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Analyticity of the Positions and Residues of Regge Poles
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The amplitude a(l,k) for scattering by a superposition of Yukawa potentials is considered as a mero-
morphic function of angular momentum l and linear momentum k. An 1V/D representation with the usual
properties is explicitly given, and is then used to show that the position, n(k), and the residue, tt(k), of its
poles in l—the so-cal)ed Regge poles —are holomorphic functions of k, under a certain assumption. Further
considered as functions of energy, o. and P/k' are shown to be real-analytic with no left-hand cut.

I. INTRODUCTION

'HE work of Regge et al.'—' in which is defined a
continuation S(l,k) of the physical partial wave

S matrix for scattering by a Vukawa potential, into l
and k complex, is well known; also familiar is the
significance of the poles of S(l,k) as corresponding to
bound states and resonances of the potential. It is of
great interest to have a "dynamics" of Regge poles, and
as a first step we examine the analyticity properties of
their positions cr(k) and residues P(k).

In Sec. II we sketch the definition of S(l,k) given by
Sottino et al. ,

' and discuss the choice of "physical"
Riemann sheets. In Sec. III we give a representation of
the amplitude as ft'f/D where X and D have all the
usual properties. This representation is used in Sec. IV
to prove that cr (k) is holomorphic: it is found that as a
function of energy, a is real-analytic with no left-hand
cut. Some difhculty is encountered with the possibility
of unwanted branch points. Finally, in Sec. V we
establish exactly the same properties for p(k)/k'o'"& as
for cr(k).

It will be seen that the results concerning cr and P are
the same as those recently obtained by Barut and
Zwanziger on the basis of the Mandelstam representa-
tion. 4 In Sec. VI we make a brief comparison of the
methods.

and secondly the irtgoirtg artd outgoirtg waves, f(l, &k, r):

f(l&k,r) ~ e 'sr f(l k r) =f( l 1—, k—, r)

9 (l,k,r)
f(l —k)e

—'&r —f(l k)et&r

2ik
(2.2)

This expansion defines the Jost fumctiort, f(l,k), which
with some simple algebra can be written

f(l,k) =WLf(l, k,r), q (l,k,r)7,

where 8' is the Wronskian

+'Lg(r) k(r)7= g(r)k'(r) —g'(r)k(r).

(2.3)

Comparing the behavior (2.2) of the physical solution
p at infinity with that of the free solution pp,

q s(l,k,r) const&& (e 's"—e 'r'e'"")

Whenever both types of solution exist we shall be
able to expand the physical solution, p(l, k,r), in terms
of the ingoing and outgoing waves, f, giving a measure
of the amount of sca, ttering in the state (l,k):

f(l, k)f(l,—k,r) f(l,k) f—(l, —k, r)
v'(ik«)= . (21)

2ik

II. DEFINITION OF S(l,k) AS A MEROMORPHIC
FUNCTION OF l AND k one is led to define as (diagonal) S matrix for general l

Our starting point is the Schrodinger radial wave
equation for general complex energy and angular S(l,k) = D(l,k)/f(i, —k)7.'-. (2.4)
momentum:

Since the Jost function f(l,k) is the Wronskian of f~(r)—=
I
d'/«' —l'(r) —l(l+1)/r'+&7+(r) =or and y, (2.3), it will be holomorphic' wherever f, p, f',

here we use units with f =2m=1 and V(r) is a short- and q' »e. Then by (2.4), S(l,k) will be meromorphic'
in the intersection of the domains in which f(l, &k) are

ions of l and k, (k'=E), to find two t es of solution holomorPhic. The holomorPhy of the wave fun«»ns y
to this equation, characterized by their boundary con- and f and their derivatives has been investigated by
ditions: fi stly, the pkysicttl scattering solutiort, p(l, k,r): Bottino el al.' and Squires' subject to three condi-

'For functions of one or more complex variables, we use
p(l, k,r) rt+', q (l,k,r) = to(l, —k, r), "holomorphic" to imply the existence of a power series expansion

at every point. The traditional terms, "analytic" or "regular, "
have unfortunately lost meaning through imprecise use. A' T. Regge, Nuovo cimento 14, 951 (1959). "meromorphic" function is locally the quotient of two holomorphic

2T. Regge, Nuovo cimento 18, 947 (1,960). functions; in one variable this means just "analytic except for' A. Bottino, A. M. Longoni, and T. Regge, Nuovo cimento 23, poles. "
954 (1962). E. J. Squires, University of California Radiation Laboratory' A. O. 8arut and D. E.Zwanziger, Phys. Rev. 127, 974 (1962). Report UCRL-10033, 1962 (unpublished).
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The gap G~ im/2

Kinematic branch
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Fro. 1. The path
for continuation of
S(l,k) throu h the
"gap,"G=(k k=sX,
0&IF(m/2}.

2 lr t

Im k&O

physical
E-sheet

tionsr on V (r): (i) V (r) =J' ~s" de tr(p)e ""/r, (ii)
Js dp p~ V(pe")

~

& oo for all If)I &w/2, and (iii) rV(r)
regular at r= 0. Their results are that tp(/, k,r), q '(/, k,r)
are holomorphic in (/ plane) X (k plane) and f(/, k, r),
j'(/, k,r) are holomorphic in (l plane) X (k plane cut on
positive imaginary axis). It follows that f(l,k) is holo-
morphic in the latter domain and f(l, —k) in a similar
domain, but with the cut on the negative imaginary
0 axis.

Since now f(l, &k) together have cuts on the whole
imaginary k axis, we must u priori regard Eq. (2.4) as
defining two separate meromorphic functions on disjoint
domains; the two domains are of course the products of
the whole / plane with the right and left half k planes.
We adopt (2.4) as definition of S(l,k) in the right half
k plane, and show that it can be continued through the
imaginary k axis. To do this we must examine the
singularities of f(l,k) in its cut. These arise from those of
f(/, k,r), and by examining the integral equation for
f(/, k, r), Bottino et a/. ' have shown that f(l,k) has a,

potential-independent branch point at k= 0, and then a
"potential cut" starting at k=itts/2. In fact, the circuit
relation for a tour once around the origin going through
the gap, G= {k~k=iK, 0&K&m/2) is just

f(/, ke'~') = f(l,k) —2i sin7r/f(/, ke ')

(see Fig. 1).
In general, we shall try to define the functions f(l,k,r),

f(l,k), etc. , as single-valued functions, holomorphic on
cut' planes —or their first Riemann sheets. In this way
k" will be defined as the holomorphic function which is

real for k and l real and is single-valued on the k plane
cut on its negative imaginary axis.

The physical E sheet (E=k'), in which the Mandel-
stam representation is valid, corresponds to the half-
plane Imk) 0. Thus, a cut on the positive imaginary k
axis becomes a left-hand (L.H. ) cut in the E plane (see
Fig. 2). For brevity we could call such a cut the L.H.
cut in either plane.

A function such as f(l, —k) which is holomorphic in
Imk) 0 has no L.H. cut (in E). Further, if such a func-
tion is real on the positive imaginary k axis, it is real-
analytic in E.'

On the other hand, the right-hand (R.H. ) cut arises
purely from the identification of the positive and nega-
tive real k axes in the positive real E axis. Ke shall
encounter functions even in k, /V(k)=&V( —k), which
therefore have no R.H. cut.

Finally, before writing down an explicit form for
S(l,k) continued through the gap, we make a note of the
properties of tp, f, and f under complex conjugation.
These follow from the Schrodinger equation and bound-
ary conditions, and are

where we use

q e(/, k,r) = p(/', k', r),
f"(l,k,r) = f(/*, k*e— ' r);

f"(l,k) = f (/'",'k"'e ')— (2.6)

a(l, k) S(l,k) —1
a(/, k) —=

2'&&+&

f (/, k)e" f (l,ke ')—-
2i k' '+'f (l,ke ')-—

III. REPRESENTATION OF a(l, k)/k't AS N/D

Using the absence of singularities of f(l,k) on the gap,
G=(k~k=iK, 0 K&'m./2), we may continue S(l,k)
= f(l,k)e' '/f(l, —k), or equally the atlp/etude,

a(l,k) = LS(l,k) 15/2ik—,

from the right half k plane to the left. It turns out that
a/k" is real-analytic in E and can be written as 7/D; so
we define

FIG. 2. The correspondence between k and A' planes.

s.Ly) where

D(l,k) = ( ik) t f(/, ke ')— (3.1)

' These three conditions on V(r) are much more than is neces-
sary, as has been shown by Froissart. LM. I'roissart, Princeton,
1962 (to be published)g. The third condition was added by Squires
to those used by Bottino ef al. to ensure holomorphy of ~(l,p, q)//

j. (21+1) in the whole E plane. The factor I'(2l+1) obviously
cancels out of S(l,k); we can ignore it by redefining c(l,k,r) to
include it.

E(/, k) = Lf(l,k) e'~ '
f (l,ke "')5/2—(ik) '+' —(3.2)

These 'V and D functions have the usual properties:
both are real-analytic in I and E and they have only the

'A function g(Jf), meromorphic in some neighborhood of the
real I'; axis, is real-analytic (or Hermitian) in It if g(I/~) =r*(l~').
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I..H. and R.H, cuts, respectively. These follow directly
from the circuit relation (2.5) for f(l,ke' ') and the
conjugation relation (2.6) for f '(l,k), a,s below.

D. From the definition (3.1) it is clear that D(l,k) is
holomorphic in the product of the / plane with the k
plane cut on its negative imaginary axis (see Fig. 3).
Further, from (2.6), f(l,k) is clearly real for l real, k
negative imaginary. Thus, D(l,k) is real for l real, k
positive imaginary; that is, D is real-analytic in / and 8
with no L.H. cut.

iV. Since u(l, k) was defined on the whole k plane by
continuing through the gap G, we see that 1V(l,k) is
certainly holomorphic in the product of the l plane with
the k plane cut on its imaginary axis from k=im/2
upwards and 4 =0 downwards. However, using the cir-
cuit relation (2.5) in the definition (3.2) of AT, one can
easily verify that iV is even in k, iV(l, ke ')=&V(l,k).
Thus, as anticipated earlier, E has no R.H. cut in E;
similarly it has no branch point at k= 0. (See Fig. 4.)

Finally, using both circuit and conjugation relations
(2.5) and (2.6) we find that iV(l, k) is real for l real,
4= A, 0(E(m/2; thus X(l,k) is real-analytic in l and
E with no R.H. cut.

The amplitude a(l,k) = iV/D is real-analytic in l and
E, since both E and D are also. Its domain of definition
as a meromorphic function is simply the intersection of
the domains in which 1V(i,k) and D(l,k) are holomorphic
(Figs. 3 and 4). In particular, it has the usual right and
left cuts in E which we associate with partial wave
amplitudes.

IV. ANALYTICITY OF THE POSITION elk)
OF REGGE POLES

If the S matrix, as a function of /, has a pole at i=a,
then the physical solution satisfies [see (2.2)j:

q (n, k,r) r +'

conste'~"

that is, q is an outgoing wave only, and we have a,

resonance or, if k=iE, E&0, a bound state.
Since a(l,k)=Ã(l, k)/D(l, k), it can have poles only

when D(l,k) =0: that is, the Regge poles do indeed lie
on the analytic surfaces, D(l,k) =0. To solve this for l
as a function of k we invoke the implicit fumc&io+
theorem:

FlG. 3. The domains in which D(l,k), o!(k), and P(k) are
holomorphic as functions of k and of E.

-im/2

I'IG. 4. Tile donlalIls ill whlc11 E(l)k) ls holollloI'phlc as .functions
of k and of E.

D(l,k) =D, (l,k) =0, (41)

or that such points do not exist. The condition (4.1) is
precisely the condition for a multiple pole in a (l,k); and

' P. Burke (private communication).
' S. Mandelstarn, University of Birmingham, 1962 (to be

published)."At least for the physically interesting poles which emerge into
the region Rel& —-„ this is implied by the assumption below of
lio multiple poles. However, a recent report by Ahmadzadch,
Burke, and Tate at the CERN. conference 1962, shows that
double poles and branch points may occur for poles confined to
Re/ &——,'.

If F(l,k) is holomorphic in some domain X) and
(lo,ke) Q S is such that F(lake) =0, F i(lp, ke) 00, then
there exists a neighborhood, iV= 1Vi,XÃi,g X), of (le,ke)
such that for each k+A i, there is an unique and
holomorphic solution l =rr (k) giVi, of the equation
F(l,k) =0. (We have written Fi=BF/81.)

Applying this theorem to D(l,k), which is holomorphic
in the product of the / plane with the k plane cut on its
negative imaginary axis, we see that the "Regge sur-
faces" can indeed be written as i=a(k), where a(k) is
locally holomorphic except (i) on the negative imaginary
k axis and (ii) at a number of isolated critical points de-
termined by the condition D(l,k)=Di(l, k)=0. We re-
turn to these latter shortly.

First we show that n(k) is rea, l when k is positive
imaginary (E--0). This was shown by Regge' provided
Rerr) —1/2. That it can be shown in general was
pointed out by Burke'; it has been shown by Mandel-
stam" that the full amplitude f(L", cos8) can be written
in such a way that the contribution from a Regge pole
goes as (cos8) &"& as cos8 goes to infinity, for any energy.
Now this means that the discontinuity across the cos9
real axis also goes as (cos8) "&"'; but in the region E(0
(corresponding roughly to the "crossed channel" ) this
discontinuity is real. It follows that n(k) must be real
for E(0, unless the poles occur in complex conjugate
pMrs.

In particular this means that n(k) is real-analytic in
E with no I,.H. cut, assuming no such conjugate pole-
pairs occur."

The Critical Points

To complete the proof that the various surfaces
l=rr(k) are in fact holomorphic everywhere in the cut k

plane, we must show that they are holomorphic at the
critical points, which are given by
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by generalizing the implicit function theorem we can see
that such a multiple pole is a necessary, but not sufh-

cient, condition for a branch point in the Regge surface.
It seems clear from the nature of the eigenvalue

problem which determines the Regge poles that no such
double solutions will occur, but a theorem sufhciently
general to cope with the problem is hard to prove. In
any case we have shown above that no branch points
occur on the negative real E axis. In what follows, the
existence of branch points off the axis is immaterial,
since we can con6ne our attention to a strip near the
axis. On the basis of intuition and for aesthetic reasons
we shall simply assume that no multiple poles occur.

The domains in which o. is holomorphic as functions
of k and E respectively are those in Fig. 3.

V. ANALYTICITY OF THE RESIDUE, I3(A)

The residue P(k) of a(l, k) at the Regge pole l=u(k) is

P(k)= lim I l n(k—)]u(l,k),

or
P(k)/k' & "&=N(n(k), k)/Di(u(k), k),

where we recall D&=BD/&l.
Clearly, P(k)/k' is holomorphic wherever all of n(k),

D(l,k) and "N(l,k) are. The first two functions are
holomorphic on the k plane cut on the negative imagi-
nary axis, while N(l, k) in addition to this cut has a cut
running up from k=irN/2. Thus, p(k) is certainly
holomorphic in the k plane with both these cuts.

Further, since n(k) is real for k positive imaginary,
while N(l, k) and D(l,k) are real for f real and k=iE,
0(E(r&t/2 (at least), P(k)/k' t "& is real-analytic in E.

Finally, we can show that P (k) has no L.H. cut at all

(see Fig. 3).It is clearly sufficient to show that N (n (k),k )
has none. Now at a Regge pole:

N(ts(k), k) = f(n(k), k)d' /2(ik) o+'

from (3.2); and from (2.1):

q (ts(k), k,r) = f (n(k), k)j(u(k), —k, r)/2ik.

Now all three functions in this equation continue
through the "gap, " (k~k=iE, 0(E&'m/2}, and thus
so does the equation. But neither p nor f has any cut on
the positive imaginary k axis at all: thus nor does

f(n(k), k); and 6nally, N(n(k), k) has no L.H. cut—even
though N(l, k) in general does.

We conclude that P(k)/k'o&"& is real-analytic in E
with no L.H. cut.

VI. COMPARISON WITH THE RELATIVISTIC CASE

As already remarked, the results that e&. and P/k' are
real-analytic in E with no L.H. cut were obtained by
Barut and Zwanziger on the basis of the Mandelstam

representation. Since the latter is known to be true for
potential scattering these results are not new; nonethe-
less a proof using the N/D representation of Sec. III
seems in a sense more direct.

The relativistic case divers from that considered here
because of the presence of crossed channels. In the 6rst
place, these give rise to an exchange potential; such a
potential forces one to introduce two amplitudes a+ but
does not otherwise affect the results. What does make an
important difference is the more complicated structure
of the absorptive parts. As shown by Barut and
Zwanziger, one can write

a(t,k) = F( 4E/t) —f,(E,t), for Ret) some iV,
0

)+1

apart from an unimportant factor. Here the hypergeo-
metric function F(—4E/I) is real-analytic in E with
only an L.H. cut from —t/4 to —oo; ft(E,t) is the usual
3-absorptive part. In potential scattering ft is real-
analytic in E with only an R.H. cut, arising from the
double spectral function p, t. In the relativistic case f t

has both an R.H. cut due to p„and an L.H. cut (in k')
from —(t+to)/4 to —~, due to pt .

Using a power series expansion of F, Barut and
Zwanziger show that the L.H. discontinuity of Ii does
not appear in the pole terms of a. In the potential case
this means that the pole terms have no L.H. cut at all,
as they point out.

a (t,k) =a/k" = (5—1)—/2 jk"+'—

P(k)
+&o(l,k),

dominant poles ksot~&D —
t& (k)]

we have shown that the terms a, Pp, &„, and ao are ea, ch
real-analytic in I and E. The fact that t&. and p/k' have
no L.H. cut in E means, quite surprisingly, that the
L.H. cut in a(l, k) is confined exclusively to the "back-
ground term, "

tIo(l, k)
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VII. CONCLUSION

Starting from the representation of S(l,k) as the
quotient of two Jost functions in the right half k plane,
we have pointed out how it can be continued through a
gap in the imaginary k axis. The related amplitude
u(l, k) has been given an equivalent representation as
LV/D, and then if we write


