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The elastic scattering cross sections and momentum transfer cross sections for the collisions of low-energy
electrons with atomic cesium have been calculated by the method of phase shifts. The scattering potential,
used in the Schrodinger equation, is constructed from one-electron-type wave functions with appropriate
screening constants. In addition to the potential arising because of the atomic electrons, a polarization
potential is also used; the effect of exchange is considered only indirectly. This preliminary analysis re-
produces the shape of the cross section vs energy curves as reported in some experiments but does not give
detailed agreement. The theoretical cross sections are averaged over a Boltzmann distribution of electronic
energies in the temperature range from 1000 to 10 000°K. Averaged values of the collision (for momentum
transfer) frequency between electrons and cesium atoms are also calculated. Results are presented both in

graphical and tabular form.

I. INTRODUCTION

SOME transport properties of a cesium plasma are
required for an analysis of the performance of a
so-called plasma thermocouple. The performance of
such a thermocouple is under active investigation at
many places in connection with the problem of the
direct conversion of heat into electricity. In order to
estimate the over-all efficiency of such a device, some
estimate of the resistance of the cesium plasma (to the
motion of the electrons) is required. The losses to the
plasma come about as a result of essentially two
mechanisms: (a) the collective interactions of the
charged particles, and (b) the collisions of electrons
with neutral atoms. In this report, the latter mechanism
is discussed; the collective interactions have been
extensively studied. In some ranges of temperature and
pressure, collisions between electrons and neutral atoms
affect the electron distribution function (in the Boltz-
mann transport equation) to a greater extent than do
collisions of the collective type. It is well known that
the expression for collision frequency depends on the
form of the Boltzmann equation. A simple form of
collision frequency is used here.

Among the basic transport parameters required in
the investigation of the collisional loss mechanism are
the elastic-scattering cross section, the momentum-
transfer cross section, and the collision frequency. The
elastic-scattering cross section, Qo, for cesium, as a
function of energy, is not known experimentally in the
region below 1 eV. Only fragmentary data exist. It is
believed that the first detailed theoretical investigation
of such cross sections is given in this report.

The elastic-scattering cross section is given by

T 2 dO’
00= / / = singdeds, (1)
00 J g0 A

where da/dQ is the differential cross section for scatter-

* Work performed under Contract AF 04(647)-594 for Aero-
space Corporation.
1 Consultant to Aerospace Corporation, El Segundo, California.

ing the electron into the solid angle dQ=sinfdfd¢. The
values of Qo for cesium are calculated in this report.
The units of the cross sections are in atomic units, or
a?=0.2800X10"16 cm? The units of energy e are
electron volts.

The momentum transfer cross section, Qu, is given by
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Both Egs. (1) and (2) result in the familiar phase
shift form for the cross section. A value of Qu for
cesium is also calculated.

The collision frequency » between electrons and
neutral atoms is given by

Y= I\TQ()’U, (3)

where N is the number of neutral atoms per unit
volume and v is the electron speed. The collision
frequency for momentum transfer vy is the parameter
which is significant in analyzing the cesium diode. The
momentum transfer collision frequency is given by
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The cross sections as a function of electron energy e are

averaged over a Boltzmann distribution, according to

the following equations:
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TasBLE I. Parameters for scattering potential for cesium.

i Z; K; i G;
1 2 109.40 1 U,
2 8 50.85 2 U,
3 8 29.167 3 Us
4 10 22.567 3 Us;
5 8 14.730 3.7 Uy
6 10 8.5676 3.7 U,
7 8 4.825 4 Us
8 1 1.0476 4.2 Us

In Eqgs. (5) (6), and (7), ee=kT. The averaged collision
frequency is given per neutral atom and has units of
cm? sec™.

II. THE SCATTERING EQUATION

The cross sections Qy and Qu, for cesium are calcu-
lated as outlined elsewhere.! Evidently, the Hartree-
Fock functions have not been calculated for cesium
and it is well known that the Thomas-Fermi model
does not describe the alkali atoms too well. Hence, the
cesium atom was represented as a Slater orbital type.
In this approximation to the mathematical represen-
tation of an atom, each electron in the ground state is
characterized by a wave function of the form

Y1, m= R#;(") ¥y, ¢) (8)

where
= (K‘i),ui+]/2[a031‘(2#L_+1)]~1/26~Ki$/2‘ (9)

In the equations above, p; is an effective principal
quantum number, @, is the Bohr radius, I'(2u;41) is
the gamma function, and x=r/a0. K:=2(Z—S:)/ui,
where S; is an appropriate screening constant. The
details of the assignment of these parameters are
discussed by this writer in reference 1, and numerical
values are given in Table IIT in that report.

The potential which is used in the scattering equation
is (in the present formulation)

erz N
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where Z; is the number of electrons in the ith group
and N is the total number of groups in the atom. The
functions G;(K ) are, with K;x=¢, universal functions
of ¢, and are written as!

¢

1 0
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Numerical values of the functions U,(¢) are given in
Table I in reference 1 and the other parameters for
Eq. (10) are given in Table I of this article. In order to
obtain values of U;(#) for arguments which exceed the
table, one may use

Ui(t)=TQ2u:+1)/t, (12)

where fn, is the largest value of ¢ for which U;(#) is listed.
Experience has shown that the static atom potential
alone is (in general) insufficient to provide agreement
between theory and experiment. The effects of polar-
ization and exchange must be included. These effects
are usually included in the analysis by the addition of
a polarization potential to the potential given by Eq.
(10). This polarization potential, ¥ ,(x) has the form

12 bm,
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In Eq. (8), « is the polarization parameter and «x, is the
so-called screening distance. Both « and x, are in
atomic units. The inclusion of exchange, in some cases,
has been effected by a slight alteration of the strength
and range of the polarization.? The manner in which «
and x, are selected is discussed in Sec. III.

In this present analysis, the scattering cross sections
have been obtained with and without the inclusion of
the polarization potential in the scattering equation.
The scattering equations, without polarization and
with polarization, respectively, are

2y Z N ZK; l(l+1)l
- Gare = - £ Gu(Ka) |- ——n0, (14)
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and
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The scattering equation, with the potential attributed
entirely to polarization, is
dzyl
_.___}_[ (kao)*+

dx2

L(41)
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L. B. Robmson Aerospace Corporation Report No. TDR~
594(1203-01)TR~1, in which cross sections are given in terms of
the phase shift representation (unpublished).

:lyr:—-O. (16)

Such an equation has also been considered in this report
in order to determine the extent to which the polar-
ization potential alone can give satisfactory results.
This report contains the results of the first steps in
an investigation which hopes to provide a guide as to
the magnitudes of the cross sections to be expected in

2M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115
(1958).
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such low energy ranges. In this present analysis, the
emphasis has been placed on direct scattering, the
situation in which the incoming electron always be-
comes the scattered electron. The possibility of an
exchange between incident electron and one of the
electrons of the target atoms is considered only indi-
rectly. A subsequent investigation will consider the
effect of taking exchange into account more directly.

III. RESULTS

Because the potential used for the alkali atoms
extends over a much greater range than that of the
noble gas atoms, or atomic oxygen, more phase shifts
are required in this present analysis than have been
used before. For the larger values of (kao)?, as many
as 15 values of / were used. The decision in this regard
was to use no more than 15 values of §; in the calculation
of the cross sections. When no polarization potential
was used, the integration of the differential equation,
Eq. (14), was carried out to x=25 where the phase
shifts were calculated. The potential vanishes for
cesium before this point. When the polarization po-
tential was included, the integration was carried out
to =100 where the phase shifts were calculated. At
x=100, the polarization potential is negligible and
going out further made only minor differences as will
be seen later.

Calculations were made in which no polarization
potential is used. Over most of the energy range, except
in the vicinity of zero energy, the calculated cross
sections were about an order of magnitude smaller than
the experimental cross sections of Brode.* Experience
with such cross-section calculations has shown that the
potential from the atomic electrons, without a polar-
ization potential, rarely gives agreement between
theory and experiment.

Equation (15) was integrated to give the phase
shifts, with several values of « and x,. The results of
the calculation are quite sensitive to these parameters
(more sensitive to a than to x,). In practically all
cases, the same shape of cross section vs energy curve

3 R. B. Brode, Revs. Modern Phys. 5, 257 (1933).
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was obtained. The procedure used in obtaining the
polarization potential is not completely satisfactory,
but it seems to be the best that is available for the
present situation. The parameter « is taken to be the
polarizability of the alkali atom. The assignment of the
polarization radius (r,) is more difficult, even con-
ceptually. For the purpose of this present analysis, the
polarization radius was taken to be just the ‘“‘radius”
of the atom. Since the concept of atomic radius is not
a unique concept, the preceding sentence will be
clarified further in the next paragraph.

Three methods were used in fixing the atomic radius:
(a) calculation from the wave functions, (b) assignment
from gas kinetic values, and (c) arbitrary assignments.
Because of the form of the screening-constants-type
wave functions, the kth power of the radius of electron
orbital designated by u; is*

0

/ e Ry, | %dr
0

f 7| Ry, [ %dr
0

B kok ~
ZI:Z—(’Z_—SJ} [mI=Il QQustm)Jac®.  (17)
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With £=2, the numerical value of 7,2, given by,
(18)

turned out to be, almost exactly, (a/2)*3, where a is
the most up-to-data available polarizability.5 This is
true also for rubidium. Hence, the polarization potential
could be written as

- 1 @
"2 (/2]

It is recalled that x=7/a,. The preceding considerations
convert the polarization potential from a two-parameter
into a one-parameter function.

The polarizability a of cesium,’ which was used in
obtaining the cross sections given in Fig. 1, is a=36
X107 cm?, which in atomic units is 243. The polar-
ization distance x, was taken as (a/2)Y3, which gives
x,2=24.5. The cross sections are also shown in Fig. 1.
These results are typical of all those in which a polar-
ization potential was used. The agreement between
theory and Brode’s experiments is of the same type as
is accepted for agreement between theory and experi-

4J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), p. 954.

5 G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5,
241 (1960), J. C. Zorn and P. Fontana, 7bid. 5, 242 (1960); also
/(\. g?;op, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431

1961).

(19)
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TasLE II. Effect of final point in solution of scattering
equation on values of cross sections.

x¢=100.00 x£=150.00
l 81 Zio1 [0)74 81 101 (0)74
0 0.0335854  14.1693 0.0343922 14.8580
1 3.07360 188.167 3.07477 182.921
2 6.28975 190.876  270.274 6.29208 187.894  275.070

ment in the case of sodium.® A similar calculation for
rubidium did not give as good agreement; also not as
much time was taken as with cesium.

In addition to the results given in Fig. 1, calculations
were made with? a=42X10"% cm?; the corresponding
value of %,2 is 27.5. Calculations were made with
values of x, obtained from listed values of the radius
of cesium and values were also arbitrarily assigned.
No better agreement between theory and Brode’s
experiment was obtained than is shown in Fig. 1.

One might try to improve the results by using
potential functions determined from Hartree-Fock
functions, which are more characteristic of specific
atoms. Such functions must first be calculated. Experi-
ence with phase-shift determinations would suggest
that the improvement by the use of the unmodified
Hartree-Fock functions will not be dramatic. One
cannot predict the effect of the inclusion of a polar-
ization potential (with the Hartree-Fock potential) in a
direct way. It seems as if the next step, in addition to
that of obtaining new experimental data (especially in
the low-energy region), is to take exchange scattering
into account in a direct way.

Since the inclusion of the polarization potential made
such a difference in the results, a study was made to
see if the polarization potential by itself would be
sufficient to account for the results of Fig. 1. The
solutions of Eq. (11) showed that this is not the case.
Without the atomic electrons, the results were in
disagreement with Fig. 1 everywhere except at zero
energy. This agreement here is perhaps accidental,
since the signs of the scattering length are opposite for
the two cases.

When the polarization potential is not included, a
suitable point at which to stop the integration of the
scattering equation is quite evident in that the potential
vanishes for some value of x, as can be seen from Eq.
(10). The polarization potential does not vanish, except
at x= . It was observed that integrating out to x=75
gave results which differed by an order of magnitude
from those obtained at x=100, whereas going out to
150 made only a difference of 2 to 39, at most from
results obtained at x=100. Table II shows the effect
of the end point of the integration. In this case a=42
X1072% cm? and #,2=16.0 (arbitrarily assigned) atomic
units.

The cross sections shown in Fig. 1 were averaged

6 W. P. Allis and P. M. Morse, Z. Physik 70, 567 (1931),
7 H. Scheffers and J. Stark, Z. Physik 35, 625 (1934).
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TaBLE III. Averaged cross sections and collision frequency.

Cesium
T(°K) Qo (@) Qur (ar?) 101
1000 1588 1419 0.7665
2000 1709 1223 0.8538
3000 1685 1070 0.8812
4000 1619 969.0 0.9200
5000 1542 896.6 0.9487
6000 1466 841.1 0.9719
7000 1393 795.9 0.9892
8000 1327 757.6 1.0013
9000 1267 723.9 1.0085
10000 1212 693.9 1.0121

over a Boltzmann distribution according to Egs. (5),
(6), and (7) for values of the temperature ranging from
T=1000°K to 7=10000°K. The results are shown in
Table ITI. Also @ (the average value of the momentum
transfer cross section) and 7y (the average collision
frequency) are given in Fig. 2. In order to convert the
cross sections to cm?, the ordinates must be multiplied
by 0.2800X 10-16%102. For example, Q@ at 5000°K is
9X0.2800%X104=2.52X10"* cm?. At 3000°K, the
collision frequency is approximately 9X10=7 cm?® sec™?
per atom. In order to obtain the collision frequency for
an actual situation, one must multiply the values given
here by the number of neutral cesium atoms per cm?.
It is quite likely that these tentative results will not
prove to agree with experiments (yet to be performed)
in detail; the present aim is to provide a guide for
planning in the absence of experimental information.
This writer is also studying methods of taking exchange
into account more directly.

It is also of interest to compare this theoretical
estimate of electron collision frequency with experi-
ment. Measurements of electron mobilities in the
positive column by Boeckner and Mohler? yield an
average electron collision frequency of 1.6X10~% cm?
sec™! per atom which is independent of electron energy

j
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Fic. 2. Theoretical collision frequency and momentum = 7
transfer cross section for cesium.

8 C. Boeckner and F. L. Mohler, J. Research Natl, Bur. Stand-
ards 10, 357 (1933). ’
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in the range between 0.2 and 0.4 eV. The original data
given in the above reference have been corrected by
Phelps® on the basis of additional experiments of
Mohler.?® The value of 1.6X10~¢ cm? sec™ per atom is
the result of Phelps’ correction. It is of interest to note
that this value is almost in exact agreement with the
value which is obtained in this article if the total
scattering cross section, rather than the momentum
transfer cross section (see Table IIT) is used in calcu-
lation of collision frequency.

Preliminary experiments of G. J. Mullaney at General
Electric Company indicate values of the cross section
much lower than those reported here. Corresponding
experiments of C. L. Chen, M. Rather, and colleagues

9A. V. Phelps (private communication).
(1‘9°3l;3 L. Mohler, J. Research Natl. Bur. Standards 17, 849
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at the University of Illinois suggest cross sections much
higher than those reported here (for the energy range
less than 1 eV). More experiments are required before
this cesium cross section can be known with reliability.
Of course, the tentative theoretical cross section given
in Fig. 1 should never be used as a basis for comparison
with experiment without mentioning that the analysis
is tentative and that the limitations of the analysis are
fully realized. It is usually easier to get agreement between
theory and experiment, once the experimental result 1is
known.
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Neutron diffraction investigations on Cr# indicate that localized atomic magnetic moments do not exist
in metallic chromium above the Néel temperature. Therefore, the moments which exist in the antiferro-
magnetic structure are presumably induced during the ordering process.

INTRODUCTION

HE early neutron diffraction experiments on
chromium metal! showed it to be antiferro-
magnetic at low temperatures. Since this time numerous
investigations have been performed in an attempt to
gain a better understanding of the magnetic behavior of
this metal and, hence, also of the 3d metals in general.
It was shown by Corliss, Hastings, and Weiss? in
experiments on a single crystal of chromium that there
exists a long-range modulation of the antiferromagnetic
moment distribution. This was first interpreted in terms
of an antiphase domain structure, but it is now recog-
nized that other possible magnetic structures are a
spiral arrangement of the moments®4 and an ordered
moment arrangement similar to that found in erbium,®
in which the magnitudes of the magnetic moments are
sinusoidally modulated. Investigations by Shirane and

*On leave of absence as Neely visiting Professor, Georgia
Institute of Technology, Atlanta, Georgia.
( 1 SC-) G. Shull and M. K. Wilkinson, Revs. Modern Phys. 25, 100
1953).
(12%.)Corliss, J. Hastings, and R. Weiss, Phys. Rev. Letters 3, 211
959).
3T. A. Kaplan, Phys. Rev. 116, 888 (1959).
4B. R. Cooper, Phys. Rev. 118, 135 (1959).
5 J. W. Cable, E. O. Wollan, W. C. Koehler, and M. K. Wilkin-
son, J. Appl. Phys. 32, 495 (1961).

Takei® strongly indicate that the magnetic structure
belongs to the latter class.

The antiferromagnetic transition in chromium also
has a somewhat unusual behavior. Recent neutron
diffraction investigations*»”® have shown that single-
crystal chromium samples have a Néel temperature near
310°K, whereas this transition occurs near 450°K in
certain powdered samples. Since careful studies have
revealed anomalies in the electrical resistivity,’ Hall
effect, magnetic susceptibility,”? and specific heat'®
near the lower temperature, this value is believed to
correspond to the antiferromagnetic transition in pure
strain-free chromium. It can only be surmised that the
higher magnetic ordering temperature in some chrom-

6 G. Shirane and W. J. Takei, J. Phys. Soc. Japan (to be
published).

7V. N. Bykov, V. S. Golovkin, N. V. Ageev, V. A. Levdik, and
S. I. Vinogradov, Soviet Phys.—Doklady 4, 1070 (1959).

8 M. K. Wilkinson, E. O. Wollan, and W. C. Koehler, Bull. Am.
Phys. Soc. 5, 456 (1960).

9 G. E. Bacon, Acta Cryst. 14, 823 (1961).

10 H. Pursey, J. Inst. Metals 86, 362 (1958).
( u (7}) de Vries and G. W. Rathenau, J. Phys. Chem. Solids 2, 339

1957).

2 E, W. Collings, F. T. Hedgcock, and A. Siddiqi, Phil. Mag.
6, 155 (1961).

13 R. H. Beaumont, H. Chihora, and J. A. Morrison, Phil. Mag,
5, 188 (1960).



