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A two-particle approximation is suggested for the 377 ~ 377. amplitude: The amplitude is replaced by a
p+7t- —+ p+7i- amplitude multiplied by 2x resonance factors. An approximate calculation of the 1=1-, T=0
partial wave for the p-m amplitude is made, including only the "elastic" and one-pion-exchange cuts, but it
seems to give no hint of a 37r resonance.

I. INTRODUCTION
' T is becoming increasingly clear that in present
- - theories of strong interactions some understanding
of three-particle states is necessary if one wishes to do
more than make qualitative predictions. The main
obstacle preventing this understanding is the compli-
cated nature of the corresponding amplitudes; one is
forced to consider functions of 6ve and eight variables.
One might conjecture that the amplitudes can, in
principle, be calculated using a version of the
Mandelstam'-Landau'-Cutkosky' formalism, but even
accepting this, the actual calculations wouM seem
almost hopelessly complex.

The recent discovery of several two-particle reso-
nances, ' " however, points to a possible simplifying
approximation: Perhaps the three particles can be
replaced by two, one of which is an unstable particle

*The results given in a reliminary report on this work LBull.
Am. Phys. Soc.7, 56 (1962) were incorrect because of an algebraic
error and improper treatment of the one-pion-exchange cut.
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corresponding to a resonating state of two particles. This
two-particle approximation has been recently discussed"
in connection with Sx-m states. In this paper we give
some preliminary results obtained by treating the
three-pion state as a state involving a T=1, J= j.—,
two-pion resonance (the p-meson' ), and a pion.

An approximate treatment of the 3m ~ 3m amplitude
has previously been undertaken by Blankenbecler and
Tarski" in an attempt to evaluate the isoscalar nucleon
structure. Their treatment was similar in spirit to that
of this paper in that they assumed factors corresponding
to x-x interactions could be removed from the ampli-
tude, leaving a reduced amplitude which is independent
of the m-m. energies. It diGers, however, since they as-
sume the complete amplitude can be represented by a
single term: a product of three two-pion terms for both
the initial and 6nal states times a "reduced" amplitude
which depends only upon the total energy. In this paper,
on the other hand, we assume a sum of 9 terms, each
allowing for the interaction of a single pair of pions in
the initial and final states, with the reduced amplitude
depending upon a momentum transfer in addition to the
total energy. Since both approximations are quite
drastic it is dificult to say which comes closer to the
truth, ' but the approximation of this paper has the ad-
vantage of allowing the one-pion-exchange contributions
to be included exactly.

Ke begin with the unitarity relation for the connected
part of the 3z —+ 3m amplitude. We assume that this
amplitude can be approximated as a sum over products
of two-particle (p-n.) amplitudes times 2w-resonance
factors, the sum running over all nine possible pairings
of two of the initial pions and two of the final pions into
resonant states. In the sharp resonance limit, the

"S.Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys, (New York) 18, 198 (1962)."R.Blankenbecler and J. Tarski, Phys. Rev. 125, 782 (1962)."A study of this point using a simple model has been made by
R. F. Peierls and Jan Tarski (to be published).
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three-particle unitarity relation then reduces to the
usual two-particle unitarity relation for the p-m. ampli-
tude, except that, because of the mass-averaging, the p
mass acquires a positive imaginary part proportional
to the width of the 2m resonance.

We next discuss some of the kinematical details of
p-x scattering, indicating how the partial wave ampli-
tudes may be expressed in terms of four invariant
amplitudes. At this point we specialize to the T=0,
J=O—partial wave amplitude, since it is in this
channel that the' a& (and perhaps the' g) resonance

occurs. Using an approximate E/D calculation we are
able to construct this amplitude, ignoring all but the
normal threshold and one-pion-exchange" singularities.
The resulting amplitude is surely incorrect in the
vicinity of the ignored singularities, but perhaps might
give some indication of the inQuence of the one-pion-
exchange contribution.

II. TWO-PARTICLE APPROXIMATION

We dehne A3, the connected part of the three-pion
scattering amplitude, by setting

(1 2 3 «~1123 .)= + ~' ~~i ~~A: 3
perm

+i p 8,';(2m)4P(p; +pA, .—p, —p, ) (24~;».~;~,)-'~'A, (j'k'; jk)
comb

+i(2~)'8'(pg +p2 +p3 —p~ —
p2 —pa) (2'~p(g~ &u3»cg2cu3) '"A3(1'2'3') 123), (1)

with A2 the usual two-pion amplitude.
Unitarity then gives the discontinuity in 3 &

..

(2i) '[Ag&+'(1'2'3'; 123)—Ag' '(1'2'3', 123)7

1
(2~)'&'(P,'+Pa" +P;—Pz —Ps —Pp)A2& '(j'k'; 1"i)A2&+&(1'i'; jk)

comb 2 y1"

1 1
+Q ——Q Q (2~)'& (Pi ~+Pa +P, —

Py —Pg —P3)Ap& ~(j'k'; 1"2")Ag&+&(1"2'i'; 123)
~' 22!»~~»

1 1
+p ——p p (2~)'84(p& +p& +p3.—p, —p&"—p, . )A3& &(1'2'3'; i1"2")A2&+&(1"2";jk)' 22! uI" u2"

1 1
+——g p p (2s)45'(pg" +pg +p3 —

pg
—

pg —p,)A, &
—'(1'2'3'; 1"2"3")Ag&+~(1"2"3";123). (2)

2 3t u1" u2" u3"

The corresponding diagram is shown in Fig. 1. In (2)

d'p~(p' ~') Z,
u (2~) CX

where n is the isospin index.
We assume that the two-pion amplitude is dominated by the J=1—,T=1 resonance. We can then write

A2(j'k', jk) =P P lCl'e(n, nzn) e(XP; A., ) q; z e(neman) e(XP;&) q;z(Mz' id s, z—) ', —

(3)

(4)

where
q~~= 2 (p~ p~), —

P;~=p, +pa,
Sj/g Pjg )

e(nP&) is the totally antisymmetric tensor, and the
eP,P) are the usual polarization 4-vectors for spin-one
particles with momentum P and polarization ) . In (4),
Mg is the mass of the p resonance; its width is
I'=635~ '. The dimensionless "coupling-constant" C
is related to M& and 6 through the unitarity relation

I +
k k' p

l
C

l

2= 24'- P~@2—p2)
—»2~~&

For 3ll&'=29', lCl' is roughly the width of the
resonance measured in MeV.

FIG. 1.The unitarity relation for the connected part
of the three-pion scattering amplitude.

"The one-pion-exchange pole contribution to the p-~ amplitude
has previously been considered by M. Nauenberg and A. Pais,
Phys. Rev. Letters 8, 82 (1962) and by P. Carruthers, Nuovo
cimento 22, 867 (1961).
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We now make our fundamental approximation: We A3, leaving a two-particle amplitude B. Explicitly,
assume that we can separate p-resonance factors from we set

A, (1'2'3', 123)= P g P
ppmb X'X a'a

C*e(n, .nk cr') e(VP, r. ) q, I, Ce(rr;durga) e(&p, ~) q;r,

s&~ kl —Mg —i6 s,g MI—r,'+i A

as pictured in Fig. 2.
Making this substitution in the unitarity relation, we find the usual two-particle unitarity relation for 8:

(2i) '[Bi+i '"(rr'n, '; nor, ~ipse r, p;; P,gp, ) —Bi i "(n'rr, '; nn, ~p,'I, p;; P, qp;)]

=-', (2~)-'(4s't')-'Q(s) dQ" Q Q J3&-i' s(n'n, ',.Pn" ~p;.pP' Pr'P")
~l IP

XB+ ~"(pn"; nn;~p"p"; P;zp;)+one-pion-exchange term, (8)

where III. PARTIAL WAVE AMPLITUDES

and

(P")'=MrP.
where

In obtaining (8) from (2) and (7) we have made several
approximations which are justified only if the width of
the p resonance is small. In particular, in integrating
over the mass of the intermediate p we have used an
approximation equivalent to

s= (p+p)'= (p"'+p')'
(13)

We assume that the four invariant amplitudes, b, ( t)s,

have no kinematical singularities. " Because of the
approximate nature of 8 there is some ambiguity as to
the singularities which one should ascribe to the b, .
Presumably they will have all the singularities of A&

arising from diagrams with four external vertices, two
of which have a pair of the external pion lines emerging

dsrs"F(sos")
~

srs" —M~'+id
~

'=n.A 'F(Mg'). (10)

The one-pion-exchange (OPE) term indicated on the
right-hand side of (8) comes from the pole in the crossed
channel pictured in Fig. 3. The corresponding contribu-
tion to 8 is

= (p. For each set of isospin indices we can write"
Q'(s)= (4s) 'Ls (~~+I—)'j[s (~~ I—)'3 —(9) g, ., (pl I.p, , y/pl. r p,b „

+ (p"p'"+psp")b, (s,t)+p'"p "bs(s, t)

+p "p "b ( ~)j (l P) (12)

&»E"'"(&'&'&&
I

P'p" Pp)

FIG. 2. The two-
particle approximation.
The wavy lines indicate Ap

p mesons.

u' a j
i'

we should use M~'+id for the mass of the "average"
intermediate p. The denominator in Sop~ must be
similary modified when it is used in any unitarity
relation (such as for the process N+N~ 3') or in

computing a cross section.

, (~- bee —b-e~- e )
p' —ie—(P—p')'

X[e*(X'P') Pj[e(XP) P'$. (11)

The denominator of Bppp depends upon the masses of
initial and anal p mesons. When the average over the
intermediate p mass is performed to obtain the unitarity
relation, a careful analysis" shows that instead of Mz'

FIG. 3. The one-pion-exchange
diagram.

P

f), ), 'si(s) = dfl n), ),'s'*(y, g, —y)

X(2~) '(4s'") 'Q(s)&" "(p'p' pp)

' A. C. Hearn, Nuovo cimento 21, 333 (1961).
'r M. Jacob and G. C. Wick, Ann. Phys. (New York) 7, 404

(&959).

from them, the other two a single external pion line. If
one wishes to retain the two-particle approximation,
however, many of these singularities must be ignored,
and the mass-averaging must be done carefully for the
others. In this paper we avoid most of these difhculties

by ignoring all singularities but the OPE pole and the
"elastic threshold" at s= (M~+p)'.

In the center-of-mass system we de6ne the helicity
amplitudes"
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where the direction of P' relative to P is determined by
the angles 8 and &)I&. These helicity amplitudes have a
discontinuity across the elastic cut,

(2i) 'f—f», ,( )(s+io) f—», ,(I)(s i—o)$

=p P f&. i"& &(s—ie)f»;,( &(s+io) (13)

"—- —-=----- ———---R
S+ sa b

b, (&)—
SPYj Cj)

Each b and f can be written in terms of three )sosp)n

amplitudes, corresponding to I=O, 1, and 2. If

b. p;p, =lb pb p+m, b bpp+e, 5 pbp, ( )f

then the isospin amplitudes are

b, &'& =3l;+m, +n;,

FIG. 4. The OPE and elastic cuts for the partial wave amphtudes.

where

p(s)=s '"Q'=(»') 'L(s—s+)(s—s-)j'", (22)
with

sg = (ATE&)(I)'.

The discontinuity across the elastic cut is

b, (2)—
SPIC +P4)'

(2i)—1(g (+) g (—)) pg (—)g (+)

(17) and the OPE contribution is

(23)

with analogous relations for the f's.
For each J and I there are three amplitudes corre-

sponding to parity —(—1)I: with

~C)' ' sin'8d cos8
A opp(s) =

32II Q 1 COS8—Zo(S)
(24)

and

(J,l) —F (J,l)

(I'I) f (I'I)+f1, 1'(II)—1,1

(J,I) g, (J', I) ~

and one amplitude corresponding to parity (—1)I:
(I I) f (I I) f (I I)

z(&(s) =-', (2MEo+2ih+&((' —s+2Q')Q '.

The OPK pole produces two cuts in A; one running
f —~ to 0 the other running slightly above the
elastic cut from s =2ME'+p' to s&,=yE —, p

(1g) The discontinuities across these cuts are given by
+ ~C~'F(s) and —(C)'F(s), respectively, where

F (s)= L32Q'(s)g —'P1 —zo'(s) j(19) = l '( —+) '( —-) ' '( —.)( —) (25)
The OPE pole contributes only to the invariant

amplitudes b3('):

bo (&pE( (s)/) = —2bo opE & (s,3) = —2bo ppp (s,f)

(20)
p,
'—2Mg' —2ig —2p' —s—]

4C ~In the limit 6~0 this pole crosses the physica
region" for p-m scattering.

The locations of the elastic and OPE cuts are shown
in Fig. 4.

lThe cut above the elastic cut is a rather nove
feature, and we investigate it in some detail. One
should note to begin with that A cannot be a rea
function, since this would require a corresponding cut
below the elastic cut. Ignoring the left-hand segment o
the OPE cut we write, as usual,

A=a—97,

IV. THE T=O, J=I—AMPLITUDE

In this section we restrict our attention to t-e T=T=O
J= 1—amplitude

~(s)—=Pp(s)j 'f, "(s)

= —(1fi7rQ') ' bo(s, t) cos8d cos8

with D and E satisfying the integral equations

I(CI(' 1 "F(s)D'+&(s)
1v(z) =- ds

P Ã 8&z S 5

(z—so) "p(s)W )(s)ds
D()-D(so)-

(27)

—1

Making use of the fact that F(s) is sharply peaked about1

ose '2ys aP ' so 'g yps ~ & t l' htly greater than s, and taking the limit
6 —+ 0 to sim lif the algebra we find the approximate—1
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solution

E(s) n—(s)Ib '+iF(s)p '8(s s—,)8(sb s—),
D()=lcl '+( —o) '( ()+( —o)

'

X(p(s)F(s)e(s—s.)e(s —s)—p(s )F(so))

+it F—t(s)+ (s s—s) '(p(s)n(s)0(s s—+)
—p(s, )n(s,))]),

where
I'

n(s) =—
"F(s')

ds,
s s

and

F "
p (s')n (s')

nr(s) =— ds.~ (s' —ss) (s' —s)

p(s')F (s')
Fr(s) =— ds'.

s —s() s s

1 "G(s')A (s')
A„(s)=— ds'.

s
(30)

The peak in A (s') is due to a singularity in the upper

0.6
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2
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~ I S

j."'&o. S. The T 0, J 1-amplitude, including only OPE
and elastic contributions,

&t C, J, Goebei (to be pubiished),

Rough numerical calculation indicate that, for 1 & j.00
MeV, D(s) is dominated by the constant term lCl '
although the remaining terms produce several interest-
ing wiggles with amplitude & (1/10)

l Cl '. The ampli-
tude A (s) is thus in this approximation essentially the
J= 1—,T=0 projection of the OPE pole considered by
Pais and Nauenberg. " It has a large peak just above
s,=59 p,', the left-hand end of the OPE cut, as shown
in Fig. 5.

V. CONCLUSION

Since the J=1—,T=O amplitude A(s) seems to
have a sharp peak at s=65 p,', it might at first glance
seem strange that no corresponding peak has yet been
seen in the 3x mass spectrum. The explanation follows
from an analysis of Goebel": To construct a production
amplitude A~ from A(s), we (schematically) perform
the integration

Fro. 6. Additional
contributions in-
cluded within the
two-particle approxi-
mation.

half plane above the elastic cut. Therefore, A~(s) will
have a singularity at the same position, but only on
unphysical sheets, far from the physical region s= s+ie
(but close to s=s—is) on the physical sheet.

Similar considerations show that if we take our two-
particle approximation too literally we shall never be
able to show that an co resonance in a production
amplitude follows from an co resonance in 3x-+3m
scattering. Assume, for example, that an exact calcula-
tion shows A (s) to have a pole just below the real axis
at s=M„s=32p' s+=41p'. Formula (30) then allows
a corresponding pole of A~ only on an unphysical sheet,
producing no resonance. The correct procedure would
be to use A (s) to construct the 3tr amplitude using (7),
and then to calculate the production amplitude without
using the approximation indicated in (10). In this case
the pole in A~ would again be on an unphysical sheet,
but now quite close to the physical region since it can
be reached by going down through the cut which begins
at $=9pP. Of course at the position of the co resonance
the 2x resonance factors cannot be at their maximum
values, but for a reasonably broad p resonance they
may still be large.

Our approximate calculation does not lead to a pole,
or even a bump, in A(s) near s=M„'. This does not
necessarily mean, however, that the two-particle
approximation is invalid. %e have ignored many dia-
grams which may be significant, three of which are
shown in Fig. 6. As mentioned at the beginning of
Sec. III, the exact location of the corresponding
singularities can be obtained only by a detailed study
of the mass-averaging process. In addition to the dia-
grams of Fig. 6 one might expect an' g exchange
diagram to be important, since it would produce a
short cut in A (s) just above the p-tr threshold. If the ti

has positive G parity, however, as has been recently
suggested, ""then this diagram would be forbidden.
If the f resonance" has the same quantum number as
the p it may be necessary to include t tr amplitu-des as
well as p-tr amplitudes in Eq. (7).

Even if these and other contributions are included it
may turn out that the two-particle approximation does
not give results in agreement with experiment: The
two-particle contributions may be swamped by a "back-
ground" coming from diagrams which cannot be
factored as required for Eq. (7). Since it would be

' P. L. Bastien, J. P. Barge, O. I. Dahl, M. Ferro-t, uzzi, D. H.
Miller, J. J. Murray, A. H. Rosenfeld, and M. B.Watson, Phys.
Rev. Letters 8, 114 (1962).

s' L, M. Brown snd P. Singer, Phys. Rev. Letters 8, 155 (1962).
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extremely convenient if three-particle states could be
handled using the two-particle approximation, it seems
important to continue experimental and theoretical
work to check the validity of this approximation for all
three-particle states in which two of the particles can
resonate.
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Scattering amplitudes for coupled m-A, 21 K, and XX channels are obtained by an extension of the method
of Amati, Stanghellini, and Vitale. The method is shown to be essentially equivalent to the IV/D method in
the region of nonrelativistic baryon energies, under the assumption that the only important forces arise
from the Born singularities. All possibilities for the ZA and EA. relative parities are considered. The aim
is to see to what extent earlier calculations, which neglect the E-S interactions, are modified by its inclusion.
If the Z1V coupling constants are as strong as the m-X coupling, significant quantitative and qualitative
modiffcations are obtained: an I=1, I=3/2 resonance with the properties of the Yr" may be obtained
for P (Z A) =&1;an I=0 resonance with the location and width of the lr, *may be obtained for P (ZA) = —1,
in the Pi/2 state, and for P(ZA) =+1, in the P3/2 state. If the Ei7 couplings are significantly weaker than
the ~& coupling, a P3/2 resonance with the properties of the I"& is obtained only if P(ZA) =+1 and if the
ZZm coupling is very weak; in this case one obtains no I=O resonance identifiable with the I'o*. An I=O,
P3/2 resonance at 1520 MeV may be obtained with a wide variety of couplings for P(ZA) =+1; the predicted
width of this resonance is very large (I'/2)50 MeV). Resonances in other states, multichannel effects on
resonance shapes, and Ei7 elastic scattering are discussed.

I. INTRODUCTION

'HE problem of m.—I' and X-E scattering has been
studied by many authors. ' The techniques used

range from a completely relativistic approach using the
Mandelstam representation, ' through static model
calculations, ' 7 to phenomenological scattering length
calculations. "The major result of the first approach is
the determination of the analyticity properties of the
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various scattering and reaction amplitudes. The low-

energy X-S data are fitted reasonably well by the scat-
tering length approximation, suggesting that the low-

energy s-wave interaction is determined mainly by
rather distant singularities. (Inclusion of a sr-sr inter-
action in the momentum transfer channel modifies the
details of the cross-section fit, but does not change the
gross behavior. ") The static model, in many forms, has
been used most extensively to predict which x-I' states
will be resonant and to estimate the locations and widths
of the resonances. The results of this technique which
are most relevant to this paper may be brieRy sum-
marized as follows: Amati et al. ,

' assuming global sym-
metry and neglecting the E-E interaction, predicted a
resonance in the l=1, P'@& state with energy agreeing
remarkably well with the experimental mass of the V&*.

In addition, they find an I=2, P3~2 resonance about
160 MeV higher. They also point out that if the ZZx
coupling is very weak, resonances may occur in other
states in addition to these two, in particular, in the
I=O, I'y~ state. Assuming that the ZZm. coupling is
weak, Franklin' has tried to estimate the relative loca-
tions of these three resonances by estimating the effect
on the cuto6 integrals of the Z-A mass difference and
the crossed terms. Duimio and Wolters4 applied the

"F.Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 308
and 315 (1961).


