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An appreciable number of magnetic materials with the spinel
structure exhibit tetragonal symmetry, rather than cubic, in their
x-ray diftraction patterns. Because of the distortion, five difI'erent
nearest-neighbor exchange interactions are possible, so that four
ratios (t, u, e, and ro) amongst these interactions are required for
the characterization of such a material. In this paper, we use the
generalized Luttinger-Tisza method (GLT) to determine rigor-
ously the ranges of values of the above ratios (regions in t, u, v, ro

parameter space) for which the familiar Neel, Yafet-Kittel, and
collinear antiferromagnetic spin configurations (it=0 modes) are
the ground states of the classical Heisenberg exhange energy. We
also determine the characteristic k vectors of the spin deviations
which destabilize the 4=0 modes along the boundary surfaces of
their ground-state regions. Such information is important as a
first step towards a more complete investigation of ground-state
spin configurations in tetragonal spinels.

We find the above ground-state regions to be significantly smaller
than would be predicted on the basis of a sublattice model. Con-
sequently, knowledge of the actual spin configuration can place
important restrictions upon the relative strengths of exchange
interactions, as in the case of copper chromite. In addition, we
find that the destabilizing k vector is not always parallel to a sym-
metry direction, even for nearly-cubic spinels.

In this paper, we also use the molecular-field approximation to
investigate the relative stabilities of the k=0 mode in the
neighborhood of the highest magnetic transition temperature (T,).
We find that the only possible ferrimagnetic configuration at T, is
of the Keel type, and for moderate degrees of distortion, its
stability region is much larger at T, than in the ground state.
This result implies that at least two magnetic transitions must
occur in any spinel with a magnetic noncollinear ground state.

I. INTRODUCTION

A S a means of achieving an understanding of ex-
change interactions, the magnetic properties of

materials with the spinel structure have been of con-
siderable interest in recent years. A knowledge of the
magnetic ground state in these materials is necessary
for any valid interpretation of the experimental data.
Keel' achieved considerable success in interpreting a
large body of such data on ferrites' by assuming a model
in which all the spins on the tetrahedral (A) sites are
parallel, with the spins on the octahedral (8) sites
antiparallel to those on the 2 sites. However, the results
of other magnetic measurements, notably on chromites
with the spinel structure, ' could not be understood on
the basis of his model.

To overcome this difficulty, Yafet and KitteP gener-
alized the two sublattices of the Neel model to six
sublattices corresponding to the two A sites and four
B sites in the translational primitive unit cell of the
spinel structure. They showed that, for a sufFiciently
large antiferromagnetic B-B interaction, a new "tri-
angular" spin mode yielded a lower energy than the
Neel configuration. Although this "triangular" mode
could account for the observed values of low-tempera-
ture magnetizations, Kaplan' ' later showed by pertur-
bation methods that it is never stable in cubic spinels
having only nearest-neighbor A-B and B-Binteractions.
He found that, upon increasing the antiferromagnetic
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B-B interaction, the Neel mode is destabilized by spin
deviations characterized by a wave vector along a L110)
direction with a definite characteristic wavelength.

Using this information, together with the Lyons-
Kaplan' generalization of the Luttinger-Tisza method
(GLT), Lyons, Kaplan, Dwight, and Menyukr have
recently shown that a spin configuration having the
form of a ferrimagnetic spiral propagating in the $110j
direction is probably the ground state in cubic spinels
(spinels with exchange constants J,, that are invariant
under all the cubic operations) for a certain range of
B-B interactions. This spiral has appreciably lower
energy than the Yafet-Kittel configurations,

' and ap-
pears to be substantiated by the neutron di8raction
results recently reported by Corliss and Hastings' for
manganese chromite. The spiral model also yields insight
into the temperature dependence of the magnetization
of cobalt chromite. '

Although the Yafet-Kittel model is not applicable to
cubic spinels, Prince" has found evidence for their
"triangular" mode from the diffraction of neutrons by
copper chromite, which is a tetragonal spinel. His find-
ings were later corroborated and ampli6ed by Nathans,
Pickart, and Miller. " Furthermore, Kaplan, Dwight,
and Menyuk" had considered the theoretical effect of
tetragonal distortion in spinels and found the Yafet-
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Kittel modes to be stable for limited ranges of A-8 and
8-8 interactions. They also found that the Neel mode
could be stable only for a sharply restricted range of
interactions. Subsequent application of the GI.T method
to this problem (tetragonal spinels without A-A inter-
actions) by Kaplan, Dwight, Lyons, and Menyuk" led
to more definitive outer bounds for the stability regions
of the Neel and Yafet-Kittel configurations, as well as
to some information concerning the directions of the
destabilizing wave vectors. However, neither the explicit
boundary equations nor the calculational details were
presented at that time.

In this paper we shall consider the ground spin-state
problem (T= O'K) for normal tetragonal spinels
(normal spinels with exchange constants J,, which are
invariant under all the symmetry operations of the
tetragonal space group I4i/amd) possessing nearest-
neighbor A-A, A-8, and 8-8 exchange interactions.
Thus, the results described in reference 13 will be ob-
tainable as special cases of the more general calculations
presented here. Our present investigation is directed
towa, rds a determination of the regions (in a space which
describes the ratios of the various exchange interactions)
where the Neel and Yafet-Kittel configurations are the
ground state, and towards a determination of the
directions of the destabilizing characteristic wave vec-
tors along the boundary surfaces. As illustrated by the
treatment of cubic spinels, ' this latter information is
important in the construction of configurations which
may be the ground state outside of the Neel and Yafet-
Kittel stability regions. In addition to the ground-state
problem, we shall also consider the stability regions of
the Neel and Yafet-Kittel modes at the Curie point
(T= T„)by means of the molecular-field approximation.
The fact that the low and high temperature boundaries
do not coincide suggests the possibility of magnetic
transitions.

II. THEORETICAL FOUNDATIONS

It is convenient to express the classical Heisenberg
exchange energy in the form

A-SITES
8- SITES

FIG. 1. The sites in a primitive unit cell of the spinel structure.
The numbers v=1, 2, . -, 6 identify the particular sites.

species) per primitive unit cell, these six sites being
identified by v, p, =1, 2, 6 as shown in Fig. 1. In
tetragonally distorted normal spinels, there can be as
many as five diferent nearest-neighbor exchange con-
stants: J~~=J~~S~' for all A-A interactions; J~~
=J~~S~S~ for A-8 interactions between pairs con-
nected by vectors parallel to such (face-centered
tetragonal) directions as the [311], L131], etc. , and
JgB for similar pairs along the [113],etc. ; JBB—JBBSB'
for B Binteractio-ns between pairs along the [110]and
[110],and JBB' for similar pairs along the [101],[011],
etc. Thus, the tetragonal distortion results in a differ-
entiation between two distinct types of A-8 interactions
and between two distinct types of 8-8 interactions, as
indicated in Fig. 2.

The ground-state spin configuration is that set of
values for the many (=10")variables S„,which mini-
mizes Eq. (1) subject to the "strong constraints" that
all the S „be unit vectors, i.e. ,

nv nv

Clearly, the Heisenberg energy E will be a minimum
whenever the dimensionless energy E', defined by

E'= E/(2JAB+ JAB')~A+B= E/(2~AB+ JAB )) (3)

is a minimum, provided only that the net A-8 inter-

nv, mp,

J nv, )))sSnv ' S)))s)

where S, and S „are unit vectors which define the
directions of the classical spins at the lattice positions
Rn, and R „, respectively, and J,, „ is the product
of the usual exchange parameter connecting these sites
with the magnitudes of the appropriate spins. The sub-
scripts p and p, define the site locations within the
particular primitive unit cells defined by e and m,
where m, m=1, 2, . - X

In the normal spinel lattice, there are two tetrahedral
(A) sites (occupied by one ionic species) and four
octahedral (B) sites (occupied by some other ionic
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FrG. 2. Possible nearest-neighbor exchange interactions
conforming to tetragonal symmetry,
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action is antiferromagnetic (2JAB+JAB') 0), which we
will assume. It is then apparent that the ground-state
problem depends only on the four dimensionless param-
eters which define E', these parameters being given by
the following ratios of the exchange constants and spin
magnitudes:

JAA~A/[(2JAB+ JAB )~B]&

2 (JBB+JBB )~B/[(2 JAB+JAB )~A]i

JBB/(JBB+JBB )y

7B=JAB'/(2JAB+ JAB').

Any tetragonal spinel with only "nearest-neighbor"
interactions is characterized by a point in the above
four-dimensional parameter space. Ke note in passing
that t and u describe the strength of the A-A and B-B
interactions relative to the net A-8 interaction, whereas
e and m describe the tetragonal differentiation between
the two types of B-B and the two types of A-8 inter-
actions, respectively.

The GLT method developed by Lyons and Kaplan'
is the simplest known technique for rigorously deter-
mining the ground state of Eqs. (1) or (3) for the spinel
structure. This method utilizes the tractable problem
of minimizing the exchange energy over all sets of S„„
which satisfy the "weak constraint"

P., p;~S., S.„=X g, p;2,

where the p, are adjustable parameters. ' For any set of

p„ the weak constraint of Eq. (5) is automatically
satisfied by all configurations which satisfy the strong
constraints of Eq. (2) (i.e., by all physical configura-

tions), although the converse is not true. Hence, the
con6gurations which minimize the energy subject to
any particular weak constraint must necessarily possess
lower energy than aly (other) physical configuration.

In general, such a minimum-energy conhguration will

not always satisfy the strong constraints. However, it
is sometimes possible, as demonstrated in the succeeding

sections of this paper, to find a set of numbers p, such

that the minimum-energy configuration over the result-

ing weak constraint does satisfy the strong constraints,
and hence is itself a physical configuration. Then it
follows rigorously from the above argument that this
particular configuration must be the ground state of
the Heisenberg exchange energy.

By expressing the spin vectors S„„in terms of their
Fourier transforms,

S„„=Q,Q„(k) exp(ik R„„), (6)

(2JAB+JAB')L„,'(k) =Q„J„„,„
Xexp[ik (R„„—R„„)]. (9)

For a tetragonal spinel, this expression gives

it can be shown' that all the extrema of the energy E',
and hence those of E, over the weak. constraint of Eq. (5)
must satisfy the eigenvalue equation

2, &,.'(k)p Q.(k) =&p.-'Q, (k),

the resulting energy being

z'=x~ Q, p;2.

Here the matrix 9'(k) is defined by 9„,'(k) =P„P„L„„'(k),
where

0

L'=(k) "'~
52*

Q4

tX
0

0
44(1—v)lip

'gV 44Vt 44

7)4 14Vl i4

'g2
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uVi24

44Vt 24
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44V| iV

uVi 24
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44Vf 24

44(1 V) i 34—
0

where x, g, , and l;; are given as explicit functions of
w and k in Appendix I. The minimum eigenvalue of
9'(k) (minimum over the six branches 44=1, 2,
and over ail k in the fLrst Brillouin zone) yields the
minimum value of the energy E' over all configurations
which satisfy the weak constraint.

This minimum eigenvalue P;„may occur for different
branches and diferent k vectors, i.e., for a degenerate
set of ), (k') =)i;„,each of which is associated with a
normalized eigenvector %' (k') whose components are

„(k').Here X (k), a= 1, , 6 is the set of eigenvalues
of 9'(k), for given k. Then the corresponding spin con-
6gurations are those constructed from Fourier trans-
forms given by

Q, ( ') =g. p.e..„(k')C..(k'),

where C (k) =0 when X (k) &X;„,and where the weak
constraint requires only that

v v ~ (12)

If these vectors C, (k') can be chosen so that the con-
structed con6.guration also satisfies the strong con-
straints, then the resulting physical con6guration is the
ground state of the Heisenberg energy.

In the practical application of the GLT method, it is
frequently convenient to depart slightly from the formal
approach stated above by initially considering some
restricted set of k vectors, say k;, and their associated
matrices 8'(k;). Configurations are constructed from the
minimum eigenvector (s) of these matrices, and then the
P„are determined so that one of these con6gurations



satisfMs the strong constraints. Finally, the general
matrices 9 (k) obtained with this particular set og P„are
investigated over all k in the first Brillouin zone, the
constructed configuration being the ground state when-
ever the minimum eigenvalue of the special matrices
9'(k,) remains the absolute minimum over all 9'(k).

Our present investigation concerns the Xeel and
Yafet-Kittel configurations, which contain only k=O
Fourier components. Accordingly, we shall initially
consider the special matrix Q'(0), for which the expres-
sions given in Appendix Iyield x(0)= 4, rt, (0)= |;;(0)= 1.
Since the resulting structure of the matrix L'(0)
obtained from Eq. (10) is symmetric between the two
3 sites and among the four 8 sites, we shall tentatively

choose

Pi=Ps=1,

Ps=P4=Ps=Ps=P (13)

In other words, the symmetry of L'(0) suggests that a
single adjustable parameter P might su%ce in the con-
struction of a configuration which yields the minimum
eigenvalue of 9'(0) and simultaneously satisfies the
strong constraints. Although we shall see that this choice
does su@ce for the present problem, it should be pointed
out that there is no guarantee that symmetry considera-
tions will always lead to a satisfactory set of P,.r

)Vith the P, given by Eq. (13), it follows that

4t P
0 P
P 0
P P'u(1 —v)

P P'uv

P P'uv

P'u(1 —v)

0
P'uv
P'uv

P'uv
P'uv

0
P'u(1 —v)

P'uv
P'uv

P'u(1 —v)
0

The eigenvalues ) and associated eigenvectors
(a=1, 2, .6) of this matrix are given explicitly in
Table I, where only the positive branch of the square
root is to be taken, and where

p =4t+P'u(1+ v),

o =4t P'u(1+v). — (15)

III. FORMULATION OF k=o MODES

In the preceding section, it has been shown that the
use of the GLT method to investigate the classical
ground state involves a set of matrices 9'(k) which are
matrix functions of the exchange parameters t, n, e,
and m. In order to define such a set of matrices, a
number P must first be chosen as some explicit function

TABLE X. Eigenvalnes and associated eigenvectors of Q'(0).

Furthermore, since 9'(0)%' =X %', it can easily be
shown that

a„= ()~.—4t)/(4P). (16)

The explicit determination of P(t,u, v, w) such that a
physical configuration can be constructed from the
minimum eigenvector(s) of the matrix Q'(0) is left to
the next section, and the investigation of the corre-
sponding matrices 9 (k) 'to the succeeding one.

of t,, u, v, and w. The choice of P(t,u, v, w) is dictated by
the requirement that some particular physical spin con-
6guration (configuration satisfying the strong con-
straints) yield an energy extrema over the weak con-
straint, or equivalently, that the configuration in ques-
tion correspond to some eigenvector(s) of the appropri-
ate 9'(k). Accordingly, we shall now proceed to
formulate the k=O modes in terms of eigenvectors of
Q'(0) in order to determine their associated P(t,u, v, w),
noting that these eigenvectors must arise from the
minimum X (0) to be of interest.

A. Neel Configuration (SN)

In the Neel configuration (SA), all the spins are
parallel to some direction, say, z', with S„„=9' for
y= 1, 2 and S„.= —z' for v=3, 4, 5, 6. It follows from
Eqs. (6) and (11) that the corresponding eigenvector,
apart from normalization, must be given by
= (1, 1, —1/P, —1/P, —1/P, —1/P). Furthermore, %'iv

must be identical with some %' from Table I in order
for S~ to yield an extrema over the weak constraint. In
particular, the condition %'~= %'& requires merely that
Ptsi= —1. Then it follows from Eq. (16) that 4 for SA

will be given explicitly by

XA = —4(1—t),

and comparison with Table I shows that this result can
be obtained only if P is chosen so that

s[p (+3a2p')"—j—p'N(1 —v)
—p'u(1 —v)
p'a(1 —3v)
—4t

kLp+( +32pa')"j

(2+4aP) 'I'(1, 1,ag, ag, ag, ag)

(1/V2) (0, 0, 1, —1, 0, 0)
(1/V2) (0, 0, 0, 0, 1, —1)
(1/2)(0, 0, 1, 1, —1, —1)
(1/vT) (1, —1, 0, 0, 0, 0)
(2+4ag') 'i'(1, 1,ag, a6,ag, ag)

P~'=4(1 —t)/I:2 —u(1+v)3 (»)
Here the subscript S is used to emphasize the point
that these expressions for X(t,u, v,w) are specifically
associated with the Neel configuration.

For the particular choice P =PA, it can be seen from
Table I that Xiv is the minimum eigenvalue of 9'(0)
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whenever simultaneously 2t& 1, I& 1, and 2m & 1.
These inequalities define that region in parameter space
within which S& would be stable if only iI=0 were con-
sidered (giving an extension of the Yafet-Kittel theory
to tetragonal spinels). Along the boundaries of this
region, various eigenvalue branches become degenerate
with ) «=)~. ) 2 and X3 for @=1, ) 4 for 2Ne= 1, and ) 5

for 2t= 1; outside of this region, the indicated branches
lie lower than ) «.

cos8= (Zuv) '. (21)

Since 0 must be a physical angle in order to satisfy the
strong constraints, this solution can exist only if 2'& 1.
In addition, a consideration of Table I for the choice
P=Prr shows that Xrr is the minimum eigenvalue of
9'(0) only when Zv& 1 and. also 4tuv& 1 (Xs and X& be-
come degenerate with Xrr when 2v = 1, Xs when 4tuv= 1).

'4 F. K. Lotgering, Philips Research Repts. 11, 190 (1956).

B. Yafet-Kittel Configurations (Sr,)

There are three basic types of Yafet-Kittel triangular
spin configurations''4 which will be denoted by S»,
S~2, Sy3. Being coplanar, these configurations can be
expressed in terms of spin components along two arbi-
trary orthogonal directions, say a' and X', where nonzero
x' components can occur either for the A sites or for the
8 sites, but not both simultaneously. ' "From Eqs. (6)
and (11), it can be seen that the s' and x' components
cannot be obtained from a single eigenvector, but must
arise from different eigenvectors %'(s') and %'(x').
Furthermore, the condition that the corresponding
Yafet-Kittel configuration be an extrema over the weak
constraint requires not only that %'(s') and %'(x') be
identical with eigenvectors %' and %' of 9'(0), but also
that ) =), since it was shown in Sec. II that only
degenerate eigenvectors can be combined. Such neces-
sary degeneracies occur "by accident" along the bound-
ary surfaces discussed in Sec. III A, but can more
generally be "forced"' by an appropriate choice of
p(t, u, v, w).

1. The configurations S~«can be defined as having
S„„=z for v= 1, 2; S„„=—z' cos8+i' sin8 for v=3,4;
S„,= —z' cos8—x' sin8 for v=5, 6. Then consideration
of Eqs. (6) and (11) yields the (unnormalized) eigen-
vectors %'rl(s') = (1, 1, —P ' cos8, —P ' cos8, —P ' cos8,
—P ' cos8) and %'rl(x')= (0, 0, 1, 1, —1, —1). From
Table I, it is clear that %'rl (x') = %'4 and %'rr (s') = %'I
with 8 determined by cos8= —Pa&. Thus, Srr results
from the use of Cl z'(2+=4P ' cos'8)'" and C4
=x'ZP ' sin8 in Eq. (11).Then it only remains to fulfill
the required degeneracy condition that )«= X4 by
chosing p so that

Pl Is= (4tuv —2)/[u'v(1 —3v)],

which choice yields

Xrl ——(4tuv —2)/uv, (20)

Only inside the region defined by 2Nv&1, 2e&1, and
4tuv& 1 is it possible to choose a P(t,u, v,w) so that the
minimum eigenvectors of 0'(0) correspond to Srr.

2. The configuration Sy2 can be defined as having
S„,=z' for v=1, 2; S„„=—z' cosp+9' sing for v=3, 5
or 3, 6; S„„=—z' cosp —x' sing for v=4, 6 or 4, 5. From
Eqs. (6) and (11) together with Table I, it follows that
(apart from normalization) the appropriate eigenvectors
are %'rs(x')=%'s+%'s and %'rs(z')=%'I with cosp
= —Par. Upon satisfying the degeneracy requirement
that. ) «=X&=) 3, one obtains explicitly

P»s= 4(1—»)/Lu'(1 —v) 3,

Xrs ———4(1—tu)/u,

co&=u-'.

(22)

(23)

(24)

Considerations similar to those above show that
p(t, u, v, w) can be chosen to yield Srs from the minimum
eigenvectors of 9'(0) only in a region where u) 1, 2v&1,
and 2tu&1. Here the boundary I=1 arises from the
strong constraints, 2m=1 from degeneracy of ) 4 with
) y2, and 2tu=1 from ) 5=Xy2.

3. The configuration Sys can be defined as hav-
lllg S„I=x cosp+x sing, S„s=z cosset'

—x slnlt' aIld,
S„„=—z' for v= 3, 4, 5, 6. Normalization being ignored
as before, our procedure gives %'rs(x') = %'s and
%'rs(s') = %'I with cosp= —(pal) '. The determination
of p from the condition that ill ——),s yields

pr =4t /(1 tu tuv),

X~3= —4t,

cosf= (2t)
—'.

(25)

(26)

(27)

Then the appropriate region for Sy3 is defined by the
following inequalities: 2t& 1 in order to satisfy the
strong constraints, 2tn&1 in order that Xy3&) 2=) ~,

and 4tml&1 in order that Xy3&) 4.

From the foregoing discussions, it can be seen that
the Neel and Yafet-Kittel configurations arise from the
minimum eigenvector(s) of Q'(0) if and only if 2tu&1
and 4tnv&1, which constitute the t,etragonal generaliza-
tion of Lotgering's condition crP&1.I4 The former in-
equality is the more stringent when 2v(1, the latter
when 2v) 1.

Pals 4t/I u(3=v 1)], —
Kg«= —4t.

(»)
(29)

C. Antiferromagnetic Configurations (S~,)

There are two types of configurations in which the
A sites are antiparallel to each other and simultaneously
the 8 sites are antiparallel amongst themselves. The
8-site eigenvector is just %'4 in S» and %'2~%'3 in S»,
the A-site eigenvector is %'5 in both cases, and the deter-
mination of appropriate vectors C is trivial. Upon
forcing the degeneracy ) 4='A~, it follows that
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For the particular choice P=P», the conditions that
X»&) & and X»&)2=) 3 yield, respectively, the in-
equalities 4/Nv & 1 and 2e& 1, which define the parameter
region associated with S~I. Similarly, forcing the de-
generacy ) &=)3=) 5 results in

0»'= «/E~(1 —~)j
~~2= —4~

(30)

(31)

For this choice of P, the conditions are X~~&Xi and
Xz&&) 4 and yieM 2tN&1 and 2v&1 for Sg2.

The six 4=0 modes discussed in this section serve to
completely filV' our 3-u-v-m parameter space with
physical configurations associated with the minimum
eigenvector(s) of their corresponding matrices Q'(0).
The specific choices of P given above also determine all
the corresponding matrices Q'(k), which must now be
investigated throughout the erst Brillouin zone.

IV. GROUND-STATE REGIONS OF A=O MODES

In the preceding section, we have solved t.he minimum

energy problem posed by the simple Yafet-Kittel theory,
with appropriately generalized interaction parameters
(i.e. , we have found the lowest k=0 configurations).
However, much more important than just obtaining
such a solution is the expression of this solution in terms
of the formalism of the GLT theory, since this expression
enables us to determine if and where in parameter space
the various configurations are actually the ground state.
Specifically, we have itemized the six possible k= 0 spin
configurations which yield energy extrema over ap-
propriate weak constraints and simultaneously satisfy
the strong constraints, the particular choices for
P (f,n, o,w) which yield these particular weak constraints,
and the resulting eigenvalues X; (0). As shown in
Sec. II, the GLT method now asserts that such a con-
figuration will be the classical ground state within any
region N. of our parameter space where its associated
eigenvalue X;„(0)remains the minimum eigenvalue of
all the matrices 9'(k) defined by its particular P(t,u, v, w),
i.e., wherever

The above condition can conveniently be expressed
in terms of matrices K(k) defined by

K(k) =Q'(k) —X;„(0)I, (33)

where I is the 6)&6 unit matrix. The validity of Eq. (32)
is equivalent to all the K(k) being positive semidefinite
(having no negative eigenvalues), and the ground-st, ate
region R consists of all parameter values for which no
K(k) has a n.egative eigenvalue. Since any eigenvalue
branch is a continuous function of k, 61 is bounded by
surfaces where eigenvalues of particular K(k) matrices
first become zero. Since the determinant of a matrix is
equal to the product of its eigenvalues, these boundary
surfaces can be determined by locating the zeros of the
corresponding determinants

~
K(k) ~.

The examination of the entire Brillouin zone at every
point in parameter being impractical, we shall first con-
sider those k vectors parallel to the symmetry directions
$0011, L100], L110j, and $101], together with the
special k vector at the edge of the Brillouin zone in the
L2011 direction. For these particular cases, the functions
x(k), g, (k), and l„(k) assume the forms given in
Appendix B, so that the matrices Q'(k) and K(k) can
immediately be partially diagonalized by the choice of
basis vectors indicated in Appendix B.' Because of this
decomposition of the original 6&(6 determinants into
products of smaller ones, their zeros can be handled
analytically to yield explicit equations for the corre-
sponding boundary surfaces. The region enclosed by
these surfaces will be called (R& & and must contain R
itself, i.e., (R can be no larger than (R(". Subsequent
numerical investigation of

t K(k)
~

over all k at points
on the boundaries of (R") then shows the fashion in
which (R differs from (R"'. It turns out that most of the
boundary of (R coincides with that of (R&", with only
small differences which occasionally occur in the corners
of R(0).

From the information given in Appendix B, it is
possible to write all the determinants of the various
2&&2 and 3)&3 submatrices for k in the specified sym-
metry directions in the form

lI. ;.(0)&X.(k) (32) Det(k) =s'(As'+Bs'+C) (34)
for all six branches u and for all wave vectors k in the
first Brillouin zone. Furthermore, since the k=O con-
figurations can all be coplanar, they are locally unstable
and so cannot be the ground state wherever Eq. (32) is
violated for some n, k."Thus, the configuration is the
ground state if and only if Eq. (32) is valid.

» It is worth noting that the existence of simultaneous angles
on A and 8 sites requires that either x& =x2 ——) 3 —x5 or ) 1

——~4 ——) 5.
These degeneracies have been found to occur only along surfaces
(2'= 1 and 4'= 1, respectively). Consequently, it is unlikely
that such conditions will be met. We might note that no unique
configuration is dehned on these surfaces because they also yield
degeneracy between physical configurations (e.g. , SI.I and $&1)
and arbitrary linear combinations of such degenerate con6gura-
tions are possible.

"This theorem for coplanar configuration was proven in foot-
note 15 of reference 7.

where A, 8, and C are explicit functions of t, I, v, and
w where s=sino. or sinp, o. and p (from Appendix B)
being proportional to k, the magnitude of k. In general,
the definition of a boundary surface requires that simul-
taneously Det(k) =0 and BDet(k)/8k=0. One possible
solution yields the boundary equation 8'—4AC=O
corresponding to s'= —8/(2A). This solution can be
valid only when 0&s & f.. For s'= 1,the extrema condi-
tion is automatically satisfied, so that the boundary
equation is simply A+B+C=O. Both of the above

'7 Although this partial diagonalization was accomplished here
by inspection, general group theoretical methods can, of course,
be employed. However, it appears that this diagonalization com-
prises the total extent to which group theory is useful in solving
the classical ground-state problem.
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continuously, remaining within the zone and attaining
the $101]direction at the cubic line, where it becomes
degenerate with another k of equal length pointing in
the $110j direction. This latter k increases gradually in
length as one progresses from D to C, at which point it
reaches the edge of the Brillouin zone and becomes
degenerate with a wave vector of zero length in the
t-001$ direction. Along the remaining section from C to
3,- the Keel mode is destabilized by a long-wavelength
spiral propagating in the L001] direction.

,)B. Yafet-Kittel Regions (6ir~)

The explicit functions p(t, u, s,w)=Jr; and ),-;„(0)
=Xr, given in Sec. III 8 yield the matrices K(k)
appropriate to the Yafet-Kittel configurations. Calcula-
tion of the coefficients 3, 8, and C appearing in the
boundary condition given by Eq. (34) then shows that
the parameters t and I appear only as their product tu.

FIG. 5. The intersection of Noel ground-state region (R~ with
the lane v=1/2 for t=0. The destabilizing k vector is in the
(001 direction from A to C, in the [110]from C to D, variesin
direction from D to E, is in the $201j from L' to F, varies from
F to G, and remains in the $001$ from G to J. 04

Consequently it is of interest to examine the variation
of k in detail. Along the section of the boundary labeled
J-Gin Fig. 5, k points in the L001j direction and changes
in length as indicated in Fig. 6, which depicts one octant
of the first Brillouin zone. At the point 6, a spiral con-
figuration with k= (1/2) $111jbecomes degenerate, so
that infinitesimally past 6 towards F the destabilizing
wave vector changes discontinuously, as shown in Fig. 6.
On passing from 6 to F, k remains on the surface of the
Brillouin zone, but varies continuously in direction
from the L111)to the L201j.The section from F to E is
simply part of the L201j boundary surface defined by
Eq. (C 10). Then from A to D the wave vector varies

0.2

FIG. 7. The region (RyI( & in the three-dimensional tu, e, m
space. There is an additional restriction that 2'&1.

This simplification permits the description of the
ground-state regions (Ry; in terms of a three-dimensional
parameter space defined by tN, v, and m.

1. Upon consideration of the boundary conditions
for k in the same symmetry directions as before, we
find R»&" to be enclosed by the surfaces

tu=2w(1 —2w)/v,

arising from the extrema, s'=0 for k= L00h), and

(35)

FyG. 6. One octant of the 6rst Brillouin zone. The tip of the de-
stabilizing k vector (see Fig. 5) follows the indicated path.

tu=2(w —1)(1—s—sw)/n(2s —1), (36)

arising from the extrema s'=0 for k= fhh0]. All of the
other possible boundary surfaces are less restrictive and,
therefore, do not enter into the definition of (Ry~(". The
surfaces given by Eqs. (35) and (36) are shown in Fig. 7
for v& 1, and some of the constant-e cross sections of the
resulting (Rg~&" are illustrated in Fig. 8, where the
wave-vector directions associated with the boundaries
are indicated. However, it should be remembered from
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PIG. 8. Constant-u cross sections
of (R&1( ), subject to restriction2' & 1. Destabilizing k-vector
modes are indicated by brackets.

0.25

O. l

ut
0.2

1

O. l

I

0.2
I

O.l

ut

Eq. (21) that (Rri can exist only when

2'& 1,

and that appropriate matrices K(k) can be defined only
when this condition is satisfied. Hence, Eq. (37) places
an additional restriction upon the region Ry1&".

The appropriate matrices K (k) were investigated over
all k in the first Brillouin zone for 2/3(n(1 using an
IBM 7090 computer. Such a calculation for an interior
point of g.y~&" verified that all the eigenvalues were
positive, and other calculations for several points on the
boundary surfaces and at their intersections showed
that Ry~=(Ry~&". These results prove rigorously that
Sy~ is the classical ground state for all values of t, I, e,
and m lying within the region (Ry&&" depicted in Figs. 7
and 8, subject to the additional constraint expressed by
Eq. (37), and unstable outside of (Rri&s&.

The above result has immediate application to the
tetragonal spinel CuCr204, which is known to possess
the Sy~ spin con6guration. ""In copper chromite, the
c/a ratio is less than unity, so that one would expect to
find v) 1/2, and values of e greater than 2/3 (required
by S.ri) would not appear unreasonable. However, a
naive consideration of the 3-8 interaction for the actual
degree of distortion leads one to expect m to be greater
than 1/2, which would be outside of (Rri. Hence, we
conclude that, if copper chromite possesses only nearest-
neighbor exchange interactions, then less obvious super-
exchange mechanisms (e.g. , m-bonding effects) must
be present in the total A-8 interaction.

2. According to the discussion in Sec. III 8, the Sy~
configuration can only exist when. e (1/2. For this case,
consideration of k in the various symmetry directions
leads to a single boundary surface for (R»&'),

tu= 2w(1 —w),

Numerical investigation of K(k) over the first Bril-
louin zone at an interior point of (Ry2'0) showed all the
eigenvalues to be positive, and calculations at a number
of points along the surface defined by Eq. (38) showed
that Ry2=(Ry2& & for —1&~&0. Other calculations for
small positive values of e showed that (Ry2 is erst de-
stabilized by a k=LOe5), where both e and 8 approach
zero on the boundary. As shown in Appendix D, this
situation can be treated analytically to yield the
boundary

2z =$2w(1 —w) —tuJ/L2(1+3w) —tu J. (40)

This complicated surface has the properties that ~=0
along the Lh00j boundary given by Eq. (38) and that
everywhere 0&v&v,„, where v,„=0.055 and occurs
when both tu=0 and w=1/3. The direction of k is
defined by the ratio 5/e, which varies over the surface
(from Appendix D) so that k is not confined to sym-
metry directions over this boundary. The con6guration
Sy2 will be the ground state within the region Ry2 de-
fined by Eqs. (38) and (40), subject to the restriction
of Eq. (39), and will be unstable outside this region.

I.O

0,8

Q.6

pg

which is independent of e. This surface arises from the
s'=1 extremum for k=Lh00], although it is "acci-
dentally" degenerate with a Lhh0j boundary when v=0
and with a $00h J boundary when both @=0and w) 1/2.
The resulting region (Ry2(') is illustrated in Fig. 9 for
—1&v&0, but is subject to the additional restriction
that

O.R

O. I 0.2. 0.3 0.4 a.s

in order for Sr, to exist Lfrom Eq. (24)$.

(39) FIG. 9. The region (Rz&&0& for —1&@&0.There is an additional
restriction that u&1. Destabilizing surface arises from it= Ph00)
xllode.
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Since hausmannite (iMn, 04) apparently possesses a
spin configuration characterized by a k=[hh0]," and
since it has a c/a ratio greater than unity so that pre-
sumably v(1/2, it had been hoped that a part of the
S» boundary would arise from such a wave vector. As
can be seen from Fig. 9, this is not the case. Although
R» is destabilized by a spiral with k= [h00] rather than
by one with k= [hh0], the exchange energy difference
between the two latter types of configurations is very
small for small negative values of v. Therefore, one
cannot exclude the possibility that the large anisotropy
forces known to exist in hausmannite" may lower the
total magnetic energy of the [110]configuration below
that of the [100] along part of the boundary.

3. In Sec. III B, we found that the configuration
S+3 could exist only for t& 1/2. Since it appears that
actual spinels probably possess values of t less than 0.1,
we shall not consider this case further.

C. Antiferromagnetic Regions ((R"')

The appropriate expressions for I", and X'; for the
two possible antiferromagnetic configurations were ob-
tained in Sec. III C. The configuration Sg~ is possible
only when v) 1/2, and consideration of its corresponding
K(k) for k=[00k) immediately restricts its region
Sgi"& to the surface w=1/4. Since the ground-state
region Agi must be included in (R~»"', it cannot enclose
any volume in our (four-dimensional) parameter space,
and will not be considered further. In other words, we
find that S» occurs only as a special case of an anti-
ferromagnetic [001] spiral whose wavelength becomes
infinite for w= 1/4.

Similarly, (R&2 is possible only for v&1/2, and con-
sideration of its K(k) for k=[h00] immediately re-
stricts Sz'"& to the surfa, ce w=1/2. Consequently 8»
is also of zero volume, and the configuration S~~ occurs
only as a special case of an antiferromagnetic [100]
spiral whose wavelength becomes infinite for w= 1/2.
The detailed treatment of these spiral configurations
will be left to a later paper.

V. HIGH-TEMPERATURE EFFECTS (T=T,)
In the preceding sections, we have obtained those

regions of parameter space within which the k=0 modes
are the classical ground state (T=O), and outside of
which they are unstable. It is also of interest to examine
the corresponding stability regions for temperature in
the neighborhood of the highest transition temperature
T,. For temperatures slightly less than T„use of the
molecular field approximation leads" to the eigenvalue
equation

(0.(k))=[—2(2J.v+J~v')/(3»)]
X+„L„'(k)(Q„(k)), (41)

~ J. S. Kasper, Bull. Am. Phys. Soc. 4, 178 (1959}."K. Dight and N. Menyuk, Phys. Rev. 119, 1470 (1960}.
"See Appendix Vl of reference 7.

0 =u'v(3v 1)+4tuv—2, —

0=u'(1 —v)+4tu —4,

0=4P+tu(1+v) —1.

(42)

(44)

These boundary surfaces arise from Sd~; with ~=1, 2,
and 3, respectively, and the first two are compared with
the corresponding ground-state boundaries for t =0 and
0(e(1 in Fig. 10. The significant feature of this com-
parison is the increased stability at T, of the Neel con-
figuration relative to the other k=0 modes for this
portion of parameter space.

All the high-temperature boundary equations are
more complicated than their ground-state analogues,
since the appropriate expressions for X do not work out
as simply. For this reason, we have only examined the
symmetry directions [001], [100], and [110].The re-
sulting outer limits Riv (T.) to the true stability regions
$,(T,) are qualitatively similar to those obtained in
Sec. IV for the ground-state problem, the same general
portions of their boundaries arising from the same
symmetry directions. For example, both (Rqzi'0&(P, ) and
Rr&&'&(0) are bounded only by surfaces with k= [00k]
for t =0 and v& 1 plus an additional surface associated
with k=[hh0] for smaller v, and both 8,""'(T.) and
(Rz"'(0) possess a boundary arising from k=[hh0] in
the neighborhood of ~=0, v= 1/2, and w= 1/3, as shown
in Fig. 10. The principle differences between (R(T,) and

where the (Q„(k)) are the Fourier transforms of
the average spin vectors (S„„)according to Eq. (6)
and where the matrices L'(k) are given by Eq. (10).
Nonzero solutions of Eq. (41) exist only when
—3kT/[2(2J~v+J. v')] is equal to an eigenvalue of
L'(k), so that T, (the highest temperature for which a
nonzero solution exists) is uniquely associated with the
minimum eigenvalue of L'(k). Then the corresponding
eigenvector defines the spin configuration appropriate
to T.. Note that the strong constraints, and hence the
adjustable parameters I', do not enter into the high-
ternperature problem, i.e., the (S„„)are not required to
be unit vectors.

An investigation of the high-temperature properties
of the k=0 modes must start from the eigenvalues and
eigenvectors of L'(0), which can be obtained from
Table I and Eqs. (14), (15), and (16) by setting I'=1.
Since the adjustable parameter I' is no longer available
to force degeneracies, the only ferrimagnetic configura-
tion possible at T, arises from %'~ and is of the Neel
type. At T„ the other eigenvectors involved in the
construction of the three Sy, configurations at T= 0
give rise instead to three antiferromagnetic configura-
tions Sd&, , in which the spins are ordered on only one
type of site (A or 8) and disordered on the other, as
described by I.otgering. "Comparison of the associated
eigenvalues (A~=Xi, X""i——X4, Xd"2 ——X2 ——X3, and
Xd"L=XS) shows that X~ lies lowest inside a region
bounded by the surfaces
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FIG. 10. Comparison between high-temperature and ground-
state stability boundaries of the Weel configuration for t=0,
w=1/3, and 0&s&1.The destabilizing modes are as indicated.

(R(0) for t=0 are that the tt extents of 01~&i(T.) and
iRg~s(T, ) increase with increasing u instead of remaining
constant, and that %sr(T,) has a greater extent in tt
(though not in w) than (R~(0).

Since the high-temperature spin configuration of a
tetragonal spinel must arise from a single eigenvector of
L'(k), an antiferromagnetic configuration must either
be an antiferromagnetic spiral if k/0 or one of the
(Rq~; if k=O, whereas a ferrimagnetic configuration
must be of the Neel type with k=0. Thus Lotgering's
findings" can be generalized to state that in tetragonal
spinels neither Yafet-Kittel nor ferrimagnetic-spiral
configurations can exist at the highest transition tem-
perature. Consequently, ferrimagnetic material with
noncollinear ground states must possess at least two
transitions, as has been discussed in detail elsewhere for
the case of manganese chromite. v

VI. SUMMARY AND CONCLUSIONS

Ip this paper, we have considered normal spinels
which possess nearest-neighbor A-A, A-B, and B-B ex-
change interactions that conform to tetragonal sym-
metry and which, therefore, can be characterized by
points in a four-dimensional parameter space. By appli-
cation of the generalized t.uttinger-Tisza method, we
have determined those regions of this parameter space
within which the various k=0 modes are the classical
ground state. Only a spinel characterized by a point
inside one of these regions can, on the basis of exchange

alone, evidence the corresponding spin configuration at
absolute zero.

These regions are much smaller than predicted by
previous'»' theories which are restricted entire]y to
k=0 spin configurations (although in the present paper
only k=0 configurations were investigated as possib1e
ground states, their stability relative to uO configura-
tions has been included in our theory). Consequently,
experimental knowledge of the existence of one of these
states gives correspondingly more information as to
values of the exchange parameters. The example of
copper chromite was discussed in this connection.

The k =0 modes become unstable along the boundary
surfaces of their ground-state regions because of spin
deviations associated with some particular propagation
vectors k which characterize the surfaces. The deter-
mination of these destabilizing k vectors has been in-
cluded as a significant part of this investigation. In
particular, it is found that the Keel configuration, for
certain values of the exchange parameters, is de-
stabilized by k's which are not parallel to symmetry
directions. Therefore, it is almost certain that ground-
state spin configurations exist in which there is an
important Fourier component corresponding to k in
nonsymmetry directions. Furthermore, the application
of similar considerations to the case of hausmannite
(Mn, 04) indicates that anisotropy forces must be
invoked in order to account for the observed spin con-
figuration in this material.

In addition to our treatment of the ground-state
(T=O) problem, we have investigated the stabilities of
the k=0 modes at high temperatures (T= T„,) by means
of the molecular field approximation. It was found that
the onset of ferrimagnetism immediately below the
highest magnetic transition temperature can only corre-
spond to a Weel-type configuration. All the other possi-
ble configurations, whether collinear or spiral, are anti-
ferromagnetic. It follows that the existence of a Yafet-
Kittel or ferrimagnetic-spiral ground-state configuration
requires the existence of at least two magnetic transi-
tions. This situation appears to exist in manganese
chromite. '
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APPENDIX A. THE MATRIX ELEMENTS

Throughout this paper, vectors will be referred to
the pseudocubic tetragonal unit cell, the cell edges
being denoted by u and c. Furthermore, we shall
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denote vectors in the direct space by R„,= (rst) where
we define (rst) = (a/8)[rx+s JJ+t(c/a)z), and vectors in
reciprocal space by k=[hkl] with the definition
[h8]= (22r/a)[hi+kg+i(a/c)z). In this notation,
I R„„=(~/4) (hr+ksylt).

The evaluation of the functions y, q, , and j.;, follow
straightforwardly from the definitions given by Eqs. (4),
(9), and (10), together with Fig. 1. For example,
tX= I.,2'(k) and

(2J~18+Jgii')I12'(k) =Jr~{exp[ik (222)]
+exp[ik (222))+exp[ik (222))+exp[ik (222))}.

Since j~~=t(2Jqii+J418'), one obtains

x=exp[ik (222)]+exp[ik (222))
+exp[ik (222)]+exp[ik (222)]. (A1)

x=4 cos(2o), (81)

2!1——rt2=rt8*=8t4* ——(1—w) exp( —io.)
+w exp(+3io), (82)

12 {84 1)

$ 18 = t 14 = l 28 =f )84 = COS (2o') .

(83)

(84)

The corresponding matrices gi'(k) and K(k) can be
partially diagonalized into I&(1 and 2&(2 submatrices
with the following basis vectors: (1X1)1 with

$1——(1/v2) (0, 0, 1, —1, 0, 0);

APPENDIX B. REDUCTION OF X(ti) FOR t'8 IN
SYMMETRY DIRECTIONS

1. For k= [00h], it is convenient to define o =2rh/4.
Then the expressions given in Appendix A become

8It2
——(1/v2) (0, 0, 0, 0, 1, —1);

(2J411+J~B )I18 (k) J»{exp[ik (311)]
+exp[ik (131)]}+J.4»' exp[ik (113)]. (2 X2)1 between

The functions 8!1 arise from the A-8 interactions. For (IX1)
example, rti =I.18'(k) and

4t. =-', (1—w) {exp[ik. (311)]+exp[ik (131)]}
+w exp[ik (113)), (A3)

(311))+exp[ik (131))}
+w exp[ik (113)), (A4)

(311)]+exp[ik.(131)]}
+w exp[ik (113)). (A5)

2!8 ———,'(1—w) {exp[ik.

rt4 ———,'(1—w) {exp[ik.

From Eq. (4) it follows that J~ii=-', (1—w)(2J~18+J~ii')
and J~14'=w(2J~ii+ J~ii'). Thus,

rt, = —,'(1—w) {exp[ik (311))+exp[ik. (131))}
+w exp[ik. (113)). (A2)

Similar considerations yield

g8= (1/v2) (1,1,0,0,0,0)

8t!4= (1/2)(0,0,1,1,1,1);

x=4 cos(2o.), (85)

ni =n2*= n8*= ~4= 2 (I—w)

X[exp(—io)+exp(+3io)]+w exp( —io), (86)

4It8
——(1/v2) (1, —1, 0, 0, 0, 0)

Q8 ——(1/2)(0, 0, 1, 1, —1, —1).

2. For k= [h00), with o defined as above, one obtains
similarly

(87)

(88)

f 14=028=1,

f 12 f18 t 24 $84 COS(2o) ~

For the I3 Binteractions, we no-te that 2Jiiii ——u(1 —it)

X (2JAii+ JgB ) aild 2J1814'=uo(2J~ii+ J&ii'). Since,
for example,

Again the 6)(6 matrices decompose into 1)&1 and 2X2
submatrices, namely, (1X1)1with

8tti= (1/2) (0, 0, 1, 1, —1, —1);

and u(1 —v) f12 ——I.84'(k), one obtains

(2J4m+ J~a')I-84'(k)
=Xiii'{expfik (220)]+exp[ik (220)]}

=2Joii COS[k (220)]
(1X1)2with

t 12 cos[k (220——)]. (A6)
g, =(1/2)(0, 0, 1, —1, 1, —1);

Similarly it can be shown that

{18
——cos[k (202)],

1"~4
——cos[k. (022)),

,
j8; =cos[k (022) I,

j 4=-cos[k (202)]

l 84 ——cos[k (220)].

(2 X2)1 between

Q8 = (1/V2) (1,1,0,0,0,0)
(A7)

(A8)

(A9) and (2X2)2 between

1tt4= (1/2) (0,0,1,1,1,1);

&I!8=- (I/v2) (1, — —1, 0, 0, 0, 0)

~ = (1/2) (o, o, 1, —1, —1, 1).
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3. For k=[hho], we de6ne p=2rh/2. Then

)t=2(1+cos2p) =4 cos'p,

2tl=t)2=w+ (1—w) cos(2p),

V2=2t4*= cosp i—(1 2—w) sinp,

{12

i 24=cos(2p).

{12 {14 {22 {24 COSP.

(89)

(810)

(811)

(812)

(813)

(814)

In this case partial diagonalization yields a 1)C 1, a 2 X2,
and a 3X3 submatrix: the (1X1) for

$1——(1/&2)(0, 0, 1, —1, 0, 0);
the (2X2) connecting

Q2
——(1/V2) (1, —1, 0, 0, 0, 0)

Ib = (1/W2) (0, 0, 0, 0, 1, —1);

1 12={24= COS(42')&

$12=COS(6r),

{14 f2——2 1 2——4 co——s(2r)

(824)

(825)

(826)

The resulting partial diagonalization is identical with
that given above for case 4.

APPENDIK C. BOUNDARIES OF SN(')

The boundary equations 2t—1=0, I—1=0, and
2Nv —1=0 were obtained in Sec. III A from the con-
sideration of the k=o modes alone. For k= [00k], the
procedure described in Sec. IV yields the additional
boundary equations

2t1=2t2* ——I2 (1—w) [exp(5ir)+exp( —3ir)]
+w exp(ir), (822)

2t2=2t4*= 2 (1—w) [exp(ir)+exp( —7ir)]
+w exp(5ir), (823)

and the (3X3) for 2uv —(1+8w—2t) =0, (Ci)

t2u2v2+4w[2w(1 —t) —t]uv+ Sw2[2w(w —1)+t]=0, (C2)2t1, = (1/K2) (1,1,0,0,0,0),

g2 ——(1/K2) (0,0,1,1,0,0), corresponding to s'=0 and &'= (4w'+2w —tuv)/(Sw'),
respectively, where it is to be remembered that Eq. (C2)
is valid only when 0(s2(1. For k=[hoo], the addi-
tional surfaces are given by

4|t,= (1/W2) (0,0,0,0,1,1).

4. For k = [hob], with p defined as above, one
obtains: (C3)u —(5—2t —4w) =0,

(815)
t2u2 —4 (1—w) [t—(1—w) (1—t) ]u+4(1—w)'

(816) X [(1—w)' —2(1—w)+2t]=0, (C4)

X=4 cos p)

= cosp+tw slilp,

2t2=2t4* ——-', (1—w)+-', (1+w) cos(2p)
—-', i(1—3w) sin(2p),

$12 {14 $22 $24= COSpy

{12
——cos(2p),

24 —1.

The original 6X6 matrices can then be decomposed into
two 3X3 submatrices: (3X3)1connecting

corresponding to s2=0 and s2=[2(1—w)(2 —w) —«]/
(817) [4(l—w)'], respectively. For both of the above sym-

rnetry directions, the extrema s2=1 yields no new
information.

(819) For k=[hI40], consideration of the extremum s2=1
leads to the boundary

2v (1—t)u'+ [2t(1+v)—(1+2v)—4w(1 —w)]u
+[1—2t+4w(1 —w)] =0, (C5)

and

2ttl = (1/v2) (1,1,0,0,0,0),

Q2 = (1/v2) (0,0,1,0,1,0),

Ib = (1/W2) (0,0,0,1,0,1);
and (3X3)2 connecting

2tt4 = (1/v2) (1, —1, 0, 0, 0, 0),
1tt2 = (1/K2) (0, 0, 1, 0, —1, 0),

whereas consideration of the general condition gives

t2v2u4 —{2tv[t (1—v)+2v (3—4w+w') —2 (1—w)]
+Sv(1—v) (1—w)'}u'
—{4(1—v) (1—w)'(4tv+ 8vw —10v—1)—4tv (1—w')
—[t(1—v)+2v (3—4w+w2) —2 (1 w)]'}u'
—4 (1—w)2{t (1—v)+ 2v (2—4w+ w')
—(1—v) (2t+4w —5)—2 (1—w) }u

+4 (1—w)'=0, (C6)
corresponding to

q, =(1/v2)(O, O, O, 1, O, —1).

In this case the surface obtained from the extremurg,
(821) s2=0 has already been given by Eq. (C3),x =2[cos(2r)+ cos(6r)],

s2 = {tvu' —u[t (1—v) —2 (1—2v) (1—w)+ 2v (1—w)']5. At the edge of the Brillouin zone in the [201] +2(1direction, k=(1/2)[2017. Writing r=2r/8, it follows
that
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For k=[h0h], the extrema s'=0 and s'=1 yield,
respectively,

u (1+2v) —[4(1+w)+2 (1—2t)]=0,

(2—u) (1—t) —w'= 0.

(C7)

(CS)

APPENDIX D. ANALYTIC CALCULATION
FOR k=LoeG]

For this case, evaluation of the expressions for x,
g;, and t",; given in Appendix A yields

x=4(1—2 sin'e) (1—2 sin'6), (D1)

gi ——g,*=w exp[i(e+36)]+-', (1—w)

X(exp[i(e—8)]+exp[—i(3e+8)]}, (D2)

The general solution, valid only for 0&s'&1 as in
Eqs. (C2), (C4), and (C6) above is

t (1+2v)'u' —2 (1+2v) (t[3+4w —4vw+w' —4v (1—t)]
+4v (1+w)'}u'+ {[3+4w —4vw+w' —4v(1 —t)]'
+4 (1+w)'[t (1—6v)+ 2v (7+4w+ 2v)]}u'
—4(1+w)'(3+4w+4vw+ w'+Sv —4vt}u

+4(1+w)4=0, (C9)
corresponding to

s'= (tu'(1+2v) —u[(4tv+2 (1—2v) (1+w)+ (1+w)2]
+2 (1+w)'}/[4uv (1+w)'].

Finally, consideration of the particular wave vector
k = (1/2) [201]gives

(1—t) (1+2v)u' —[4(1—t) (1—v) —w']u

+[4(1—t) —2w']=0. (C10)

The surfaces de6ned by all the above equations enclose
a region in 3, u, e, m parameter space, this region being
called 1.~(0).

g2
——g4* ——w exp[i( —~+38)]+-', (1—w)

X (exp[—i(~+5)]+exp[i(3~—5)]}, (D3)

fly= i 34 = cos(2c),

i i4 f=g3= cos(28),

i i3 = cos2 (t' —8),

f24 = cos2 (6+8),

(D4)

(Ds)

(D6)

(D7)

where c=v.e/4 and 5=v-5/4. The resulting 6X6 matrix
can then be partially diagonalized into two 3X3 sub-
matrices, this decomposition being identical with that
given for case 4 in Appendix B. lt turns out that (3X3)i
is the submatrix of interest.

Since the numerical calculations indicated that the
boundary arises when k —+0, we shall take K and 8 to
be small, and expand the above functions as Taylor
series in e and 5. Subsequent evaluation of

~
K(k)

~

for
the submatrix (3X3)i leads to a power series in c', P,
and eb, with

I K(k) I

"'=
I
K(k) I

"'=0, (DS)

where the superscript refers to the total order in e and b.
The first nonzero term occurs in fourth order, and is
given by

l

K (k)
l

'4'/(SP'u) = ~'(1—2v) [8(1—w) —4tu]
+c'P[Sw (1—w) —4tu —2v (8+24w —4tu)]. (D9)

The coeKcient of e4 will always be positive within the
region (R»'o' defined by Eq. (38), but the coefficient
of e'P can become negative, in which case a negative
value can be obtained for

~
K(k)

~

for a large enough
ratio of 6 to e. Thus, a stability boundary arises when
this latter coefficient equals zero, as given by Eq. (40).
As one crosses through this boundary, the ratio b/e
which minimizes

~
K(k)

~
changes, meaning that the

direction of k changes.


