a solution exists, No such pro()f
has been written down for the strip model,



2272 B. K. LEE AND R, I . SAWYER

7. INCLUSION OF A SPECTRAL FUNCTION

One generalization of the problem which is of some
interest is the replacement of the exchanged particle of
mass p by a continuous distribution of masses. In the
operators 8 and Eof E'q. (6) we make the replacement,
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(P' P)'+—I" i~—
We have investigated the Regge poles only in the Born
approximation for D~,

g2 00

1—
ds

Sm' 4 ~ Ls'(s' —4m')]'" s' s —ie—

2
&i Q (&+, (5) (4W

s' —4''

The critical point will be the behavior of 0.($) at
in6nity. The interesting range of behaviors at infinity is,

lima($) =CP
—'+", 0(g(1.

)~op
(41)

From Eq. (40) one may see that in this case Di will

have a fixed, simple pole at l= g —1, and the first Regge
pole will begin at l=g —1 at s= —~. For g=1 the
integrals in Eq. (40) no longer converge for any i. This
is unfortunately the case for the spectral function
describing double pion exchange in the renormalized
) p4 theory. For q&0 the first singularity of D& is at
/= —1, as in the case of a simple Vukawa potential.

These results are exact analogs of corresponding
results for superpositions of Yukawa potentials in non-
relativistic theory. For the potential,

APPENDIX

g2

(q,o)
i Eii q'cg') = F-'(q, (o,s)

i(2')'

q2+ q'2+Ii2 i& —((u ——(u') ~

(XQi, (A1)
2IIIg

we note that as both the co and ~' contours are simul-
taneously rotated counterclockwise, the quantity,—(co—&o')', develops a negative imaginary part. Hence,
the branch points of Qi, which are for real argument,
are avoided in the rotation. The vanishing of the con-
tributions from the circular segments at infinity follows
from consideration of Eq. (11).

The transformed kernel is

2

(q(u
~

Ei'
~

q'a)') = F '(q, ia, s)
(2n.)'i

First we consider the range, 0(s(4m', and note
that Wick's change of contour for the co integrals in
Eq. (11) is allowed. "The singularities in the &u plane of
the factor F '(q, ~,s) t Eq. (4)] are confined to poles in
the second and fourth quadrants. This suggests a
counterclockwise rotation of the co integration contour
from the real to the imaginary axis. Considering now
the complete kernel LEq. (8)],

1
&(r) = ~-""~(~')~~~

PO

Pq2+q&2++2+ (~ ~~)2

XQ, l
. (A2)

(42) 2qq'
As before, we have

with the behavior of 0.(p ) at inanity given by Eq. (41),
it is possible to show that the first Regge pole begins
at l=p —1 for infinite energy. However for potential
theory the method fails for p&1/2, which corresponds
to a potential more singular than r ' at the origin. In
field theory there is enough additional convergence
Prom (s') 'i' in Eq. (36)] to allow values of g between
1/2 and 1.

8. REMARKS

The ÃD ' method which has been used is not limited
to the ladder graphs. One could probably extend the
results to include more complicated field-theoretic
effects by including a higher-order kernel in the Bethe-
Salpeter equation. There is no obvious source of singu-
larities other than poles in the complex angular mo-
mentum plane.

To show that the series expansion of the determinant
of 1—E~' converges we make changes of variable of
the form,

q'= f(&'),

u&, =g(N, ).
(A5)

Di(s) =Det(1—Ei'). (A3)

Equations (A2) and (A3) define a function which is
manifestly analytic in s in the region in which F(q,its, s)
does not vanish,

IRev'~l (2~.
Next we define a symmetrized kernel which yields

the same function Di(s) when the determinant is
computed,

(q& ~

Ei'
[
q'~') =(q~ [Ei'

~

q'~')F ii2(q', i~', z)

&&F'I'(q ice,s). (A4)
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t=L1—(1+q) 'j'
~=L1+I~I3 ' e&0.

(A7)

These transformations are not single valued and the
new region of integration in the t, I space will be very
complicated. However, the integration region is now
finite.

It may be seen that the new kernel defined from (A6)
and the transformations (A7) is bounded in the entire
region of integration for values of Re/ greater than some
minimum value which depends on the parameter e in
(A7). As e approaches zero this minimum value of Rel
approaches —3/2.

Convergence of the series expansion of Di(s) now
follows in the region Re/ &—3/2, I

Regs I
&m standard

methods being applicable to the case with a 6nite
domain of integration and a bounded kernel. 2' Con-
vergence of the series for Ei(s) also follows, since the
transformations described in this section are just those
that transform a Bethe-Salpeter integral equation into
an equation of Fredholm type. Moreover, Di(s) is
analytic in s in this domain.

To enlarge the domain of holomorphy of Di(s) in s,
we first note that for 0(s(4m2, the co integration
contour can be rotated from the one implied by Kq.
(A2) by any angle y —isa, e&y&m —e, where e is a
small positive number. Under the simultaneous rota-

'6E. T. Whittaker and G. N. Watson, A Course in Modern
Amalysss (Cambridge University Press, New York, 1940), 4th ed. ,
Sec. 11.21.

The kernel E~' is now to be replaced by X~, where

(&~ I «I &'~') = Lf'(1)g'(~)7"(f(&) g(~) I
«'I f(i')g(&'))

&If'(&')g'(~') j'" (A6)

The changes of variables (AS) are to be chosen such
that the new region of integration for the evaluation of
the traces is finite and such that the transformed kernel
Ki of Eq. (A6) is bounded in this region. Transforma-
tions which accomplish this end are,

q'+q's+iis —e"&( o—~ o~')s

XQt
2gg

Di(s) =Det(1 —Ei").

(AS)

Equation (AS) defines a function Di(s) which is analytic
in the region in which Ii (q, e'"oi,s) does not vanish:

I
Regs —coty Imps

I
&2m. (A9)

The function Di(s) defined by (AS) in this region is
clearly the analytic continuation of Di(s) defined by
Eqs. (A2) and (A3) in the region

I
Regs I

&2'.
Convergence of the series expansion for Di(s) in

Eq. (AS), for Rel& —3/2, can be inferred as before,
by converting the kernel in Eq. (AS) to a bounded one
in a finite integration region by the transformation,
Eq. (A7).

The union of the domains of s defined by Eq. (A9)
as y changes from e to ~—e is the entire cut plane of s,
with branch cut from s=4m' to ~. Hence, Di(s) is
analytic in the cut s plane, and meromorphic in / for
Rel & —3/2.

We may observe in addition that the new kernel
defined by Eqs. (A5), (A6), (A7) has the limit as s
approaches infinity:

lim (tN
I
X

I
3'ss') = (1/gs) R(t,l,f',I',s),

l sl

where the function R is bounded for all t, I, t', m' in the
integration region, and for all s in the cut plane. We
see, therefore, that Di(s) —1 approaches zero at least
as fast as s 'I' as s approaches infinity.

tion of the or and ~' contours, the kernel transforms into

(q~ I

«"(s)
I
A')

g2

F '(q, e""te,s')

(2ir)si


