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Thermal and Elastic Properties of Crystals at Low Temperatures
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It is shown that to a Grat approximation (6rst-order perturbation theory in the quartic terms and second
order in the cubic terms) the thermal free energy of an anharmonic crystal at low temperatures is given by
an effective harmonic frequency distribution. The limiting form of this distribution at low frequencies can
be calculated from the velocity of long elastic waves just as for a harmonic crystal, which implies that the
Debye temperature O~po calculated from the heat capacity at low temperatures is equal to Opel calculated
from the elastic constants at low temperatures. Discrepancies between Op' and O~p" found in earlier theo-
retical work are discussed, and it is suggested that they are mainly due to a speci6c approximation employed
in deriving 0~pe'

INTRODUCTION
' T was suggested some time ago by Ludwig' that one
~- consequence of anharmonicity in the theory of
crystal vibrations is that the well-known relation be-
tween lattice-heat capacity and elastic constants at low
temperatures breaks down. This relation can be con-
cisely stated in the form

o~c o~ei
0 0 )

where O'p' is the Debye equivalent temperature derived
from the heat capacity as 7.

' ~ 0 and 0'p' is the corre-
sponding Debye temperature calculated from the ve-
locity of elastic waves at 7=0. In approximate calcula-
tions on particular models Leibfried and Ludwig' (L.L.)
have estimated that Op') Op' by 1 or 2%. Since
present experimental errors in both 0~pc and O~p" are of
the order of 1%, such differences are relevant in the
discussion of experimental data but cannot be con-
clusively confirmed or disproved thereby. ' '

The main purpose of this article is to point out that a
rigorous theoretical analysis predicts no difference be-
tween O~p' and O~p", since the general expression for the
thermal free energy F& can be shown to correspond at
low temperatures to a modified harmonic frequency
distribution, which at low frequencies is identical to
that derived from the velocity of elastic waves. First,
however, we consider brieQy the exact analytic solution
for the linear chain, ' since this has been cited incorrectly
by L.L. as a model for which O~p'8 O~p".
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LINEAR CHAIN

L.L. take a linear chain of X atoms of mass 3f, with
an interatomic potential between nearest neighbors
which is expanded about the equilibrium distance 3:

y(lP») =@(l)+(1/2!)I'(»)s
+(1/3 )g(»)'+(1/4 )h(»)'+ (2)

This potential can also be expanded about an arbitrary
distance l:

&(f+»)=4 (~)+«~+ (1/2 )f(»)'
+(1/3 )g(»)'+(1/4 )h(»)'+ .. (3)

At T=0, the zero-point energy expands the lattice, and
(3) is used. Here, (L.L., p. 347)

f=f (g'/2f')"—, (4)

where 8, is the mean zero-point energy per atom.
Maradudin, I'linn, and Coldwell-Horsfalis Ltheir equa-
tion (4.53)j give the heat capacity at low temperatures
corresponding to a potential of the form (3), from which
we find

hO '=~&(f/~)"'L1 —"{(g'/8f') —(h/4f'))3 (3)

To this approximation we can neglect the difference be-
tween f, g, h and f, g, h except in the term (f/M)'~s, so
that from (4) and (5), we have

hO. '=borh(f/M)'~'$1 c((3g'/8f') —(h/4f') l—g (6)

This is in perfect agreement with the expression for
op" LL.L., Eq. (9.16)j.

We have confirmed this result by deriving O~pc inde-
pendently from the general expressions P.L., Eqs.
(7.6a) and (7.10)]for the free energy of this model. The
discrepancy between Op' and 0'p" reported by L L is. .
due partly to the use of the Debye approximation and
partly to a trivial but unlucky error in deriving their
Eq. (9.11) from (9.7).
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THREE-DIMENSIONAL CRYSTALS

The standard anharmonic theory of crystal vibra-
tions'- " treats the cubic and quartic terms (C 4 and 44)
in the lattice-potential energy as perturbations added
to the harmonic Hamiltonian; the first-order contribu-
tion of 43 to the energy levels is zero, but its second-
order contribution is of the same magnitude as the first-
order contribution of 44. To this order of perturbation
the expressions of L.I.. for the contributions Iis and Ii4
to the Helmholtz free energy are rigorous P .L., Eqs.
(10.2) and (10.4b)7. We take these as our starting
point, and use L.L.'s notation.

It is helpful first to consider the simple theoretical
concept underlying the equality of O~s' and O~s". This is
that, regardless of detailed lattice structure, the lowest
excited states are composed of quantised long elastic
waves, so that as T —+0 the thermal free energy Iiy
depends upon the wave velocities precisely as in a
harmonic crystal. If this is true, anharmonic eGects can
enter only through the effect of the zero-point energy E,.
on the elastic constants and hence on the frequencies of
long waves. The frequency dependence of the thermal
free energy f& of a harmonic oscillator is given by

(8/8(o) fr(4o, T) = er((u, T)/(o, (7)

where &o is the angular frequency and er(4o, T) the in-
ternal energy; and so the anharmonic contribution to
Ii y as T —+ 0 must, to the first approximation, have the
limiting form

F (a,nh) Q {e (to T)/~)540

where k is the wave vector of a normal mode, X is its
branch label, and b~ is the change in its frequency due
to Eg.

The general expression for F4 (L.L., p. 351) is

1 e(4o, T)e(4o', T)
, (9)
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where E is the number of primitive cells, s the number
of atoms within a cell, and Cqqyq" ~"' "' is a coeK-
cient occurring when 44 is expressed in terms of the
harmonic normal coordinates a&P (L.L., p. 306). To get
F4 r we separate e(to, T) into zero point and thermal
components; with an obvious notation,

ee = egeg+(ereg +eyer ), + erer (10)

Here, e,e,' merely contributes to E„and it is the term
ere, '+ e,er' that is dominant in F4,r at low temperatures.

Thus, at temperatures where the contribution ay~~' can
be neglected, ' F4,r reduces to the form of Eq, (8) with

b4u4 (5/SSZ) g {CXXX'X' /ox' ) ~ (11)

By considering the change in the ground-state energy
when a long-wave distortion a),"is applied to the crystal,
it is easy to show" that this is indeed the change in fre-
quency brought about by the effect of 44 upon E,.

A similar analysis can be carried out' for 4», where
the change in eGective frequency is

X . (12)
GO M CO

In the limit as cu —+ 0 the last factor can be replaced by
(4o'+to") ', when the expression becomes identical to
that calculated from the distortion energy of a long
elastic wave.

FINAL REMARKS

Since the general theory implies that 0's'= O~s", any
differences found between them in theoretical calcula-
tions must be due to approximations in their explicit
evaluation. We suggest that in I.I.'s calculations for
cubic crystals the most serious approximation may be
the replacement of 1n(tu') by 1n(to'), (L.L., p. 355),
which will give elastic constants similar to those esti-
mated by Salter. " Calculations on the fcc lattice with
central forces"" indicate that here Salter's approxima-
tion overestimates the contribution of E, to the shear
constants, corresponding to an error of about 3%% in
Os" for argon. After correction for this error, the value
of O~s" is in good agreement with the value of O~s'

estimated by L.L. Ltheir Eq. (12.14)7.
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Terms like this, involving the product of thermal energies,
cannot be accounted for by an effective harmonic distribution.
When they are appreciable, the properties of the crystal become
explicitly anharmonic. Pote added ie proof. Dr. G. V. Chester
(private communication) has pointed out that this explicit an-
harmonicity due to the term ~&e&' can be described by a tempera-
ture-dependent harmonic distribution.

44 T. H. K. Barron (to be published).
u L. S. Salter, Phil. Mag. 45, 360 (1954).
"T.H. K. Barron, D. Phil. thesis, Oxford, 1955 (unpubhshed).
'~ T. H. K. Barron and M, L. Klein (to be published).


