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Complex Angular Momentum in Two-Channel Problems
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Analytic properties of the two-channel S matrix are investigated, and the threshold behavior of each
channel is also studied. We conclude that a certain class of potentials leads to an S matrix which has branch
points in linear momentum space and is an entire meromorphic function in the complex angular momentum
plane. A formula is given which displays the discontinuity across the threshold cut as an explicit function
of the angular momentum.

1. INTRODUCTION

CURRENT conjectures on the role of Regge poles~ in elementary particle reactions are largely based
on Regge's work which treats elastic scattering by
Yukawa-type potentials. ' However, we must also
consider problems in which the sum of initial masses
differs from the sum of final masses. In this note, a
nonrelativistic analog of this problem is studied. We
investigate multichannel potential scattering, the
channels differing in their masses and thresholds. For
simplicity we work out the two-channel case, from which
the generalization to S channels is obvious.

In Sec. 2, we formulate the S-matrix theory using
Regge s normalization convention. In Sec. 3 it is shown
that Froissart's recent work can be generalized to
two channels. In Sec. 4 the threshold behavior is studied
for each channel, and in Sec. 5, domains of holomorphy
of the S matrix are considered.

2. THE TWO-CHANNEL S MATRIX

In this section we present the 5-matrix formalism
which appears especially convenient for investigating
complex angular momentum. In nonrelativistic poten-
tial scattering, the channels differ in their masses and
threshold energies. However, one can suppress the
explicit mass dependence in the normalization. Thus,
we write the radial wave equation as

~' (4(*) & ' o (6(*) (&'—' (A(*))+
dx' (Ps (x) 0 ks' its (x) i x' kiys (x)

Vrr(*) Vrs(x) Pr(x)
(1)

Vsr (x) Vss(x) lt s(x)

where fr(x) and ))(s(x) are the wave functions for
channels 1 and 2, with linear momenta k& and k2. Also
)), is 1/2 plus the conventional orbital quantum number
and will be taken as complex variable. The off-diagonal
elements of V;;(x) are responsible for the interaction
between channels, and by time-reversal invariance, the
matrix V(x) is real and symmetric. We shall assume that
the potential is spherically symmetric and of Yukawa
type:

where

U;, (x)=x '
d)(4 o,,(p) e

p&0

(2)

a;~(y)=0(p, ") for ep)0 as

For simplicity, the lower limits of integration will be
taken the same for all elements. This condition implies
that

lim x' 'V(x) =0 for e(ep, (3a)

and

lim e'*V(x) =0 for a(y, p. (3b)

In the two-channel problem, there are four independ-
ent solutions, which are ordinarily chosen to satisfy
convenient boundary conditions. We form two 2&(2
matrices F(),,K,x) and C()K(,c) whose columns are
these independent solutions. Using the two properties
of the potentia, l matrix given in Eq. (3), we can choose
Ii and 4 in such a way that

F(),K,x) —+ FP(),K,x)

rr ' ' (ktx)'I'a), ('&(krx)
exp[ —irr -,'()t+-,')j

2 0 (ksx) 'lsd), (s) (ksx)

-exp( —ik,x)

exp( —iksx)

alid -k;"J),(k)x)
C (),K,x) ~C'()t,K,x) = 2"I'(k+1)x'I'

ks "J),(ksx)

X"+1)2

0

0

gX+1/2
as x —+ 0.
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The superscript "0"denotes a solution for zero poten-
tial. Equation (1) involves E and ), only as squares, and
thus it follows from the boundary conditions that
F(X,It,g) is an evenfunction of X and c (),E,x) is an even
function of K.

Evidently, two possible choices for the complete set
of four independent solutions are F(),,E,x) and F(X,

E, g)—or C(),E,x) and e(—X, E, x). Thus, C(X,E,x)
can be expressed in the standard way as

C (X,E,x) = (1/2i) {F(X, E, x)E—'Fr(X,E)
F()—,K,x)E 'Fr(), IC)),—(6)

F(), ~E)=%ac(),,E,x),F(), ~E, x)].

From the asymptotic behavior of Eq. (6) as x —+ ~,
it follows that one can define the 5 matrix as

5() K)=K '"Fr(P, ,K)pr(X, K)] 'E"'8—'~" '"/ (8)—
which is unitary for physical X and E. By considering

the behavior of C (X,K, x) at the origin, we deduce that

P(), IC—)K 'F-r() K) F—() K)K 'Fr() —E)=0. (9)

From this it follows that 5(X,E) is symmetric:

g(g E)—Kl/2F —1 (g E)F() E)K—1/2gi~(x —1/2) (8~)

'iVe will call F(),E) the Jost matrix and will study its
analytic properties in the next section.

3. ANALYTIC PROPERTIES OF THE JOST MATRIX

In order to investigate analytic properties of the Jost
matrix, we shall solve the differential equation in Eq. (1)
for C (X,E,x) and, using the solution, evaluate F(X,E)
by taking the AVronskian of Eq. (7) in the limit x ~ ~.
For convenience, we regard the matrix as a function of
three i.ndependent complex variables X, k~, and k2. The
interdependence of k~ and k2 for physical values will be
discussed in a later section.

Let us transform the wave equation into an integral
form

4 () E x) =4'(X E x)+ dx' G (Ex Ex') V(x')C (X E x') (10)

where

G (Icx,Ex') = —(7r/2) (xx')"- '0(g —x')
I/ (klx )//X(k1x) A(klx)/V/ (klg )

I/, (k2g')/V/, (k2x) —I/, (kpx)/V/, (k2x')

This equation can be formally solved by iteration.

where

C (),E,g) =Co(),E,x)+ dx' I,x(g,x')e'(X,E,x'),

I/, Ir(x,x') = P I/, Ir("/(x, x')

I/, /r/") (x,x')

4V

=K " dxg G/, (Ex,Exp) U(x|) dx, G/, (Ex/, Ex,) V(x2)

~ e 2

dx„g G/, (Ex„2,Ex. g) V(g„ /)G/, (Ex„„Ex').

Using the relation

we obtain from Eqs. (7) and (11)

P'L(g)&/2I ($) (g)~&/V) (g)]=2/p (12)

1/2 ce

P'(),K) =I — 2"I ()+1)E-~+~/"-'-~~-~/»+ d.-FO() K*)V(g)Co( K g)

+ dx dx' '(F), ,E, )Ux(x)I/, /r(x, g') V(x')C'(), E,x'). (13)
0 0

' "T" denotes the transpose matrix. The Wronskian of two matrix functions A(g} and B(x) will be defined as

O'LA (g),B (x) j=3~ (x)dB (x)/dg dA ~ (g) /dxB (x)—
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In the remainder of this section, we shall study the
analytic properties of Fr (X,E), using the method
developed for the single-channel case by Froissart. 4 He
divides the region of integration of Eq. (13) into J~'
+ J;", or in the case of the third term, into the zones

(1) 0&x'&x&1,

(2) 0&x'&1.&x,

(3) 1&x'&x.

For an integration parameter smaller than 1, a power
series expansion will be used for the integrand. For
a range of integration extending to in6nity, the inte-
grand is represented as a superposition of exponential
functions.

In the two-channel problem, Froissart's argument
can be applied in a straightforward manner in case
the range of integration is smaller than 1, and also in
region (2). However, region (3) requires a careful

analysis ~

From the explicit form of the kernel Gi,(Ex,Ex') and
using the fact that Gq is diagonal, one can show that
each element of the Green's function matrix I&,rr(x, x')
is bounded by

~LI&ir(x, x')j "~ &M,ae"&*-*'~(x—x'), (15)

where i'=max{ )Imk&~, ~Imk2~) and 1&x'&x. Mis. is

a positive number depending only on X and E. Since the
potential decreases exponentially, one can immediately
find a domain of holomorphy of Fr(X,E) in the E'
variables:

0& (Imk, ) &~go, 0& )Imk2) &—'po. (16)

The origin is excluded to avoid the branching point.
In order to enlarge the holomorphy domain beyond

that given by Eq. (16), we shall use the method of
strip-by-strip continuation. "Let us first take the La-
place transform of the Green's function.

g(p, p') = dx e-& dx' e
—"'"I),rr(x, x'). (17)

g(p, p') is holomorphic in the domain

Re(p+ p') )0, Rep) v. (18)

We shall then investigate 2(p,p') by using the fact. that
Iis(x,x') satisfies the following ecluation (and a similar
equation in x'):

—d' (v—-', )+E' ——V(x) Ii,a(x,x') =Eh(x —x'),
dS x'

where A' denotes the unit matrix. Taking the Laplace
transforms of these differential equations, we obtain

and

82 $00

,{(p'+&') ~(p p') ) —(~'—-')~(p,p')—
Bp 2~1

$00

dv ~(c)&(p v,p') =-
~p p+p

g
—(u+ p')

(19a)

(~'(~p"){(p"+&')&(p p')) (~'—-')&(p—p') — dv (0)&(p p' —0) =
2~i ~p p+p

with

+D (p,p'), (19b)

u(q) = dx e "x'V(x)

D(p,p') =
Bp

OQ

e- '
dx e ' 1(x,x') +p'1(x, l))

0 Bx

It can be shown that D(p, p') satisfies a differential
equation similar to Eq. (19) with an entire function as
a source. As we shall see, the D(p,p') term will not
introduce any new singularities into Z(p, p ). Equation
(19) will be used to continue Z(p, p') to smaller values
of Rep and Rep' than those given by Eq. (18). The
procedure is to express 2 as a function of p or p' in
terms of the integral term in which 2 is evaluated at
p —go p —g.

Since u(q) is holomorphic in the domain

—P0&Req &0) (19c)

the integrals in Eqs. (19a) and (19b) will be taken, along
a contour lying in this strip. For (p+ p') =0, there is a,

singularity which will have a branch point behavior as
4 M. Froissart, J. Math. Phys. (to be published).

a consequence of the derivative terms in Eq. (19). As
we continue to the left in p or p', the branch points
will move across the strip (19c) and finally, at (p+p')
= —p0, it will pinch the contour of integration over q
against a singularity of N(q). Thus, there will be another
singularity at p+p'= —po, and similarly there will be
one at every point:

p+ p = pspQ)

where nz is a non-negative integer.

~ Throughout the discussion we shall implicitly employ Hartog's
theorem. Namely, if, in a domain D, a function of e complex
variables is holomorphic in each variable separately, the others
held Axed, then it is holomorphic in the n variables simultaneously
within D. See S. Bochner and W. T. Martin, Several Comp/ex
l criubles (Princeton University Press, Princeton, New Jersey,
1948), p. 140.
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In addition, a singularity will arise if

det(p'+E') =0 or det(p"+E') =0)

and this will propagate to give branch points at

p,p'= &ikt —ttz/tp,

p,p'= &ikp —ttz/tp.
(21)

In order to separate the terms in F (X,E) which cause singularities, we define a matrix A P.,E) such that

A (XE)=Fr(X —E)2 &' '/'&zr '/'E" '/'e&'~/'&&~+'/2&[1'(X+1)] '

=2z/zr+ 'xd-x a&, '"(Ex)V(x){II&,'"(Ex)+et~" ""II&,'"(Exe t~)}
0

+-' dx dx' (xx')"'II&&'& (Ex)V(x)I x(x x') V(x') {II&'& (Ex')+e'~&'—"'&II &" (Ex'e '~) } (22)

Using the convenient integral representation for II&, "&(Ex)

II /'&(Ex)=(2K '/zrx)'/'e "~/'&/~+'/" e'x' iE '—dp e~ P'&, ,/z( ipK ')—— (23)

where P&, t/p is the Legendre function of order X——„it is possible to study the behavior of the integrals in Eq. (22)
in the domain 1(x'(x.

For the second term we are led to consider an expression of the form

dp P'&, z/z( —ipk,—') dp' P'&, &iz(—ip'k ') dx et'*+t"*Vt (x) (24)

where indicates that the dominant terms in A~, are proportional to the right-hand side.
From the form of the potentials in Eq. (2), we conclude that

Azg(X, E)
A zp(X,E)
Ap& (X,E)
A pp(X, E).

2zky= p, o

have branch points at , i(k&akz) =/tp
z k2~ky =po

2lkg =p(})

(25)

respectively. Again, all po s are assumed to be the same, but a modification of this assumption is trivial.
The third term in Eq. (22) leads us to consider

dpP& U, (—zpkt ')
i/Ies

dp'P'&, z/z(
—ipk, —') dx dx'e&&*+&'*'&{V(x)I& lr(x, x') V(x') }„

where

= 1/(4m') dpP & &/z( zpkt )—dp P x—1/z( zpks )
'500

N(tt) = dx e '*U(x).
I

From Eqs. (20), (21), and (26), we conclude that

respectively.

A zt P.,E)
A „(X,E)
A zz(X,E)
Azz(X, E).

&2kz= (Bz+1)/tp
, ai(ktak, )= (ttz+1)/tphave branch points at

{k k ) ( +1)
a 2ikp ——(ttz+ 1)/tp,

(27)
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Analogously to Proissart's results, 4 A ()(,E) will have
singularities in the X plane. These arise from the integra-
tion of Eq. (22) over regions where x or x' is smaller than
1. In particular, if

(r;, (/r) —+ Q„u„p,—'- as p ~ ~ and c )~eo,

then the Mellin transform of og(/r) has poles at 2—c„.
Thus, A ()(,K) will have poles on the real )( axis at

7, = —e——,
' g lc„

s=l
(28)

(29)k(2= /Jk2r+ b,

where a and b are the mass ratio and threshold energy
difference, respectively. Renninger has carried out a
detailed analysis of the threshold behavior. '

4. BEHAVIOR AT THE ORIGIN

In the preceding section we found that the branch
point in the Laplace transform of the potential led to
singularities of the S matrix in (k(,k~) space. We will

now restrict ourselves to sufficiently small neighborhood
of the origin,

(3o)

where these singularities do not appear, and study the
analytic behavior at the origin.

From the relation

Jg(Kx')Ng(Kx) I(/g(Kx') Jg(Kx)—= (sinn-)() '
X{Jx(Kx')J ),(Ex)—J ),(Ex')Jx(Ex)}, (31)

it is evident that Gq(Ex, Ex') and I&,~(x,x') are entire
functions of E' for every set of x, x' and X. Thus, the
matrix A ()(,K) takes the form

Ar(X, K) =2i/rr+ xdx H)(')(Kx) V(x)Jg(Ex)
0

X dx dx' (»') "'II~'"(Ex)
0 0

X V(x)Ig~(x, x') V(x')Jg(Ex)
=E "Br(X,E)E". (32)

G. H. Renninger, Princeton University (to be published)
and (Private communication).

where n, l„and r are non-negative integers. In partic-
ular, if o.@(p)=O(e ") as /( —+ ~, or if o,, (/r) is holo-
morphic at ~, then the poles lie at the negative half
integers.

Singularities of the matrix A ()(,E) are confined to the
point set given by Eqs. (27) and (28), where there
will be branch points and poles, respectively. (Of
course, there will be an essential singularity at infinity
in each variable. ) Except for the origin, this describes
the analytic behavior of the modified Jost matrix A as
a function of the three variables X, k~, and k2 ~ In the
next section we shall discuss the behavior of the matrix
near the origin, of the (k(,k2) space. This turns out to
hold particular interest since, for physical values, k~

and k2 are related by

5. HOLOMORPHY OF S

While in Sec. 3 we discussed meromorphy of the S
matrix, we present here some special results concerning
holomorphy. Let us introduce a new wave function,

%()(,E,x) =4 0,(K, x) LF r(X —E)) 'E+"'. (3S)

Then for Reh) 0,

@;,(X,E,x) ~ a;,x"+'" as x —+ 0, (36a)

e()( E x) ~ '{e 'x.E »-2--
e/Kx /m o—1/2—)E—1/2S P E)} (36b)

Equation (1) reads

{d'/dx'+E' (X'—-')/x' —V}—4=0

and taking the adjoint gives

(d'/dx')+t+@t{Et' (X"'—-', )/x' ——V}=0,

which implies

{H/'L%*,@j}'=()('—)(*')x—%i+—@t(E'—E&)%. (37)

If E is physical and A, is real, then %"*and + are solutions
of the same equation. Evaluating the %ronskian at
the origin for positive X, we obtain

WL+*,4]=0, (38)

which is true for all x. Prom Eqs. (36b) and (38)
follows the relation

('/2) (StS—~)=0.

This implies S~S=E for all positive real X with K
physical. Thus, we have shown that elastic unitarity
holds in this (unphysical) region, just as in the one-
channel case. This tells us that in any domain of
holomorphy connected to the real positive X axis and
physical E, we have the extended unitarity relation:

St()(*,E*)S()(,E)=Z. (39)

If now X becomes complex in the right half X plane,
Eq. (37) is integrable from 0 to oo and gives

(fm)()—1LStSe2~™ I/j )0 (40)

Here, B()(,E) can be written as

B() K) =C()( K')+D()(K')K'" (33)

where C,,()(,E') and D,, (),,E') are even functions of K,
and they are holomorphic if E lies in the domain (30).

%'e define —E as e ' E.
Then the S matrix of Eq. (9) can be written as

SP,K)=E"A '(7„E)AP, E)K—"'
—E—o —r/2) B—1 ()( K)B()( K)E(x-1/2) (34)

These formulas display in the exponents the precise
branching property of 5 at the origin. By using its
components, one can study the behavior of each
element.
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Therefore, in the quadrant Reh) 0, Imh &0,

LStS], .~e—smarm& —esrlrm&l

Thus, the positive diagonal elementsof S~S are bounded.
Since the two diagonal elements are lS~zl'+lSzsl'

IS»l'+'IS»l'z each element of the S matrix is
bounded in this quadrant, for physical E.

6. CONCLUSIONS

It has been shown that Froissart's work on single-
channel scattering can be generalized to the many-
channel case. The singularities of the Jost matrix were
discussed in detail and appear in Eqs. (27) and (28).

Since the S matrix is given by the quotient of the two
Jost matrices, the singularities of S will include the
origin, those in Eqs. (27) and (28) and poles which
arise at points where the determinant of one Jost
matrix vanishes. Thus, in particular, for a potential of
type (2), S(X,E) is meromorphic in the entire X plane
except for an essential singularity at infinity.

ACKNOW'LEDG MENTS

The authors wish to thank Professor M. L. Gold-
berger, Professor S. B. Treiman, and expecially Dr. M.
Froissart for their suggestions and guidance. They are
indebted to Dr. B. W. Lee and G. H. Renninger for
fruitful discussions.

P HVSICAL REVIEW VOLUME 127, NUMBER 6 SEPTEMBER 15, 1962

Regge Poles and High-Energy Limits in Field Theory

B. K. LEE*
Institute for Advanced Stzzdy, Pzinceton, Iievo Jersey, and University of Pennsylvania, t Philadelphia, Pennsylvania

AND

R. F. SAWYER
Institute for &advanced Study, Przncetozz, IIezo Jersey, and Universzty of Wzsconsin, f Madzson, 'Wisconsin

(Received April 30, 1962)

It is shown that the Bethe-Salpeter scattering amplitude in the ladder approximation is meromorphic
in the complex angular momentum half-plane, Rett& —3/2. There is always at least one Regge pole in this
region.

The T matrix element for complex l can be written in the form, E~DI, ', where Ãg and D~ have convergent
perturbation expansions. D& has only a right-hand cut in the squared energy variable, with a branch point
at the elastic scattering threshold and at each production threshold. E~ has a left-hand cut, and in addition
a right-hand cut beginning from the erst three-particle threshold. The Regge poles are zeros of D~. Much of
the information about the trajectories of Regge poles is contained in the lowest-order expression for D&. The
general properties of the trajectories are the same as for the case of scattering from a Yukawa potential.
For suKciently small coupling constant a Regge trajectory a(s) may apparently be expanded in a pertur-
bation series, valid except near thresholds in s.

The connection between the Regge poles of the ladder graphs and the high-energy behavior of the "strip"
graphs is discussed. In the X&' theory it is shown that the second-order expression for the leading Regge
trajectory, for the sum of the ladder graphs, determines the leading term in the high-energy limit of the
eth order strip graph. This relationship has been checked in fourth-order perturbation theory, and is evidence
for the consistency of a perturbation approach to the calculation of Regge trajectories.

1. INTRODUCTION

T has been suggested recently that the ideas of
~ ~ Regge, ' ' concerning certain asymptotic properties
of potential scattering amplitudes, may be applicable
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in elementary particle physics. ' ' Their applicability
depends on the nature of the behavior of elementary
particle scattering amplitudes in the complex angular
momentum plane. Though a certain domain of analy-
ticity in the 1 plane follows from a,ssuming the validity
of the Mandelstam representation, ' it is doubtful that
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