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extremely convenient if three-particle states could be
handled using the two-particle approximation, it seems
important to continue experimental and theoretical
work to check the validity of this approximation for all
three-particle states in which two of the particles can
resonate.
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Scattering amplitudes for coupled m-A, 21 K, and XX channels are obtained by an extension of the method
of Amati, Stanghellini, and Vitale. The method is shown to be essentially equivalent to the IV/D method in
the region of nonrelativistic baryon energies, under the assumption that the only important forces arise
from the Born singularities. All possibilities for the ZA and EA. relative parities are considered. The aim
is to see to what extent earlier calculations, which neglect the E-S interactions, are modified by its inclusion.
If the Z1V coupling constants are as strong as the m-X coupling, significant quantitative and qualitative
modiffcations are obtained: an I=1, I=3/2 resonance with the properties of the Yr" may be obtained
for P (Z A) =&1;an I=0 resonance with the location and width of the lr, *may be obtained for P (ZA) = —1,
in the Pi/2 state, and for P(ZA) =+1, in the P3/2 state. If the Ei7 couplings are significantly weaker than
the ~& coupling, a P3/2 resonance with the properties of the I"& is obtained only if P(ZA) =+1 and if the
ZZm coupling is very weak; in this case one obtains no I=O resonance identifiable with the I'o*. An I=O,
P3/2 resonance at 1520 MeV may be obtained with a wide variety of couplings for P(ZA) =+1; the predicted
width of this resonance is very large (I'/2)50 MeV). Resonances in other states, multichannel effects on
resonance shapes, and Ei7 elastic scattering are discussed.

I. INTRODUCTION

'HE problem of m.—I' and X-E scattering has been
studied by many authors. ' The techniques used

range from a completely relativistic approach using the
Mandelstam representation, ' through static model
calculations, ' 7 to phenomenological scattering length
calculations. "The major result of the first approach is
the determination of the analyticity properties of the
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various scattering and reaction amplitudes. The low-

energy X-S data are fitted reasonably well by the scat-
tering length approximation, suggesting that the low-

energy s-wave interaction is determined mainly by
rather distant singularities. (Inclusion of a sr-sr inter-
action in the momentum transfer channel modifies the
details of the cross-section fit, but does not change the
gross behavior. ") The static model, in many forms, has
been used most extensively to predict which x-I' states
will be resonant and to estimate the locations and widths
of the resonances. The results of this technique which
are most relevant to this paper may be brieRy sum-
marized as follows: Amati et al. ,

' assuming global sym-
metry and neglecting the E-E interaction, predicted a
resonance in the l=1, P'@& state with energy agreeing
remarkably well with the experimental mass of the V&*.

In addition, they find an I=2, P3~2 resonance about
160 MeV higher. They also point out that if the ZZx
coupling is very weak, resonances may occur in other
states in addition to these two, in particular, in the
I=O, I'y~ state. Assuming that the ZZm. coupling is
weak, Franklin' has tried to estimate the relative loca-
tions of these three resonances by estimating the effect
on the cuto6 integrals of the Z-A mass difference and
the crossed terms. Duimio and Wolters4 applied the

"F.Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 308
and 315 (1961).
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same technique assuming odd Z-A parity but stil&

neglecting X-S interactions. They found resonances to
be possible in most isotopic spin states with J= 1/2 or
3/2 with the notable exceptions of I=O, J=3/2 —and
I=1, J=3/2+ Ltaking P(A)=+1 by dehnition]. In
particular, a F~* in an S~~2 or I'~~2 state but rot in a
JP3/2 state is consistent with their calculations.

The effects of the E-E interaction on x-F scattering
have been discussed only under very restrictive assump-
tions. Dalitz and Tuan' originally pointed out how
strong attractive X-X interactions could generate
"virtual bound state" resonances in a zero-range
approximation. These resonances arise primarily from
interactions in the K-g channel, whereas those discussed
in the preceding paragraph arise from the ~-F inter-
actions alone. The coupling of the E-E and m-F
channels may, in addition to modifying the properties
of these two sorts of resonances, generate new reso-
nances which may be thought of as neither primarily
due to E-E or to m-F interactions. Islam' has modified
the calculati. ons of Amati et al. ' to include the K-E
interaction and estimated the effects to be negligible;
however, he restricted the K-E cutofI' integrals to have
very small values.

In this paper, the technique of Amati et a/. ' is ex-
tended to include the K-N interaction. This is an ex-
tension to multichannel problems of a technique
introduced by Fubini" and by Bosco et u/. "for treating
x-X scattering, and we shall refer to it as the Fubini
technique. Using this technique, which has proved
moderately successful for low-energy vr-E scattering, is
essentially equivalent to assuming that all the important
forces arise from the Born singularities. In addition to
this assumption, the main limitation on this approach is
the ambiguity involved in the cuto6 integrals. There
seems to be no way around this at the present but,
although this model is far from a complete theory of
the K-T, m-F interaction, it is another step in that
direction. This calculation is an attempt to understand
what features of the low energy m-F, X-S scattering
processes depend primarily on these forces. The most
striking features of the low-energy scattering are: (a) the
large K-S s-wave scattering and absorption at very low

energy, ' (b) the existence of the Ir,* resonant state at
1385 MeV with J)1/2, "'4 (c) the existence of the
Fo* resonant state at 1405 MeV with unknown J,"and

(d) the existence of the F's** resonant state at 1520 MeV

"S.Fubini, Suppl. Nuovo cirnento 15, 283 (1959)."B.Bosco, S. Fubini, and A. Stanghellini, Nuclear Phys. 10,
663 (1959)."R.Ely, S. Fung, G. Gidal, Y. Pan, W. M. Powell and H. S.
White, Phys. Rev. Letters 7, 461 (1961).

'4 M. Alston and M. Ferro-Luzzi, Revs. Modern Phys. BB, 416
(1961).

"M. Alston, L. Alvarez, P. Eberhard, M. Good, W. Graziano,
H. Ticho, and S. Wojcicki, Phys. Rev. Letters 6, 698 (1961);
P. Bastien, M. Ferro-Luzzi, and A. H. Rosenfeld, ibid. 6, 702
(1961).

with J=3/2. "As mentioned before, (a) seems to depend
mainly on distant singularities and is certainly outside
the scope of our calculation. Since the parities of the K
and Z are not yet definitely established, the calculation
has been done for all possible parity combinations. In
any case, the model predicts no scattering for /&2. The
comparison of our results with experimental values for
resonance energies, branching ratios, etc. may indicate
various restrictions on parities, coupling constants, and
cutoB integrals. Or, from a negative point of view, the
comparison may indicate under what conditions some
other mechanism should be considered as primarily
responsible for certain resonances (or for suppression of
unobserved resonances predicted by the model). As an
obvious example, this model cannot predict the Fo** if
it is a Dg2 resonance, as presently seems to be the case,
regardless of the K and Z parities. In addition to the
more fundamental dynamical questions, the amplitudes
allow us to explore some detailed effects of multichannel
processes.

In Sec. II the Fubini technique is outlined and re-
lated to the dispersion theoretic approach and the basic
equations are obtained. Section III is devoted to the
resonance conditions and related equations and a listing
of the possible resonant states. The effects of the K-X
interaction on the location and decay branching ratios
of the F~* are presented in Sec. IV while Sec. V is con-
cerned with properties of possible I=O resonances.
Section VI is devoted to a summary of the results and
possible interpretations of the resonances and to a
general discussion of ambiguities in and possible exten-
sions of this calculation.

IL GENERAL TECHNIQUES; INTEGRAL EQUATION
FOR THE T AND K MATRIX

In this section, the Fubini technique" "for obtaining
the T and the K matrix will be outlined and its relation
to the more general dispersion-theoretic approach dis-
cussed. To make our notation clear from the start, the
quantity referred to here as the P matrix is related to
the cross sections in a state of definite angular mo-
mentum J by the expression

The momentum in channel 0. is denoted by q; the
diagonal matrix (in. channel space) of momenta will be
simply denoted by q. In general, an operator 3' is
related to the operator 3 by A'=xp'j"Ap'~' where p is
the density of states operator, and p(q) =q/7r for two-
particle channels. It is convenient to number the
channels and we shall number them according to in-
creasing threshold energy, counting only channels which
are allowed by the various selection rules. Only the
two-particle channels mA, xZ, and KV will be included.

The Fubini technique proceeds as follows: (For de-

"M. Ferro-Luzzi, R. Tripp, and M. Watson, Phys. Rev.
Letters 8, 28 (1962).
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tails, see references 11 and 12, and Appendix A to this
paper. ) A static Hamiltonian with no meson-meson
interaction is assumed. (See Eq. 3.12.) The normaliza-
tion is chosen so that

The state vectors IB) represent the physical baryons.
The symbol g(q) will denote a rom vector in channel
space such that the nth component represents the free
meson of momentum q plus the physical baryon appro-
priate to channelcr, e.g., for I=1, Ig(q))=astIA) where
ast creates a a of momentum q. (Charge indices are
suppressed. )

An "out state" vector IP(q))+ is constructed in such
a way that in the remote past IP(q))~ —&

I Q(q)):

instead
Q(q')

I (&—~) Ilt (q) &+-0. (2.7)

Xg~(M', M) = 8(M' —M)+
M —

CO
—Z6

where

X dc' Egg(CV, CO )XJ~(Q),M), (2.8a)

where co denotes the total energy of the state P(q))+.
These two conditions are equivalent (see Appendix A).

In order to obtain a soluble set of equations from
Eq. (2.7), it is necessary to make the "one-meson,
no-crossing" approximation. This method for obtaining
soluble integral equations is discussed in references 3,
11, and 12; an equivalent but somewhat diferent
method is outlined in Appendix A. The resulting integral
equation in the total angular momentum representa-
tion is

IP'(q))+=K s"(14'(q"))—Z&IA)+ I-A ( «I)j — E.+us
)&~(Pp

I
y(q")))X(q",q). (2.3) 3a.

X(q",q) is a matrix in channel space to be determined
so that

I tP(q))~ actually represents the physical scatter-
ing state; X indexes the set of all out states except those
containing one meson plus one baryon. The asymptotic
condition on If(q))~ requires that X(q",q) have the
form

u.s(q') (B&~s).&u&s(q") es—3I„y
Iq, '~+'~'. (2.8b)

(M —Ms) M Ms)

The notation is defined in terms of the Born terms for
the T matrix: I,et the sum of all Born terms for the
processes shown in Fig. 1 be writtenF(q",q)

X(q",q) = 8(q"—q)+
CO GO Z6

(2.4)

(2.9)T~~'""(~)= sr~ 2
Go 3fp,The physical interpretation of F(q",q) is most readily

expressed if Eq. (2.4) is transformed to the total angular
momentum representation. Then, on the energy shell

where qL, denotes the diagonal matrix of q ', with l the
orbital angular momentum in channel n. The ~ sub-
script indicates the parity of the state. LP(h.)=+1 by
convention. $ u &(q) denotes the cutoff function in
channel a associated with the pole at M„.

These equations are separable and so may be solved
algebraically to give, with the use of Eq. (2.5),

(2.5)7rFg((u, (u) = Tg'((u).

Since Itp(q))+ is by construction orthogonal to all
out states with the exception of the two-particle states,
the obvious condition to apply to obtain equations for
X(q",q) is that

Tg~'= rrp(q) '~ qr, g „u"(q) Bg~&A g~&(a)), (2.10)

».(v) v~u"'(v)
A g~&((o) =-

3 co Mp,

+Q(q') lk(q))+=~(q' —
V) (2 6)

where the quantities Az+&(&u) satisfy the algebraic
A more useful set of equations is obtained if one requires matrix equations:

with
&"(~)

++„e„„(ro)Bg~"(co)A "g~ (a)) (a)—M,), (2.11a)

u.(V")V~'"I(V")u (V")

(co 3II&) (07 AVE) (Co M —ze)

.1'Io. 1. Diagram for the static Born terms; 8 and m. are
generic symbols for the baryon and meson o In (a) 3E„=. 3f„;
in I'b) 3II„=A/I;+3' —M~.

u„(q) denotes the diagonal matrix of cutoff functions
associated with the pole at M„and co& denotes the
threshold energy for the channel corresponding to the
appropria, te element of 8„,(&v).
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Let us consider the relation of this method to the
dispersion-theoretic approach. This is simply to put the
I'ubini method into this more general framework and
thus to clarify the nature of the approximations in-
volved. The analytic structure of the partial wave
amplitudes has been determined by Nauenberg. ' Con-
sidering only the two-body channels mA. , ~Z, and XE,
each partial wave amplitude has, in the total energy
plane, one, three, or two branch lines, for I=2, 1, 0,
respectively, starting at the threshold for each channel
and running the length of the positive real axis. The
dynamical singularities are quite complicated and some
of them come quite close to the physical region. The
Born terms alone contribute a variety of poles and cuts.
Suppose that the low-energy behavior of the amplitudes
is dominated by the Born singularities. To make the
term "low energy" more precise, we dehne it to be that
region for which the baryon kinetic energy is much less
than the total meson energy. To lowest order in the
baryon kinetic energy divided by the meson total
energy, the Born singularities are essentially the same
as those determined by static calculations with correct
kinematic relations. They are not exactly the same;
terms arising from Fig. 1(a) require some phase space
corrections. The corresponding corrections to terms
arising from Fig. 1(b) are approximately canceled by
other corrections which evidently arise from antibaryon
contributions to the Born terms. (See Appendix A2.)
The same cancellation was found in m-A' scattering by
Chew et cl."Since we shall be primarily interested in
Pys amplitudes, which arise entirely from Fig. 1(b), let
us neglect these corrections in what follows:

The N/D method' may be used to solve the scatter-
ing problem. In order to insure the correct threshold
behavior of T, define (suppressing the angular mo-
mentum index)

T(ei) =qzN(ei)D '(&u)qz (2 12)

N(ao) is assumed to have only the dynamical, or left-
hand, singularities of T(&o), while D(&o) has only the
branch lines along the positive real axis. The unitarity
condition requires that the discontinuity of D(&o) along
this cut is given by

D(ei+ie) D(ei ie) = 2x—iqz'p(q—)8—(ei)N(e~) (2.13).
8(e&) is a diagonal matrix in channel space, the diagonal
elements of which are equal to one above and zero below
the thresholds of the corresponding channel. Then

be taken into account explicitly implies that N(&o) may
be writ, ten as

N((o) =xs P D(M— -„).
Mp

(2.15)

This approximation is certainly not valid for high energy
and, in fact, if Eq. (2.15) is inserted into Eq. (2.14), the
integrals diverge. Presumably, if the other left-hand
singularities of T(ei) were taken into account in calcu-
lating N(e~), the integrals would converge. Since the
left-hand singularities are, in general, not known, we
assume that their effect in the low-energy region can be
adequately accounted for by cutting the integrals off
at some 6nite upper limit:

3' v 7 ~g

~2l 0,+1
'pa

((o'—e~—ie) (e)'—M„)

B,& D, (pM). (2.17)

377 Q7 f

i'2Les+1
ga

(2.18b)
(M Ms) (ei Mp) ((d —(d —ze)

If the diagonal matrices of integrals defined in Eq.
(2.18b) are identifmd with those defined in Eq. (2.11b),
then Eqs. (2.11a) and (2.18a) imply that

A&(ei) =D(M„)D '(ei)qzp"'(q)/3(~ M„). (2.19)—
A comparison of Eqs. (2.10) and (2.12) shows that the
same expression for T'(~) is obtained by both methods.
We do not pretend that this justifies the application of
the Fubini technique to this problem, but it does make
clear the assumptions involved.

For the discussion of resonances, it is convenient to
introduce the reduced E matrix, E„(co), defined by

denotes the threshold energy for channel cx.

The matrix C may be eliminated by subtracting
D p(M„) from D p(ei). Since the integrals all converge,
it does not matter which 3f, is used for the subtraction
energy; the equations obtained for D(&o) are exactly the
same for each M„and they may be used interchangeably.
It follows that D p(~) may be written as

D.p((o) =D.p(M„) (ei M„)——
yP„, 8.& "(ei)B.„D,p(M, ), (2.18a)

where

D(ei) =C , qz"p(q') 8(~')N(~')
der' —, (2.14) T(ei) =Z„((a)P1—imp(q) 8((o)E'„(co)g '. (2.20)

where C is a constant matrix. The assumption that the
Born singularities are the only left-hand singularities to

'~ G. F. Chew and F. K. Low, Phys. Rev. 101, 1571 (1956).' G. I". Chew, M. L. Goldberger, I'. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957)."J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960).

E,(e&) may be expressed in terms of N(ao), D(ei) by
using Eqs. (2.12) and (2.14):

E,(ei) = qz N(co) LD(a))+ is.qz'p(q) 8(ei)N(e~) ]-'qz. (2.21)

Equation (2.21) makes it clear that equations for E'„(a&)

may be obtained from the equations for T(a&) by simply
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replacing g&"(cu) by I""(~),where

P Bor

I ""(a&)=-
3K t

~2l ax+1

du)' . (2.22)
(a)'—(u) (ro' —M'„)(a)' —M,)

The same result is obtained by the Fubini technique if
standing-wave boundary conditions replace outgoing-
wave boundary conditions in Eq. (2.4). In general, the
cutoff energy is expected to be large compared with the
Z-A mass difference. In that case, it is a good approxi-
mation to drop the dependence of I ""(~) on p, v. The
equations for E'„(cv) corresponding to Eq. (2.18a) may
then be easily solved to give

detLE,—'(~)]=0. (3 1)

This condition may be considered as a condition on
D(&o): from Eqs. (2.21) and (3.1)

detLReD(cs)] =0. (3.2)

III. POSSIBLE RESONANT STATES

The most natural generalization of the one-channel
resonance condition is to require that one of the eigen-
phases goes through s/2; i.e., one of the elements of the
diagonalized T'-matrix goes through i at the resonance
energy. This may be neatly expressed in terms of E„(a&):
at resonance' "

&.(~)=sr~ Z +(2 &")
Go 3Ep p

since detX(ss) ( eo in the physical region.
It is convenient to introduce the matrix F defined by

&& L1—1(~) Z &"(~—~s)] 'I(~)(Z &") V~ (2 23)
E'„'(ro) = I'(a))/2(re„—(u), (3.3)

It is easily seen from Eq. (2.23) that E„(~) is a sym-
metric matrix, so that the approximations made here
are consistent with unitarity and time-reversal
invariance.

The quantities I(co) are the greatest source of un-

certainty in this approach. For s-wave interactions, the
I(cv) are not very sensitive to the cutoff but are energy
dependent, ' whereas, for p-wave interactions the l(co)
depend strongly on the cutoff but are energy inde-
pendent to a good approximation for energies well

below the cutoff energy. In x-E scattering, a cutoff of
about 14 p is required to give the (3,3) resonance at the
observed energy, (This value is larger tha, n the one
usually quoted; this is because the crossing terms are
not included explicitly here but are taken with the other
left-hand singularities as determining the high-energy
cutoff. ) In the numerical work that follows, the p-wave
integrals I(~) are taken to have the constant value
1.6 p,' this corresponds to a cutoff of about 16 p. We
have no justification for assigning this value to all of the
integrals and, whenever possible, results will be phrased
in such a way as to not depend on this assumption.
Moderate corrections to this value will not affect the
results radically. Further discussion of the cutoG is
deferred until Sec. VI.

"The assumption that the integrals I(a&) are approximately
constant will be referred to as the effective range approximation.
This is not the same as the effective range approximation of M. H.
Ross and G. L. Shaw, Ann. Phys. (New York) 13, 147 (1961),
but it is related to it in the same way as the Chew-l, ow effective
range formula is related to the usual effective range expansion (for
elastic scattering) of nuclear physics. The analogy can be seen most
clearly if Eq. (2.23) is used to calculate E„',with the Z-A mass
difference neglected: gsK„'gs =3 (a& —31~)LB '—I (ra —Mg) j. See
also P. T. Mathews and A. Salam, Nuovo cimento 13, 381 (1959).
Y. Matsuzaki, in a preprint received after the bulk of this work
was completed, has performed calculations similar to some of those
in our paper. He too points out that this magnitude of I is con-
sistent with the s-1V results. (Islam, reference 3, uses a value about
half this size for the E-X integrals. ) We thank Professor Dalitz for
calhng this paper to our attention.

where ~„denotes the resonance energy. If onlyone
eigenphase goes through s/2 at ~„, then there are some
rather severe restrictions on the elements of F. First,
of course, each element of F is finite. Furthermore,

detr((v) = 2"((v„—(o)" det E„'(co) - 0(co—cu„)" ' (3.4)

where e is the number of channels. For a two-channel
system this is the only condition. In general, the fact
that only one element of the diagonalized F is nonzero
at resonance implies that each element of the adjoint
matrix I'~(ro) goes to zero at least linearly as ro~ co,

and further that at resonance

(3.5)

If the nonresonant phase shifts are small at ~=co„, then
Eq. (3.5) implies that the branching ratios for the decay
of the resonant state are independent of how the state
is formed. Each resonance predicted by our model is
associated with a simple zero of Eq. (3.2) and so the
conditions Eqs. (3.4) and (3.5) hold. "

The relations between the elements of F and the
elements of the open-channel T' matrix for the various
situations we shall consider explicitly are as follows:

(a) Two channels, both open

(I',;/2)+i[detl'/4(~ —ro„)]8;;
T,,'((v) = (3.6a)

~„—co+Ldetl'/4(~ —~„)]—i Tr(I'/2)

s' R. Oehme, Nuovo cimento 20, 334 (1961).' The adjoint matrix I' is the transpose of the matrix of minors
of F; i.e., (FF );~=5;~.detF. There is one amusing effect that
results if the condition detl'(co, )=0 at resonance does not hold
for the two-channel case. This means that each eigenphase passes
through i at co,. It follows that the off-diagonal elements of T'
vanish at or& while the two diagonal elements take on the value i;
i.e., at co, the elastic scattering cross sections reach the maximum
value allowed by unitarity while the inelastic scattering cross sec-
tion vanishes.
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(b) Two channels, one open

I', r/2
Trr'(ro) =

ru„—ru —i(1'rr/2)

(c) Three channels, two open

(3.6b)

of channels. '4 The matrix F at resonance is given by
Lcf. Eqs. (2.23) and (3.3)j
-'I'( .)= —( /3)L~&/d j 'p"'q~(Z. &")

)& LI—I Q„B&(co—M„)j"
XI(E.B")qip"'I.=.„. (3.11)

T; (ro)

(3.6c)
u „—ru+ LI'ss"/4(M —ce,)j—i(I'ii+ I'ss)/2

Consider the two-channel cases. Let U, defined by

(cos8 —sin8)

(sin8 cos8/

be unitary matrix which diagonalizes the 2)&2 matrix
2'(co), such that

These expressions are too long to present for every case.
Those of direct interest will be presented in the sub-

sequent sections and other relevant expressions will be
found in Appendix B.

To make it quite clear which coupling constants are
being referred to in the following, we write down ex-

plicitly the general interaction Hamiltonian of the
static model:

II = (kr)"' d'x (fIvx~tr, rr p'p (x.)xvv~(x)

(UT'U ')ii ——
r,/2

co„—ro —i(l', /2)

(UT'U ')ss=
1—zc

(3.7)

—ie i;fzXz ~ Vga(x)xz;vz(x)

+fgyz, 'Osy, (x)xsvs(x)+H. .c.

+g tg+tOs'K(x) xsvs'(x)+H. c.

+ gzxNtr;0 z'I 1( x) xz, vz'( x) +Hc.), (3.12)

The elements of 2'(ro) are, in terms of I'„c, and 8,

2 11 (ro)

&ss'(~) =

r,/2
cos'8+ sin'8

ro, ro i—(I',/—2) 1—ic

I',/2 c
sin'8+ cos'8

ro, ao i (I',—/2)— 1—ic
(3 8)

2'is'(co) = —sin8 cos8
I',/2

cu; —ru —i(l', /2) 1—ic

In general,

I',/2+ c(ro„—ro) = (I'it+ I'ss)/2; (3.9a)

in the event that ~c~&&1, which is usually the case,
we have

(3.9b)

for case (a) and a corresponding expression for case (c).
This makes explicit the relation between the nonreso-
nant part of the scattering and the quantities which
distort Eqs. (3.6) from the usual Breit-Wigner form.

Specifically, the equation we shall use to determine
the resonance energy is Lcf. Eqs. (2.18a), (2.21),
and (3.2))

X)(a&„)—=det)1 —I Q„BI'(rd„M„)j=0. (3.10)—
Note that in the effective-range approximation, the
degree of this equation is equal to the number of
channels. Hence, the number of resonances possible in
this approximation is less than or equal to the number

where v(x), v'(x) are the Fourier transforms of the
cutoff functions and 0, 0' denote either 1 or e V, de-
pending on the parities of the particles. @(x) denotes the
v. field, K(x) the K field, and Xv the baryon spinors.
The pion mass fi is always taken equal to unity so fry'
=0.08. (The .I'K couplings are neglected. See Sec. IV.)

The effect of introducing the K-Ã interaction is to
depress the energy of resonances arising from the ~-V
interaction alone (in agreement with expectations based
on second-order perturbation theory') and to introduce
new resonances. The new resonances always occur at
higher energy than any in the same state arising from
the x-I' couplings alone. It should be pointed out that
an arbitrary increase in coupling constants may push a
resonance to higher energy if no new channels are
coupled; it is the inclusion of new channels (open or
closed) which depresses the resonance energy. This can
already be seen in the results of Amati et a/. ' in which,
for fz ——0, there is a I=3/2, I=O resonance which
moves out to ao when fzs= fs'/2.

Table I lists the possible resonances. (The I= 2 case
is not affected by the K-E coupling but is included for
completeness. ") Some of these require certain restric-

"It may appear that T»'|,'co) given by Eq. (3.6b) is not the
analytic continuation below the threshold of channel 2 of T»'(co)
given by Eq. (3.6a). This is only apparent, caused by the non-
analyticity of the elements of I'; it may be directly verified that
the two expressions are connected by analytic continuation, as
must be the case.

24 The same limitation on the number of resonances is obtained
in the e6'ective-range expansion of Ross and Shaw, reference 20.

"The results obtained here for P(Z) = —1 and vanishing K-X
couplings do not agree with those given in reference 4 for the
cases I=2, J=1/2+ and I=1, 7=1/2+.
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TABLK I. Resonances for various parities of Z and E.

I. P{S)=+i, P(K) =+1
II. P(Z) =+&, P(K) = —I

III. P(Z) = —1, P(K) =+1
IV. P{Z) = —1, P(X) = —1

:j+
5+

f+

4+, 4+
5+ k+

', +, k+

tions on the coupling constants for their existence and
others lie at very high energies (more than 3 p above
the m-A threshold) unless some of the couplings strengths
are unreasoiiably large. The most interesting possi-
bilities are discussed in the next two sections.

It should be noted that none of these resonances arise~
predominantly from forces in the E-iV channel; i.e. in
the limit of zero coupling between the m.-I' and A.-A

channels, there are no E-E resonances. The fact that
the E-E Born terms are repuLsive is responsible for
this. However, many of the resonances result from the
coupling between the II-I' and E-~V channels and fail
to exist when the channels are decoupled as, for example,
in the J=3/2+, J=1 state for case IV of Table I.

$ IV. EFFECTS OF THE X NCHAN-NEL ON THE F,*

The two original interpretations of the F~* resonant
state were based on calculations that were published
before the V&* was discovered. The first calculation, by
Amati e] a/. ,' was based on the assumption of global
symmetry and predicted a J=3/2, I=1 resonance,
analogous to the (3,3) resonance. Gell-Mann had pre-
viously pointed out that exact global symmetry re-
quired such a resonance. "One of the sets of scattering
lengths obtained by Dalitz and Tuan' gave a J=1/2'
I=1 resonance, as a virtual E-S bound state. The re-
vised scattering lengths of Ross and Humphrey' make
the latter interpretation unlikely. In addition, the re-
sults of Ely et al." suggest that the spin of the I'~* is
greater than 1/2, consistent with the first interpretation.
The main difBculty with the first interpretation is that
global symmetry predicts a branching ratio

r = (I't*—+ w+Z)/(Ft* ~ rr+A)

taken as favoring I'(E) = —1, within the limitations of
our model. In case I the K-E interaction has no eHect
on states of J=3/2. Thus, the results for case I of
Table I, J=3/2 are identical to those already discussed

by Amati et al.3 The only way to change r is to vary
fs or fz. The difhculties with this are discussed in regard
to case II below. In case III there is no m-A. scattering in
the J=3/2 state and so certainly no resonance. Thus,
we consider P(E)=+1 to be very unlikely and will

have very little more to say about it; unless otherwise
explicitly stated, we henceforth take I'(K) = —1.

The possibility that I (Z) = —1 is appealing for many
reasons, "one of them being the small value of r. The
results of Duimio and Kolters' show, however, that a
J=3/2, I=1 resonance is not. possible on the basis of
m--I' interactions alone. When the E-S interaction is
included, we hand that such a resonance is possible
(case IV); it arises from the interaction between the
7r-h. and K-X channels. (Each element of the E-matrix
is proportional to frvgs. ) Since there is no d-wave scatter-
ing in this model, r is identically zero. The resonance
energy is given by

(4.1)

If one substitutes into Eq. (4.1), &u„=1385 MeV and
I,= 1.6, Is 1.6, one ob——tains gs'= 2fvs. Since the
X couplings seem to be weaker than the x couplings, "
this is probably an unreasonably large value for g&. If a
more reasonable value is chosen, gs' f~'/4, the ——reso-
nance is located at about 1900 MeV. The half-width of
the resonance is given by

I'rt/2= (W2/3) fvg, tq, '. (4.2)

(Note that I'» is independent of the cutoff. This is
quite general if the same cutoff is assumed in all

of about 0.11,'~ whereas the experimental value is less
than 0.05 and is consistent with zero. One of the main
objectives of this section is to see if, with the E-E
interaction taken into account, an I=1 resonance with
J=3/2 and r(0.05 is predicted in the correct energy
range.

The recent results on the A decay parameters" favor
I'(E)= —1. The results obtained here may also be

l.3
0

t )

.25 .50
g 2I /fan~

I

.75 I.OO

'6 M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
"This result is more general than the model calculation of

Amati et aI. (see reference 3}might suggest. See T. D. Lee and
C. N. Yang, LPhys. Rev. 122, 1954 (1961)g where it is obtained
from the properties of the global symmetry group."E.F. Beall, B. Cork, D. Keefe, P. G. Murphy, and %. A.
%'enzel, Phys. Rev. Letters 8, 75 (1962).

Fzo. 2. The energy of the E=1, J=3/2 resonance for case II
and fv'= fg', as a function gv'E3/fp'EI for various values of
gg2E3/f g2E1.

~ J.J.Sakurai and Y. Nambu, Phys. Rev. Letters 6, 377 (1961);
S. Barshay, Nuclear Phys. 13, 435 (1959) and Phys. Rev. Letters
1, 97 (1958).See, however, reference 32.
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I'&t . 3. The value of the coupling constant f' required for the
I=1, 1=312 resonance (case II) to be located at 1385 Mev
as a function of g~' for various values of gg'.

channels. 's) For gq'=2'� ', Eq. (4.2) gives a half-width
of 24 MeV, a value consisent with present experimental
data.

Kith regard to case II, several authors have pointed
out that the existence of an I=1, J=3/2 resonance,
with P(Z) =+1, does not depend upon the assumption
of global symmetry and that it shouM exist even for
fz=O. s '" Franklin' has emPhasized that. a small f'
would bring r into better agreement with experiment;
however, it appears that, if only m.-V couplings are used,
the resonance would lie about 3 p, above the xA threshold
rather than 1 p, as observed. Ke shall now see that, for
fz=O, moderate E 1V couplings -will move the resonance
into the correct energy region whereas, for global
symmetry, moderate K-S couplings will have a small
effect on co, In the following numerical results, it is
always assumed that fs' fv' unl——ess otherwise specifi-
cally stated.

First consider what happens in the global symmetry
case. Equation (3.10) becomes a cubic equation as a
result of including the K-S interaction. The cubic terms
and terms containing 6 are not small in the energy
region of interest and should not be neglected. Amati
et al. ' obtained the V&~ at the observed energy by taking
the ~- Y cutoff integrals from the location of the (3,3)
resonance. Figure 2 shows how the resonance energy
depends on g.„-'Is for several value of gq'I3. As another
way of illustrating the effects of the E-Ã coupling,
Fig. 3 shows how the global symmetry coupling constant
f' must vary as the E Vcouplings are in-creased in order
to maintain &o, =1385 Mev. [In Fig. 3 all three cutoff
integrals have been set, equal to the (3,3) cutoff integral
for simpler comparison with the previous work. ] It is
evident from these 6gures that the K-X couplings must
be quite large compared with the m-V couplings to
shift the resonance appreciably; the maximum shift

shown in Fig. 2 is only about 40 MeV. In addition, these
results illustrate the remark made earlier [cf. the para-
graph following Eq. (3.12)j: if only one of the g's is
nonzero, the resonance energy decreases as g increases;
however, if both g~ and g» are nonzero they may inter-
fere and the resonance energy may increase as either or
both are increased (though never to a value greater
than its value for gq =gz

——0).
Figure 4 illustrates how much more sensitive the

resonance energy is to the E-A' coupling in the case
fz=O [Th.e main reason for this is that the only term
in Eq. (3.10) linear in the energy is proportional to
f„'. This . makes the global symmetry case much more
stable a.gainst variations of gq and g .) A"ote that now
the resonance energy always decreases as g~, g ~ are in-
creased; this is because g~ is the only coupling constant
connecting the xZ channel to the other two channels. It
is clear that moderate II -E couplings will give the reso-
nance in the correct energy range. Without the X-.~V

interaction, a value of fq It nearly twice as large as the
(3,3) value is required to give the resonance energy
correctly.

Kith regard to the branching ratio r, one would like
to know (a) if fs=f.. will moderate K-Ã couplings
reduce r from the 0.11 global symmetry value to a value
consistent with experiment or, (b) if fr=0 will the X-1V
couplings increase r to a value larger than the experi-
mental upper limit? (It should be noted that the widths
depend on f', g' as well as f'Ir, g'Is so that the quantities
compared are not the same as those compared in dis-
cussing the resonance energy. For definiteness, we shall
assume Ij=I3, keeping in mind that the values of the
coupling constants given below must be modified ac-
cordingly if the equality does not hold. ) In general, the
nonresonant background is very small, mainly because

2.5—

(g~~ Is/f ~X, ) = l

~ R. C. Eiwa and D. I"elclrnan, Nuovo cimento 23, 914 (1962),
seem to have obtained a more general result in a noncutoff model:
the width depends only on the locations of the resonance and on
the locations and residues of the Born terms, This is not true for
our model; one can easily construct examples for the t~vo-channel
case with II&I~ such that the result depends on II/I2.

3' G. Wentzel, Phys. Rev. 125, 771 I'1962).

I'"ic. 4. The energy of the I 1, J=3/2 resonance for case IT
and f~=o as a function of g~"'I~/fg'I1 for various values of
g g'I g/ fg'I I.
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Values of r for fr f——~ are plotted in Fig. 5 as a function
of gz' for various values of g&'. Evidently, for strong
EIrIA coupling, gr, '= f&', r may be reduced to less than
0.04 while for moderate coupling, gr, '&fis/4, the
branching ratio is reduced to 0.08 at best.

Sakurai" has suggested that the small value of r may
result from symmetry of the interaction under the
operation R,33

g: p&—&g, N~ge, g+c-+g—,
Z'&-+ Z', A ~A, E++-+ E:—, E'+-+ E',

rr+~rr, rr'~rr'. (4.4)

t I

0 .04 g6 .08
2

gg

FIG. 5. The branching ratio r for the decay of the I= 1, J=38.
resonance (case II}for fg'= fg' as a function of gg' for various
values of gg'.

t.02

of the low momentum in the m-Z channel. Thus, we

may very accurately take

r=
I r„(~„)/r»(~.) I

'=
I
1'»(~ )/1'»(~ ) I

'. (4.3)

Rigorous invariance under 8 implies that r vanishes.
Our model, with fr gr=gr——, 0, is i——nvariant under 8;
with these couplings r=0. When the ESY couplings
are introduced the symmetry is broken unless the ™EF
coupling is simultaneously included with the proper
coupling constants. Even if it is included, the ™Nmass
difference breaks the symmetry. Note, however, that
the symmetry is unaGected by 6 and imposes no relation
between g~ and g~. For nonzero g~, g~ the branching
ratio is given by (neglecting 6)

q, s 32g~sgr'Is(or„—Afar)'
r=

q, (1+2f~'I(or 3IIr)+4gr&I(or, .~i)+8fv'(gr' 2gr')I'(~—„Mr)'j'— (4 5)

for f„=0. The equation resulting from Eq. (3.10) is
actually cubic in the product I(or„—3II&) (assuming
Ir=Is=Is), so for definite values of gq, gs the product
I(or, 3fr,) is fixe—d. Thus, I may be varied as gz, gz
vary so as to maintain co„at 1385 MeV. If this is done
in the calculation of r from Eq. (4.5), we obtain, for

gi, '= g
'= fq' (I=1.2.5), a branching ratio of about 8%

and, for gr, '=gx'= f~'/4 (I= 1.97), a branching ratio of
about 1%. Thus, although the A& symmetry is drasti-
cally broken by inclusion of EEY couplings, if the
coupling strength is less than about fs.'/4 the predicted
value of r remains quite small, well within the experi-
mental limits.

It is interesting to see that moderate E couplings
have a very small effect on the resonance widths. The

dependence of the width on the ES coupling constants
is illustrated in Fig. 6 for fq= fs. (The f'I are adjusted
according to Fig. 3 so that or, remains constant. ) Even
for fx ——0, the effect is quite small: in the absence of
E-S interactions the half-width at resonance is
(2/3)f~'q', or about 24 MeV, whereas for gr ——fr„
gr, fz/2 the h——alf-width is reduced only to about
20 MeV. (These numbers include 6 corrections. )

Thus, in the I= 1, J=3/2 state, the effects of
moderate X IrI couplings g'& fq-'/4) are unimportant
except with regard to the location of the resonance for

f =0. On the other hand, if the X-X couplings are
comparable to the x-A coupling strength, they will

drastically affect any conclusions based on the x-V
interaction alone.

20—
0 .02 .06 .08

V. THE I=O RESONANCES

The experimental situation regarding the I=O reso-
nances is not yet completely clear. There is Yo* at
1405 MeV with half-width of about 10 MeU and un-
certain spin, and Yo** at 1520 MeV with half-width
about 8 MeV and spin 3/2. The simplest and most
natural interpretation of the Yo * is that it is a D3/2
resonance analogous to the second xÃ resonance. Tripp
et al." emphasize that any interpretation of it as a
I'~f2 resonance would require very complex behavior of

Fj.G. 6. The value of F/2 at resonance for the I=1, J=3/2
resonance (case II) for fg'= fg' as a function of g~' for various
values of gp'.

"J.J. Sakurai, Phys. Rev. Letters 7, 426 (1961).
"M. Gell-Mann, California Institute of Technology Report

CTSL-20, 1961 (unpubhshedl.



E —N I NTE RACY I ONS ON P ION —H YPE RON SCATTERI NG 2249

the other partial waves in a wide energy range about the
resonance. If it is indeed a D3~2 resonance, some mecha-
nism other than the one considered here must be re-
sponsible for its existence. Sakurai" has suggested a
virtual pZ bound state as a possible mechanism; a
Peierls type mechanism'4 or a Ball-Frazer mechanism"
are also possible explanations. Since it is possible that
the simplest interpretation of the I'0**is oot the correct
one, we shall consider here the possibility that it is a
Py2 resonance and see how it fits into our model. It is
in fact possible that neither of these tv o I=0 resonances
result from the forces considered here. Several authors
have pointed out that a Yo* resulting from a virtual
bound XIV, I= 1/2 state is consistent with the data. "'r

Indeed, it is possible that the I'0* is not a true resonance
at all. However, since so little is known about this reso-
nance, it is desirable to consider other ways in which it
may arise. From Table I, we see that there are a number
of possibilities within this model.

I.et us first consider the I'0*~. From Table I, it is clear
that such a resonance is possible only if P(Z) =+1.We
will continue to confine ourselves to the case P(E)= —1.
LThe EJV coupli'ngs do not affect the Ve*e for
P(E)=+1;as a result, very large z couplings would be
required for the resonance to have the correct energy. $
In case II the only E coupling constant which enters is

gz. gz may be expressed in terms of the other coupling

60

constants and the resonance energy by Eq. (3.10) as

1+2 ''Ith+2Ii(2 fv' fs—')(oi, M—z)
g 'I,= = —. (5.1)

24 tv'It(&e, —Mx)'

In order to get some idea of the magnitude of gq required
for ce„=1520 MeV, take tv fs——, Ii Is. ——Then for two
extreme possibilities for fz, Eq. (5.1) gives

(a) fz'= fg', gz'=0. 068,

(b) fz'=0 gi,"=0.022.

The cross sections o(KcV —+E1V) and rr(E1V-+mZ)
corresponding to these two possibilities are plotted in

Fig. 7. It is notable that these cross sections have very
broad peaks; in fact, especially in case (b), they have
little or no resemblance to resonance cross-sections.
A priori, this can arise from a number of factors. First,
the large momenta available, especially in the +5
channel, tend to make the width very large. Second, the
fact that the momenta in the two channels are com-

parable means the nonresonant background may not be
negligible. Finally, Eq. (3.7) indicates that the diagonal
T-matrix element for the resonant channel does not go
to zero at the K-)V threshold. This requires that sin'0
vanish at the E Xthreshol-d, according to Eq. (3.8).
Thus, it may be expected that as the energy increases
the K-X cross sections contain relatively more and more
of the resonant part, thus making the peak skew toward
higher energies. These remarks are illustrated in

40
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Fxo. 7. The I=O, J=3/2 resonance cross section for case II,
for elastic and inelastic scattering as a function of total center of
mass energy: (a}fv' =0.08, g v' =0.068, (b}fs ' =0 g ~' =0.022.

'4 R. F, Peierls, Phys. Rev. Letters 6, 641 (1961);S, F. Tuan,
Phys. Rev. 125, 1761 (1962)."J.Ball and W. Frazer, Phys. Rev. Letters 7, 204 (1961}.' J. Franklin, R. C. King, and S. F. Tuan, Phys. Rev. 124,
1995 (1961.).

"M, Ross and G. Shaw, Bull. Am. Phys. Soc. 6, 509 (1961}.
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FIG. 8. The I=0, J=3/2 elastic cross section of Fig. 7 analyzed
into resonant, nonresonant, and interference (between resonant
and nonresonant) contributions.
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The strength Of the &VXK cogpliog required to jive
a P~tsF'~* in case IV are comparable to those required
for a Pg~gVO~ rn case II. Equation (3.10) for the P~t2
resonance may be written

0.4
(5.3)

l428 l456 !484 I5I2 l550 l568
Total c.m. energy (MeV)

I596

rIG. 9. The quantity sin8 as a function of total center-of-mass
energy for the I=0, J=3/2 resonance of Fig. 7.

For f'= f~, this gives gz'I2 ——0.114 and for fz=0, it
gives g~'I2 ——0.287. Note that this state is associated
with the S»f2 E-E channel. Thus, g~ is a scalar coupling
constant and I~ an s-wave integral, so in solving
Eq. (5.3) the energy dependence of I2 should be taken
into account. Rather than do this, we simply note that
the numbers given above require gz of order unity. For
f~=O, the width can be expressed quite simply by

Figs. 8 and 9. In Fig. 8 the elastic cross sections are
analyzed into resonant, nonresonant, and interference
parts. [For case (b) the nonresonant cross section is
always less than about 1 mb and so it is not plotted. f
Figure 9 shows the dependence of sin8 on energy. It is
clear from these figures that the primary reason for the
distortion from a Breit-signer form is the large and
rapidly increasing value of the width ai d not the mixing
of the nonresonant part. Of course, the fact the width is
so large is partly a result of the presence of two channe1s:
In case (a) the 7' width contributes about half the value
of the total width a,t resonance, while in case (b) it
contributes about 0.7 the total width. In conclusion,
this resonance has no resemblance to the observed one
and it is very unlikely that the Fo** is generated by
the forces considered here.

Turning now to the question of the I'0*, we ask first
if the resonances given by Eq. (5.1) may be the I'o*.
The minimum value of gz'I2 is obtained for fz ——0 and
in general, for the resonance to be at 2405 MeV with the
same values of fq and I~ as above, it is required that
g~'I2&0. 204 or, with I» ——I2, g~'&0.065. Of course if
either I» or I2 is larger than this value the resona, nce
could be obtained for smaller g~'. Franklin' has sug-

gested that this resonance with gz= fz ——0 is the I'0*.
From Eq. (5.1) we see this requires f~'I~ ——0.52 or, for
fq' ——0.08, I~=6.5. To get such a large value for Iq re-

quires a cutoff of about 65 p. It is even more unlikely
that the J=1/2+ resonance for case II could be the
I'0*. To get a rough idea about the magnitude of gq' re-
quired, we neglect 4, set I~=I~ and fr= fq. (For fz& fz
the value of gr, ' required is even larger. ) Then

(5.2)

wliere a;~gags. This shows that if x is too la~ no
value of gx' vrill do and, at best, the value of gr~ required
)s cH,oITAGUs,

(5.4)

which gives a half-width of 22 MeV. This is slightly less
than the 26 MeV width obtained for the P@2YO* in
case II and slightly grea, ter than the observed width.

VI. SUMMARY AND DISCUSSION

The main purpose of the preceding calculations is t,o
see what features of the low energy xI', EE interaction
can be understood on the basis of forces arising solely
from the Born singularities. It is evident that this
understanding is limited by the uncertainty about. the
various coupling constants and parities, in addition to
the cutoff uncertainty inherent in this model. In particu-
la,r, if the X-S coupling constants are comparable to
the m-S coupling constant, a large variety of interpreta-
tions of the observed resonances is possible. The various
possibilities may be summarized as follows: )For
P(Z) =+1 it is always assumed that fJ,'= f&', in addi-
tion, by strong X-S couplings, it is meant that
g'I3= f~'I& and, by moderate K-1V couplings, it is meant
that g'13& f~'I~/4. g' denotes gq' or gz'. j

(a) The I'o** resonant state. It is almost certain that
the observed I'0** depends on some other mechanism
than the one considered here (which is, of course,
necessary if it is con6rmed to be a d-wave resonance).
This model predicts no 5=3/2, I=O resonance for any
values of the coupling constants if P(Z)= —1. For
P(Z) = +1,any resonance in the region of the Fo**mass

is found to be much broader tha, n the observed resonance.
Of course. it is possible that such a 83~2 resonance exists
and lies near the observed I'0**mass, but is so broa, d as
not to be observed as a resonance. [See Fig. 7(b).j

(b) The F~* resonant state. If P(Z)= —1, an I=1,
I'@~ resonance is obtained in the correct energy range

only if the EAcV coupling is strong. The branching

ratio r for the decay of this resona. ncaa is identicaHy

zero. If P(Z}=+1and f-„''=fP an I=1,Pyq -resonance
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is obtained in the correct energy range for a aide varia-
tion of Z-Ã coupling strength. (See Fig. 2). However, r
is predicted to be much larger than the observed I'~*
decay branching ratio unless gz'= fz' If .P(Z) =+1 and
fz=O, an I=1,Pg2 resonance is obtained in the correct
energy range for moderate K-X couplings. The value
of r predicted with these couplings is about 0.01, a
value consistent with experiment. In addition, the reso-
nance width obtained with these couplings is in better
agreement with experiment than those obtained with
fz'= f~'

(c) The PD* resonant state For. both parity assump-
tions, strong Z-E couplings are required in order to
obtain an I=O resonant state in the vicinity of 1405
MeV. In the case that P(Z) = —1, the resonance occurs
in the Pum state and for P(Z) =+1, the resonance occurs
in the I'@2 state, provided the KZE coupling is strong.
In both cases, the predicted width agrees moderately
well with the experimental width.

Thus, we may conclude that if P(Z) = —1, this
mechanism may generate both the Y~* and I 0* only if
the XX couplings are strong. If the KN couplings are
moderate, the only case which gives agreement with the
location and branching ratio of the F~* is P(Z)=+1
and fz=O. In this case, the Fo* cannot be generated
by this mechanism. This latter interpretation is con-
sistent with the recent experimental results of Ferro-
Luzzi eI, u/. , which suggest that the EZ relative parity
is odd."

It is usually stated that the X coupling constants are
much smaller than the x coupling constants. The
primary argument for this is based on the application of
the Kroll-Ruderman Theorem to photoproduction of E
mesons. " However, as Gell-Mann has pointed out, "
this is not nearly so reliable as in m photoproduction
because of the much greater distance to zero E meson
mass and the additional complication of possible xE
intermediate states. One might also consider the fact
that there are no resonances in EX scattering as evi-
dence for small EX coupling constants: In the static
approximation the Born terms for the p-wave T'
matrix are:

gs gz'
Tw2'(I= 1)= 3q' +

a)+3f p (o+Mzf

(6.1a)

'8 R. Tripp, M. %'atson, and M. I"erro-Lugzi, Phys. P~ev.
Letters 8, 1H (1962),

~ M, Gcll-Mann, 1958 Anneal International Conference aN
High-Energy Physics ut CEKV (CERN Scientific Information
Service. Geneva. 1958).

ga
Tv2'(I=1) =3q'

(o+3IIg

P(Z) = —1~ T,~,'(I=0) = —3q'
(o+Mg

(6.1b)

It is clear that, for either P(Z)=&1, no matter what
values the coupling constants assume, some of the Born
terms a,re attractive and can lead to a resonance. For
example, for P(Z) = —1, the resonance condition,
Eq. (3.10) is for the Pg~q, I=1 state,

1 2(ra—„+My)gg'Ix~ =0

This gives a resonance energy of

(6.2)

(6.3)

Thus, if g&'Ix&=f&'I&3, » a low energy resonance is
predicted in E+p scattering which is not observed. This
sort of evidence for small g~, g~ is limited by the
ambiguity of the cutoG integrals. If I~~&&I~3,3), gq and

gz can be quite large without contradicting the E+p
scattering data. It may be that, for example, the inclu-
sion of the x-x interaction in the momentum transfer
channel would suppress the EÃ integrals and enhance
the KS integrals. In fact, Dalitz has shown how the
p and cu exchange may contribute potentials of opposite
sign to E'Ã and XS systems. ' Then gz, gz could have
moderate values while appearing weak in Eg inter-
actions and strong in ES interactions.

Further suggestions regarding the magnitude of the
coupling constants may be gotten by looking at some
of the states which have not been discussed in the pre-
ceding sections. The I= 2 states depend only on fz and
fz Equation (3..10) for the P&~& state is

P(Z) =+1: 1 2(fg'+ fz')I—(co 3Ig)—
+2(f~'+ fz')I~=0; (6.4)

P(Z) = —1: 1 2f 'I(~ Mg—)+2fz'IA—=O.

For P(Z)=+1 and f~'= f~' this resonance lies at a
rather low energy, about 160 MeV above the F&*, if
P(Z)=+1, fz=O or if P(Z) =—1 and fz'I& f~'I&~, &&

the resonance energy is considerably higher, more than
3.5 p above the mA. threshold. Thus, a I'3f2, I=—2 reso-
nance in the low energy region is indicative of P(Z)
=+1, fz'= fz'. The only other possible I= 2 resonance
occurs in the Su2 state for P(Z) = —1. For this case
Kq. (3.10) is

1=3fg'I((u-3IIz- 6)=0 (6.5)

Note that here f~ is a scalar coupling constant and I
an s-wave cutoff integral. A reasonable estimate for
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fq'I is 0.2 for strong AZ7r coupling; with this value a
resonance is obtained at about 1.2 p above the xZ
threshold; however, the half-width of this resonance is
given by qfz' which is enormous at this energy. Thus,
should this resonance exist, it would be very dificult to
detect. It is clear that the existence of an I=2, J=3/2
resonance in the low-energy region suggests that
P(Z) =+1 and f~'= f~', on the other hand, if no I=2
resonance is observed, this fact by itself wouM be
indicative of very little.

The remaining states which have not been discussed
are the J= 1/2, I= 1 states. These states are interesting
for two reasons: (a) the existence or nonexistence of
resonances in these states may give some information
regarding the magnitude of the E-X couplings and (b) it
is still possible that the Yi* has spin 1/2. With regard to
the first question, if the XE couplings are moderate the
possible resonances in these states all lie more than 3 p
above the mA threshold. Even if this model could be
trusted at such high energies, the resonances would be
even broader than the one shown in Fig. 7(b), and
hence difficult to observe. On the other hand, if the
KX couplings are strong, these resonances may move
into the low-energy region. Specifically, for P(Z) = —1
there is a J=1/2 —and, if fx=f~, a J=1/2+, I=1
resonance for strong XXX couplings; for P(Z)=+1
there is a J= 1/2+, I= 1 resonance if both XX cou-

plings are strong. If we accept one of the J=3/2 inter-
pretations of the I'~*, the fact that no additional I=1
resonances are observed in the low energy region indi-
cates that (a) if P(Z)= —1 the EZJV coupling is not
strong or (b) if P(Z) =+1 both E1V couplings cannot
be strong.

Turning now to the possibility that the I'&* has spin
1/2, we see that P(Z)=+1 is very unlikely. In that
case, large XE couplings are required; however, regard-
less of the value of fr there is also a J=3/2, I= 1 reso-
nance in the low energy region if the XlV couplings are
large. Since only one resonance is observed, this possi-
bility seems remote. If P(Z) = —1, it is necessary that
the EZlV coupling be strong and that the EAT coupling
be moderate or weak to give a J= 1/2 but no J=3/2,
I=1 resonance. With go=0, the J=1/2+ resonance
can be immediately ruled out since it is predominantly
a m.Z resonance. For example, if fx ——0, the ~A channel is

completely decoupled from the resonant state and hence
the branching ratio r is infinite, while if fx= f~= &fg-
r is about 3. The J=1/2 —resonance is quite a good
possibility; this resonance results primarily from the
coupling between the mA. and KS channels and so r
should be quite small. In fact, r=0 if f& 0, regardl——ess
of the value of gq or g~. Thus, if it turns out that the
Yi* has spin 1/2 the only possibility within this model

is that P(Z) = —1 with strong EZÃ coupling.
A next step in improving these calculations would be

to include effects of other nearby singularities, those
arising from crossing and from x-x and ~-IC interactions.

If the properties of the resonant states were well known,
the crossed terms could be included by assuming the
resonant contributions to the crossed terms dominate
and neglecting all others. Bosco et a/. "have used this
procedure in calculating the crossing effects in m-X

scattering. (They find that the cutoff integral must be
reduced by 20 j~ from its no-crossing value to give the
resonance energy correctly. )

The ~-n. cut, arising from the reaction E+E—+ 1V+g
in the momentum transfer channel, lies very close to
the physical region'; this suggests that the x-z inter-
action may have a stronger effect in this problem than
in the z-E problem. The contribution of this cut as well

as of the rrE cut, from rr+E —+ 1V+ Y, may be estimated
by assuming the dominance of the p, co, and E*resonant
states. This may all be done in a completely relativistic
way, by modifying the technique of I'rautschi and
%alecka." However, the results of Frautschi and
%alecka show that the unknown short-range forces are
very important in determining the resonance energies;
thus, it cannot be expected that trustworthy quantita-
tive results can be obtained in this way. It is evident
that no matter how the extension is made, the results
must contain some parameters which characterize our
ignorance of the short range forces. The spirit of the
present calculation is the assumption that all but the
Born singularities can be represented by a simple cutoff
procedure. A priori, there is no justification for assuming
that all cutoff integrals have the same value. Certainly,
if these other nearby singularities make important con-
tributions to the low-energy scattering, this assumption
is not valid. Inclusion of the above mentioned singu-
larities will remove the uncertainty of their contribu-
tions and may have important quantitative effects.
However, there will still be ambiguities analogous to our
cutoff due to the still more distant neglected singu-
larities. Another factor which may be important here
is the fact that the m.xA threshold lies in the energy
region of interest. This process may have a more sub-
stantial effect on the results than x production has in
~-Ã scattering. An indication of this is that the +~A
channel accounts for about 10% of the Ys**decays. An
estimate of this effect can perhaps be gotten by a static
calculation, using techniques similar to those applied
to ~+Ã ~ rr+rr+E by Carruthers. "

A final comment on the resonance widths: the values
that have been quoted for half widths are always the
value of I'/2 at resonance. There is some suggestion from
x-lV scattering that this may not be an accurate measure
of the width, that the half width at half maximum is less
than I'/2 at resonance. It is well known that the (3,3)
cross section drops off faster above the resonance than
is predicted by the Chew-Low plot. An expression which
fits the cross section very well throughout the resonance

"S.C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

4' P. Carruthers, Ann. Phys. (New York) 14, 229 (1961).
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many suggestions and critical discussions during the
course of this work.

region is given by Gell-Mann and Watson42:

F22Ã

q' (~—~.)'+(F/2) ' APPENDIX A

Physical Meaning of X(q",q)
(6.6)

2(qa)'
F=

1+(qa)'
In references 11 and 12, the meaning of X(q",q) for

m-E scattering is determined by transforming the solu-
tion to configuration space and comparing with the
usual phase shift expansion. That proof can be carried
over to the many channel case. Another way to look
at the problem is to consider the asymptotic behavior
in time. One component of the vector given in
Eq. (2.3) may be written, in the angular momentum
representation,

l4"'(~))+'=Z «' l4~'(~'))+

„ I
A'(~"))++64'(~")

I
v~'(~')

I
&,)

XX, ~(ar', co), (A1.1)

where the prime indicates that this is the trial state
vector. Require that

lim e '~'lg~~(co))+' ——lime '"'lg~~(&o))~. (A1.2)

This implies that X~ (~',~) has the form (suppressing J)
F, (co',a))

X, (or', (o) = b((o' (o)8, +— , (A1.3)
0) —N —ZE

since
~inst

lim =0.
s+ ze

Require in addition that

lim e 'a'lf ~(~))~'= lim e '"'IP ~(&o))+. (A1.4)

This requires that

$8„+2vriF (a,(u)j
X[~,e+2 i+(P,( ) I V,( ) la,))=S„. (A1.5)

As in the Chew-Low theory

-+(~e(-)
I
V,(-) l~, )=-(2't)e„(A1.6)

so Eq. (A1.5) may be written in matrix form:

[1—2iT't(a)) j[1+2rriF(ar, co))=1, (A1.7)

with a=088 p, ' y2=58 MeU and co„=299 MeV.
Roughly, the energy dependence of F in Eq. (6.6) differs
from the dependence of the Chew-Low F by a factor of
[1+(qa)'j "'.The half-width of the resonance given by
Eq. (6.6) is about 20%%u~ smaller than the value of F/2 at
resonance given by the Chew-Low theory. These re-
marks are especially relevant to the case of the V&*

where, for F(Z) =+1 and fz= fq, the predicted width
is generally greater than the experimental widths. (See
Fig. 6.) It might be expected that a similar reduction
should be applied to these predicted values. Unfortu-
nately, it is not clear how one can incorporate a barrier
penetration factor, a factor analogous to the (1+q'a') '
in Eq. (6.6), into the sort of calculation done here.
(There is no such factor in the relativistic treatment of
Frautschi and Walecka40; in fact, their calculation
predicts the phase shift goes through m/2 even more
slowly than does the Chew-Low theory. ) In the limit
of exact global symmetry (the only case where the m E-
parameters are directly related to the m. V parameters)
one can take over the values of a and p2 directly to the
xY case. However, the A-X, Z-Ã mass differences
make this procedure ambiguous. If one assumes that
the only modification necessary is that the momenta
appropriate to the ~A and ~Z channels at the ob-
served 7'r* resonance energy replace the (3,3) pion mo-

mentum then one obtains, for f~ fz fq, gz——=gz——=0
Fz/F~= k(qz'/q~') [(1+q~'a')/(1+qz'a') j=o 11'

(6.7)
FA/Fx= (qA /q&')[(1+q~"a')/(1+qz'a')l=o 5»
Then the half-width of the Vr* resonance is 0.68F~/2
=34 MeV for F~/2=50 MeV, which is about the same
value given in Fig. 6 for the global symmetry case.
Fulthermore, the branching ratio is Fz/Fq=0. 2, a value
in violent disagreement with experiment. The obvious
reason for this is that the added barrier penetration
factor suppresses the xA channel considerably more
than it does the xZ channel. Thus, it is clear that, while

the x-I' resonances may be better 6tted on the high
energy side by an expression similar to Eq. (6.6) and
hence be narrower than perdicted by the model, the
parameters a and p2 cannot be simply carried over
from the (3,3) resonance.
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and, hence,
m F(co,(a) = T'((u). (A1.8)

Bosco ei a/. r4 have shown that the solution of Eq. (2.7)
for the rr-X problem is an exact solution of Eq. (2.6) by
showing that it satisfies a dispersion relation deduced
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from Eq. (2.6). Rewriting Eq. (2.4) in the form Eq.
(A1.1) makes it clear that this is true for the multi-
channel case as well: one is expanding the trial state in
terms of exact states; thus, if a solution of Eq. (2.6)
exists at all, no matter how the X(&v',ru) are constructed
so that the boundary conditions Eq. (A1.2) and Eq.
(A1.4) are satisfied, all physical quantities must be the
same as if Eq. (2.6) were solved exactly. This can be
made explicit: Let the solution of Eq. (2.6) be written
as in Eq. (A1.3) and denote the corresponding solution
obtained in any other way by a superscript f. Define
the matrix

mutation relations of the meson operators with the
Hamiltonian as done in references 3, 11, and 12, or by
using the expression

This is, in fact, the expression used to obtain Eq. (A1.1)
from Eq. (2.4). The reduction to the one-meson terms
is then straightforward: Substitute Eq. (A1.1) in to
Eq. (2.7) and note that

(A1.9)
&A(~')

l 0 -(~)&+= ~-~&(~-~')

It follows that

I4(~)&+—I4(~))+'= d~' I4(~')&+-—

I 0(~")&+2'--'(~) &(~' ~)
X

where T '(&a) = 7r(B
~
V(co)—

~
f(&o'))+ is a matrix in

channel space. Equation (A1.4) then implies

Expand the matrix elements (Bp~ Vat(~') i,f (co)&+ over
aH intermediate states S:

&Bsl V.(~),ys), ~g zl Vs'(~') IB-&

M.+Ãp —~s—~

[1—2iT't(co)Q((o, o)) =St(co)y(&u, a)) =O. (A1.11)
&Bsl V~'(~') I+8)++Qsl V.( ) IB.&

67 'bE

(A1.14)

Thus, since the S matrix does not have a pole at the
physical energy ~, p(M, ar)=0 and the solutions are
the same.

Of course, neither Eq. (2.6) nor Eq. (2.7) may be
solved exactly. The usual method used, and the one

adopted here, is to make the one-meson, no crossing

approximation. This may be done by utilizing the com-

The "one-meson" approximation consists of keeping
only those states 5 which contain a baryon or one meson
plus a baryon. If, in addition, the states containing
one meson plus a baryon are dropped from the first
term in brackets only, we have the "one-meson, no-
crossing" approximation:

&B~ I V-(~) I B,&&B
I

Vs'(~')
I B-) (Bs I

Vs'(~')
I
B )(B I V-(~) I B-)

&Bul Vs'(~')
l
0-(~)&+=2

M M

%'hen this approximation is made for all matrix ele-
ments entering into Eq. (2.7) the integral equations,
Eq. (2.8), result.

same intrinsic parities,

Nonxelativistic Born Terms

In order to see %hat extent the static Born terms
approximate the relativistic Borg. terms, it is most con-
venient to use the conventional notation of dispersion
theory. (See, for example, reference 18.) Nauenberg'
has shown that the scattering amplitude can be written,
when the initial and final pairs of particles have the

X 2'+ W— iB'
2

—(&,-M;)"'(Eg—iVg)' '

3Er+3f1
X ~'+' —lV+ B'+~ (A21)

2
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3= [y(M;+M y) WM~]B;
(A2.2)

the upper (lower) sign is taken if both couplings are
pseudoscalar (scalar). G, , Gr are the coupling constants
at the initial and final vertices. Restricting the energy
to the range for which q'/p/M(&1 in all cha, nnels, the
only non-zero amplitudes arising from these diagrams
al e

G,G/(q, qI) "' WWM,

(1+p/;/M, )'/2(1+a/f/M f)'" 8"—M' '

G Gr(q "q~')"'
f Pi/2 ——.

(1+~ /M )"'(1+~//M/)"'

8'&M~
X-

4iff;3fg
8'~—M, '

(A2.3)

If the terms with the pole at 8'= —M are neglected,
these diRer from the corresponding static amplitudes
only by the phase space correction factors

1/(1+p/ ./M .)&/2(1+ p/~/M /)
&/2

(Of course, the correct relation between 1V and q is
used here, and this differs from the static model also. )

Let us take a particular reaction to illustrate what
happens in the case of Fig. 1(b): 2r+A —+ 2r+Z with a
Z intermediate state. Then'

Now the total energy is denoted by W while p/ is reserved
for the meson energy. f/; is equivalent to Tr in our
former notation, Processes of the sort shown in Fig. 1(a)
have only a simple pole and the reduction to the non-
relativistic limit and comparison with the static model is
rather obvious. The diagrams in Fig. 1(b) give rise to
a variety of cuts and the comparison with the static
model is less clear. For Fig. 1(a), neglecting isotopic
spin complications,

krG,Gg

8"—M-'

powers of 1//L The ones of interest to us are

Qp(u) 1/a+1/3ap+

Qi(a) = —1/3ap —1/5a'+

Q2(u) = —2/15 up+

Then to lowest order in q2/M/d,

(A.26)

v2 GzGg
.SI/2

2 Mv~g (1+re */Mz)(1 —p/;*/2Mz)

v2 GzGg (q'qrp)'"
.P],/2 ~

J f'1

3 4MzMg

2&2 GzGg (q'qr')'/'

3 4MzMg
f P3/2.

Factors of the form Li —(p/, 5/MzM~)+(u&;2/4Mz2)]
have been neglected. Thus, just as found in reference 18,
the phase space correction factors are canceled out in
the I'g2 amplitude. Diagrams involving X-g reduce in
the same way. Since the expansion is in powers of
q'/p/M, the large E mass does not affect this. For all
diagrams of the type shown in Fig. 1(b), one can always
arrange it so that the expansion of factors of the form
(1+a&/M) ' is for pp corresponding to a pion energy.
This is true because there are no EÃ~K3~ crossed
poles.

APPENDIX B

The following are expressions for

G= I 1—I Q„B"(p/ M„)]—
for cases II and IV. All relevant quantities can be calcu-
lated from these by using Eqs. (2.23), (3.10), and (3.11).
(The angular momentum indices on the cutoff integrals
are suppressed. )

Case II: P(Z) =+1, P(E)= —1;

8—M.2 (A2.4a)
I=2, 5=3/2+:

G= 1 2(f~'+f")I(~ —M~)+2(2f~'+—f")I~'

4/r V2Gg&g
B/ — — —Q, (u). ——

2g;g f
(A2.4b)

The quantity a is very large for small momenta,

M"—(I-'r-,)'+q"+q/'

M~,~(1—pp;/2Mz)

Vs9'&

(A2.5)

where p/;~= p/;+q, 2/2M~ and Q/(/z) may be expanded in

I=2, I=i/2+:
G= 1+(fop+ fz')I(/p —Mg) —(2f/32+ fz2) II3.;

I=1,7=3/2+:
G22 = 1—2I2fg'(p/ —Mg+ 6),
Gyp 22/2 f/, fzIg(/d ——M/3), —
G~p= 2v2 f~ggI, (p/ M/), —
G22= 2~f/ fzI2(~ —M~),
G22- 1+Ip[2fg'(p2 —6—M'z) —2 fz'(p& —Mz)]
Gpa &gzf~I2(~-Mz),
G„=2v2 f~g/, Ip(p/ —M/3),
G32 4gz f/pI3(/d Mz), —— —
G3g ——1
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I=1, J=1/2+:
Gii ——&+Irf~'[(~—M~+&)+3(~—Mz) j,
Grg ——2v2fpfzIr(co —Mz ——,'5),
Gra= ~&h[f~grc(or M—rc)+3fr,gz(or M—z)j,
G2r 2%——2 fr,fzI2(or M—z ',6—)—,

Gg2 ——1+[7fz'(or —Mz) —fg'(or —5—Mz) )I2,
G» ———2(f~gz+3fzgz) (or—Mz)Ig,
G3r= &2[—f~gr, (or Mr,—)+3frcgz(or Mz)—jI3,
G82 —— 2(f~—gz+3fzgz) (or Mz)—I3,
G3g ——1+6gz'I3(or —Mz);

I=0, J=3/2+:
Grr ——1+[4fz'(or —Mz) —2 ''(or —Mz —6))Ir,
Gr2 ———2(6)"'gz f~(cd —Mz)Ir,
Ggr ———2(6)"'gz frr (or —Mz) Ig,
G22

——1)

I=O, J=1/2+:
G» = 1+[9frc'(or —M~)

+fg'(or —Mz —6)—2fz'(or —Mz)]Ir,
Gr2= (6)"'hP fr gr (or Mr)+—gzfx(or Mz) j,—
Grg ——(6)"'hP f~gr.(~ Mr, )+gz—f~(~ Mz) j, —
G2&= (6)"'I2pfr gr (or Mr )+g—f~(or Mz) j, —
G22 ——1+6gr, '(or Mrc) I2, —

Case IV: P(Z) = —1, P(E)= —1;

I= 1, J=3/2 —:
G22

——1—2fz'I(or —Mz),
Gll 633 ~)

~12—621—613=+3].=623=G32 =0)

I=1, J=1/2+:

Grm= —(6)"'f~fz(or —M g)Ir,
Gig —— v2 f~—gr, (cd Mr, )—Ir,
G2g ———(6)"'fp fz(or —M~)I, ,
R2= 1+3fr, 'I~(or 6 —Mz—),
G23= 2v3gz(f~ fz)(o—r Mz)—I2,
Gsi= ~&frcgr, ( Mr, )I—S,

G»= 2~3gz(f~ —fz)(or —Mz)I3~
G33——i;

I=1, J=1/2 —:
Grr = 1—3''[(co—Ma+ 6)—(or —Mz) jI,,
Gr2= (6) 'r'fr, fz(or Mz)Ir—)

Grs ———3V2fggz(or —Mz)I, )

G2i= (6)"'f~fz(or Mz)I2, —
G22= 1+7fz'(or —Mz)I2,
623=~32=o,
Gar —— 3v2 fr,gz(c—d Mz)I„—
G33——1+6gz'(or —Mz) I3,

I=0, J=3/2 —:
I=2, J=3/2+:

G=1,

Gu= 1+4fz'(or —Mz)Ir,
~21 612 O)

622= 1;
I=2, J=3/2 —:

G = 1—2fz'I(or —Mz),

I=2, J=1/2+:
G= 1 3fg'(or Mz —6)I, — —

I=2, J=1/2 —:
G=1+fz'(or —Mz)I;

I=1, J=3/2+
611=622= G33= 1)
612 621 G32 G23 0)
Gr3 2%2f~gr (or Mr——)Iz)—
G3r 292f~gr, (cd Mrc——)I3, —

I=0, J=3/2+:
611 622 ~)

~12 621 0)
I=O, J=1/2+.

Gri = 1+3pf~'(or —Mg) —fg'(or —Mz —a)jI„
Gr~= 3~&f~gr (~ M—p)I,)—
G2r = 3@2fr,gr, (or M—r,)I,,

—
G22 ——1+6gg'(or —Mg) I~,

.

I=O, J= 1/2 —:
Grr= 1—2fz'(or —Mz)Ir,
Gr2= 3~&f~g z(or Mz) I—r)—
G21= 3~~fivgz(or Mv)I2, —
G22 ——1.


