STRONG-FIELD MAGNETORESISTANCE IN 2-TYPE Ge

where one exponential factor is due to the shrinking
and the other due to the phase-factor effect. We can
conclude in this case that (1) the shrinking and the
phase-factor effects contribute the same order of magni-
tude to the magnetoresistance even in an extremely
strong field, (2) the dependence of the magneto-
resistance coefficient on the average donor separation
changes from an R® dependence in the weak and
moderately strong field case to an R? dependence, and

1969

(3) the dependence of the magnetoresistance on the
magnetic field changes from an H? to an H dependence.
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The orthogonalized plane wave (O. P. W.) method for treating electrons in solids is generalized to the
many-body problem. The core electrons are assumed to be dynamically independent of the valence electrons.
Using a field-theoretical approach, a model wave field is introduced whose valence projection is the valence
wave field of the physical system. When an appropriate choice is made for the model Hamiltonian, the
rapid convergence of the O. P. W. method is incorporated in the many-body perturbation expansion.

An attractive feature of the scheme is that the perturbation expansion can be carried out using zero-order
Green’s functions appropriate to free electrons. The single-particle self-energy to low order is the sum of the
one-body O. P. W. contribution and a screened exchange energy similar to that obtained in the case of the

uniform electron gas.

The theory is expected to be most useful for metals and valence crystals for which the single-particle

0. P. W. method is known to be appropriate.

I. INTRODUCTION

N the past few years a great deal of progress has been
made in the study of the gas of interacting electrons.
We do not want to summarize the results obtained, but
we rather refer the reader to some relevant papers on
the subject.!

Different formalisms have been developed for this
problem according to the aspect emphasized. The collec-
tive approach of Bohm and Pines is best suited to the
study of the plasma oscillations. A perturbation theory

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

t Permanent address: University of Missouri,
Missouri.
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was developed by Brueckner, Goldstone, Hubbard, and
others for the study of the ground-state correlation
energy. An alternative approach to plasma effects has
been based on linearization of the Heisenberg equation
of motion (Sawada, .Fukuda, Brueckner, and Brout;
Suhl and Werthamer). This method gives, in principle,
also one-particle excitation energies and the ground-
state energy.

The powerful Green’s function formalism of field
theory has been adapted to the many-body problem by
Galitski and Migdal? and in a more general form by
Martin and Schwinger.? Klein has shown that within
this formalism a one-body model potential can be con-
structed and made self-consistent to all orders.*

In the present paper, we use the Green’s function
formalism to derive perturbation expressions for
valence and conduction states of electrons in a covalent
crystal, including correlation effects which are neglected
in ordinary band theory. In most recent studies of

2V. M. Galitski and A. B. Migdal, Soviet Phys.—JETP 7,
96 (1958).

3P, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

4 A. Klein, Phys. Rev. 121, 950 (1961).
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correlation energies in real crystals the basis wave
functions employed are the solutions of the Hartree-
Fockpr oblem.® These have led to formal extensions of
the free electron gas results, which however seem to be
of little use as a basis for numerical calculations. We
will consider the Hartree-Fock potential and the re-
maining two-body interactions jointly as the perturba-
tion Hamiltonian on the symmetrized plane wave states
of a constant potential (empty lattice states) with the
additional condition that the core states be known and
unchanged by the dynamics of the valence electrons.
Essentially, we extend the orthogonalized plane wave
(O. P. W.) method.® The quasi-particle energies we
obtain reduce in the one electron approximation to the
energies of valence and conduction states of the O. P. W.
method.

In Sec. II a simplified Heisenberg equation of motion
is obtained for the valence projection of the electron
wave field. The one-particle Green’s function for this
valence projection is introduced in Sec. III. In Sec. IV
we introduce an auxiliary wave field ¥, by requiring
explicitly that the core projection of the valence wave
field vanish. A self-adjoint effective Hamiltonian and an
equation of motion for ¥, is derived. In Sec. V we relate
the Green’s function for the valence wave field to that
for the auxiliary wave field. In Sec. VI we show that the
O. P. W. method results from our more general treat-
ment upon neglecting correlation terms. In Sec. VII we
give a perturbation expansion for the self-energy in-
cluding correlation terms.

II. HAMILTONIAN FORMULATION FOR THE
VALENCE ELECTRON WAVE FIELD

We work in the Heisenberg picture and write the
second quantized Hamiltonian for the electrons as

H= / dadx’ Yt (x,t) (x| Hi—U | 2" W(x' t)

1
+5 / dxdx’ Y1 (o )Y (2',1)

X VQ(x7x,)¢(x’7t)¢(x:t)' (2 1)

The variable x represents the spacial and spin coordi-
nates r and s. The operator H;— U is the kinetic energy
operator $%/2m plus the interaction with the fixed
nuclei. By choosing U appropriately the Hartree-Fock
terms arising from the Columb interaction between
electrons, Vy(x,x"), can be canceled and in this way H;
can be arranged to include electron-electron interactions
within the Hartree-Fock approximation. This possi-
bility has been discussed in detail by Goldstone! and
Hubbard.® In general, H; is not diagonal in the =z
representation.

5 J. Hubbard, Proc. Roy. Soc. (London) A244, 199 (1958).

6 C. Herring, Phys. Rev. 57, 1163 (1940). T. O. Woodruff, in

Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1957), Vol. 4.
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Our basic approximation is to treat the valence elec-
trons as being dynamically independent of the core
electrons. By this we mean that all terms in the Hamil-
tonian which couple valence and core electrons will be
treated in the Hartree-Fock approximation. The
validity of this assumption is insured by two conditions:

(a) In a perturbation treatment of the correlation
energy, the important excitation energies involved in
core-valence interactions are large compared to those
entering valence-valence interactions.

(b) The spacial overlap of core and valence wave
functions is small so that matrix elements involving
core and valence electrons tend to be smaller than those
involving core or valence electrons alone.

Since interactions which involve virtual excitations of
core electrons to valence states are to be neglected, it
follows that the core electrons are treated in the single-
particle approximation. The single-particle core wave
functions satisfy the equations

/ dx’ (x| H1| & Yo (&) = Enthn,(%). (2.2)

It is convenient to use these core wave functions to
decompose ¥(x,f) into core and valence projections:

Y(,t) =ye(o,t) +u(2,0), (2.3)
where
4= [ dy GO =Pt
(2.4)
0)= [ By PN =P,
The projection operator P, is defined by
PC:Z"cI“”c)(“"cl ) (2‘5)

where 7. represents a set of quantum numbers labeling
the core states. The valence projection operator P, is
defined by

P,+P.=1.

Note the relations:

Pc2=P07 Pv2=Pv; PvPc=PcPv=Oy

[P,H]=[P.,,H:]=0. (2.6)

Thus, if ¢ is expressed in terms of the complete set of
eigenstates of Hi, ¢,, and ¢, are of the form

‘I/C(xat) = Z e unc (x)an;(z))
I//”(x)t) = Z"v uﬂv(x)a"u(t)'
The functions #,,(x) include all eigenfunctions of H,

except those occupied by core electrons. The operators

an are destruction operators for electrons in states
labeled by 7.

2.7
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The anticommutation relations for i,

{¢(x)t) ,W(x’,t) } = 5(96 - xl) )
W)Y D} = ()P (')} =0, (2.8)

lead to the following anticommutation relations for
Y, and ¢,:

Wl ) (o)} = (x| Pl '),

{Wo(2,) " (o 1)} = (x| Py | a),
{Wo(2,0) (o 1)} = (" (2,0) 1 (+7,6) } =0,
{We(x) pe(x' )} = (¥ (x,) ' (2 5)} =0.

With these relations, the equations of motion for .
and ¢, can be obtained from

1(a/at)‘)bb(x)t) = E\bc(x)t)yH])
i(9/ 3t} (,8) = (¥ (e,t), H .

Since the core electrons are treated in the single-particle
approximation, the time dependence of . is given
directly by the one-electron energies of the core elec-
trons. Therefore, we concentrate on the equation of
motion for the valence wave field

(2.9)

(2.10a)
(2.10b)

a
() = / dx'dx” (x| Py | &) | Hi— U | W& 1)
a9t
+/dx'dx" (| Py oW (2 1)

X Voo Wo(a” 09 (') (2.11)

On substituting y=y.+y¢, in the two-body term of
(2.11), one obtains eight terms. In accordance with our
Hartree-Fock treatment of the core electrons, we retain
only the terms

/ d'ds” (| Py |2/ Wl (o ) (2 ,8)

X V2(x’;x")‘pv(x,:t)7 (2123)

/ da’da’" (| Py | " Y (27 D)o (27 ,0) )e

X Voo & Wo(2',t), (2.12b)
/ da'dx’ (x| P | o/ Yol (2,00 o(2 8) )
X Vo' & Wo(a" 1), (2.12¢)

where (o), denotes the expectation value of o with respect
to the core states which are fully occupied. Term (2.12a)
leads to the Coulomb interaction between valence elec-
trons while terms (2.12b) and (c) give the direct and
exchange interactions, respectively, between the core
and valence electrons within the Hartree-Fock approxi-
mation. Since by construction U contains the inter-
action of the core and valence electrons within the
Hartree-Fock approximation, terms (2.12b) and (c) are
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canceled by the corresponding terms in U. Thus, we
obtain an equation of motion involving ¥, alone

a3
()= / 0| Hy= P | W)
I3

+ / da/da” Yo} (2 ) (2 1) (| P | 27)

X Vol & Wl f).  (2.13)

Here, U, represents that part of the two-body inter-
actions between valence electrons which we wish to
include in H;. If we choose U,=0, all the interactions
between valence electrons are represented by the last
term on the right-hand side of (2.13). However, U, can
be chosen to be the Hartree-Fock approximation for
the two-body interaction so that H; is the Hartree-Fock
Hamiltonian. As we shall see in Sec. VII the most con-
venient choice is U,=const, since approximate self-
consistency can be obtained by a screening of the one-
body potential as pointed out by Cohen and Phillips.”
The equation of motion (2.13) can be derived from an
effective Hamiltonian:

H,,=/dxdx’ ol (@,0) x| Hi—P, U, | &' W (&' ,1)

1
+5 / dudx’ ¥t (2,91 (%' 1)

X V(o' o' 0¥(,t),  (2.14)
since by direct calculation, the expression
i(8/ 30 (w,0) =[Wu(,0),H, ] (2.15)

agrees with (2.13).

III. ONE-PARTICLE GREEN’S FUNCTIONS FOR
THE VALENCE FIELD

The space- and time-dependent one-particle Green’s
function is

G, r) =i (0| T{Y (2,7 (x,00}]0),  (3.1)

where |0) stands for the exact Heisenberg ground state
of the interacting system and 7 is the usual time-
ordering operator for fermions. Introducing some com-
plete set of one-particle states |a) for expansion of the
field operators and a Fourier time inversion, we obtain

G(x,x’; T)= Z,<x5“>Gaa’(T)<a, l xl>
' ; (3.2)
R
~z<x1a>[/;e Caurp) V'),

with the understanding that
Gaw (1)=(0| T{au(r)ac(0)}|0)

7M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
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and
aulr)= / (e

is the destruction operator for an electron in the
state |a).

In general, G cannot be made diagonal for all
times in the presence of both the lattice potential and
the two-body interaction, in contrast to the familiar
case of a uniform background. If at time /=0 a particle
is added to the system in state «, the probability
amplitude that the system is in the same state at
time 7 is given by

Gaa(T).

A similar interpretation holds for the off-diagonal
elements.

It has been shown by Galitski and Migdal? that if the
analytic continuation of G.a(po) has poles near the real
axis they give the excitation energies and lifetimes of
the quasi-particles obtained by adding an electron or a
hole to the many-electron system.

We expect that for systems where the O. P. W.
method is applicable, e.g., valence crystals and metals,
these conditions are satisfied for the low-lying excited
states of the system.

Introducing core and valence fields via (2.3) into the
expression (3.1) for G, we obtain four terms. As a con-
sequence of our assumption of the dynamical inde-
pendence of the core and valence electrons it follows
that the cross terms vanish, leaving

Ga,a’; 7) =3(0| T{o(,7 )" (+,0)} | 0)
0| T{u(x,7)¢ " (¢',00}0).  (3.4)

Henceforth, we shall be concerned only with the valence
field Green’s function,

Go(x,a’; 7)=10| T{Yu(x,7 01 (2,0)}0).  (3.5)

In a representation « the time Fourier transform of
Graa is

Gm([Jo)=/e"7’°"Gma('r)dT. (3.6)

IV. INTRODUCTION OF THE AUXILIARY
WAVE FIELD

It is basic to this formalism that we impose explicitly
the condition

P, (x,0)=0.

In analogy to the O. P. W. method for the one-electron
valence states we introduce an auxiliary electron wave
field yo(x,f) by writing

'pv(xyt) = Pvlpﬂ(x)t) =‘l/0(x,t) _Pclpo(x;t)- (4'1)

The core projection Palo(x,f) is at our disposal. On
substituting (4.1) into (2.10b), we have
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1(3/0t)do(x,1)
= Hupo(x,0)+[i(8/0t) — Hy P abo(,t) — P, U, Pobo(ix,2)

n / A/ d" TP o &) TP oo ) 1| P o)
. X Vg(x’,x") [Pu¢0<x,,)t)]y

where P, and H, are understood to be nonlocal oper-
ators. We note again the important point that Eq. (4.2)
is unchanged by the addition of an arbitrary core field
P&, to Yo, so that only Py is really determined.

Although Papo(x,t) is not determined dynamically
by H, or by (4.2), it will nevertheless be restricted.
Since we will treat the ¥, field by a Green’s function
scheme, it is essential to require that y, satisfy the
anticommutation relations:

{Wo(x,0) o' (/,8)} = 8%(x— '),
{¢0(x7t):<‘//0<x,;t)} = {lﬁof(x,t),l,&of(x’,t)} =0.

The projected form of the above relations is

{ch[/o(x,t),(chlzo(x’,t) )T} = <x| Pc! x’),
{P (o) Yo(2 D)} = {Peo(x,1) ¥ (2 ,0) } =0, (4.5)
{PO‘/’O(x:t);Pc‘pO(xI:t)} =0.

The time dependence of Pao(x,t) must maintain these
relations. In the absence of the time derivative on the
right-hand side of (4.2) all the time derivatives of the
field anticommutators would be expressible in terms of
the original anticommutators. If then these have the
canonical values at {=0, all their time derivatives
would vanish and they would be independent of time.
To preserve the relations (4.5) at all time in the
presence of the time derivative term in (4.2) it is neces-
sary that the equal-time anticommutators satisfy

4.2)

(4.4)

{Pobo,(Peo) } +{Petbo,(Pefo) '} =0, (4.6a)
{Pao,Pabo}=0,  (4.6b)

{ PG‘lbO)‘pv} + { Pc\[’l),‘pu} = 0, (4.6(:)
{PabooT} +{Pbodu'}=0.  (4.6d)

The derivatives of ¢, are expressible in terms of ¢,,
so that {Pao,¥» or .1} also vanishes at ¢=0. Thus,
(c) and (d) become '

{Pabops} =0, (4.6¢)
{Pfoy.T}=0. (4.6d")

These conditions (and also those on higher derivatives)
are satisfied if

’i(a/at)chbo(?C,If) = chPc\bO(xJ)
- / 05/ (x| PgPo ) Pabuly), (4.7)

where g is any self-adjoint operator. A particular choice
of g will determine the core projection Pg/y by means
of Eq. (4.7).
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Accordingly, we can replace Eq. (4.2) by
(9/ 0t)o(x,)
= Hﬂl/o(x,t)‘l‘PoA Pc\bo(x,t) - PUUWPV¢0(th)

+/ dx'da’’ [P oo, ) [P o(’,1) W | P | )
X V(o &) [Pabo(a” )], (4.8)
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For compactness we have written

chPc‘—H1Pc= Pc(g—'Hl)Pc

4.9
=P.AP,, (+9)

using the relation (2.6). The self-adjoint effective
Hamiltonian for the auxiliary field is

1
Hoge= / dada’ xllo*(x’,t){(x'IHllx)-l"(x'lPcAPc\x>}¢o(x,t)+5 / dad’ [P () [P wbo(x,0) IF

X Va2 )[Puho(,t) TP ol ) ]— f dads’ Yo (o )2 | Py U Py [ 2o (). (4.10)

This Hamiltonian manifestly gives back the equation
of motion (4.8) whose core projection is (4.7). Equa-
tions (4.9)-(4.10), together with the commutation rules
(4.4) and (4.5), provide the Hamiltonian formulation
for the auxiliary field ¥o(x,1).

The advantage of introducing the ¢, field is twofold:
(1) If the ¢, field is expanded in plane waves, the
operator expansion coefficients cannot satisfy the
canonical anticommutation relations so that the con-
ventional Green’s function approach cannot be em-
ployed. The ¢, field does not suffer this defect. (2) The
Yo field is the analog of the effective wave function
introduced by Phillips and Kleinman?® in the single-
particle O. P. W. scheme. As Bassani and Celli have
pointed out,® this artifice allows the one-body potential
to be readily treated by perturbation theory.

These circumstances suggest that one attempt to
treat the lattice potential and the two-body interaction
in a joint perturbation expansion based on zero-order
Green’s functions appropriate to symmetrized plane
waves.

V. GREEN’S FUNCTION FOR THE
AUXILIARY FIELD

The excitation energies of the valence electron system
are given by the poles of the time Fourier transform
of G,. We expand ¥, in symmetrized plane wave states

Yo(x,) = 2= Spal®)cpalt),

where S;,q(%) represents a plane wave of momentum p
in the extended zone scheme and at symmetry points is
a symmetrized combination of plane waves belonging
to the irreducible representation a. For convenience «
also labels the spin state. In terms of the operators

Cpa, from (3.1) and (4.5) we obtain
Go(x's )= 2 (0] T{cpa(r)cya'(0)}]0)
ppaa’
X[PoSpa(®) ILPS yre (#)J*. (3.1)

Thus, an expansion of ¥, in symmetrized plane waves
leads to an expansion of G, in orthogonalized plane
waves.

It would have been possible to expand ¢, directly
in orthogonalized plane waves

Vo(2,) =20 [PoSpa(®) Jepal(t),

where ¢p,« have the conventional anticommutation
rules. This, however, does not completely specify the
Cp.« because the P,S; o(x) are not an orthogonal set.
The role of ¥ and H.s is to allow a complete specifica-
tion of the ¢p,a. The term (0| T{cpa(7)cpa'(0)}]0) is
just the Green’s function of the auxiliary field ¥o(x,t)
in the symmetrized plane-wave representation. Since
we will be interested in the excitation energies we will
consider only the diagonal terms,

Go(pa,7) = 1(0| T{cpa(7)cpa' (0)}|0). (5.2)

It is important to recognize that the ground state of
the auxiliary system corresponding to ¥ and Hss is not
identical with the ground state of H,. Nevertheless,
the ground state of the auxiliary system may be used
in Eq. (5.2) and henceforth we will understand |0) in
this sense. This may be seen from Eq. (4.10) in that
H . differs from H, by the addition of arbitrary core
part which commutes with H,. The ground state of
Hess differs from that of the valence electron system
in a factor on which ¢, does not operate.

The effective Hamiltonian (4.12) can be written in
terms of the operators cp=cpa:

Hegr= Z’{GP(O)apr"*“(Sr' I [V(x)—Vd] [ Sp>+<5p' [ P.AP, ' Sp)}er (Dex(t)

+1

p1p1’ p2p2’

8 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

2 (PuSp,PuSpy l V2! PS5, PuSpa)ep () py (D) cpa(t)cp(£) — Z](PvSP’ U, | PuSp)ep(t)ep(®), (5.3)

9 F, Bassani and V. Celli, Nuovo cimento 11, 805 (1959). F. Bassani and V. Celli, J. Phys. Chem. Solids 20, 64 (1961).
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where
€O =p2/2m+V, (5.4)

and V, is a constant which can be chosen in the most
convenient way. We write Hos=H,+H' and for the
unperturbed part take

Ho=3"p e,0c, (O)c(D). (5.5)

The time Fourier transform of the Green’s function of
the unperturbed system in the symmetrized plane wave
representation can be written as

(=)
po— ep@+in,®’
7, P =(0+) for €V>er®,

=(0—) for

GO(O)(P’PO) =
(5.6)

0 <ep®,

For the perturbed system the diagonal part of the
Green’s function will have the Dyson equation form,

(=)
po— e —2(p,p0)

where Z(p,po) is the diagonal irreducible self-energy,
which may have an imaginary part. The poles of
Go(p,po) are the solutions in the po plane of the
equation,

Go(p,po)= 6.7

po= e +2(p,po). (5.8)

VI. CHOICE OF THE ARBITRARY OPERATOR g
AND REDUCTION TO THE O. P. W. METHOD

We now return to the arbitrary self-adjoint operator
g (or A) first introduced in Sec. IV. Only the core pro-
jection of g is of concern to us, and this is completely

(=)

2 (k| Prn | kH )0 | i (0)cin (0) | 0)+

ne PO*gkﬂc"*’“? »

Accordingly, the gin, appear as arbitrary frequencies in
the auxiliary field and arbitrary poles of Go(kk,po). To
circumvent this difficulty, we choose

Zine=Exn

for all ., where Ey; is the solution of the Dyson equa-
tion, that is the physical excitation energy of the
valence electrons. In this way the nonphysical poles
associated with g,, are made to coincide with the
physical pole. Thus, the parameters gg,, are inde-
pendent of 7. but differ for different valence states &k.
This choice is identical to that of the conventional
O. P. W. method.

While this choice is a convenient one, it is also a
necessary choice if perturbation theory is to be used.
It is shown in the appendix that for any other choice
of g, the core projection of the one particle eigenstates
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specified by the matrix elements {kn.|g|k'n.) between
core states, which are now labeled by a reduced zone
vector and a band index. We must choose g to be
diagonal in &, since everything else is, and can choose
it diagonal in #.. Nothing new can result from taking
g nondiagonal in the |kn.). Then we have

PUgPC: Z gkﬂcPk"u

kne

with

gene= (kne|g|kne), (6.1)

Pknc= Iknc><kngl .

The gis, constitute a finite set of adjustable parameters.
We note that their number is equal to the number of
core states, so that the arbitrariness at our disposal
while considerable is nevertheless limited. In our selec-
tion of the gxn, we are guided by the choice appropriate
to a system of electrons in the external lattice potential
but without two-body interactions and here first de-
scribe the analysis for that case.
Using (6.1), the solution of (4.7) is

P0¢0<x)t) = }: exp(_igk"ct)Pkﬂc 0(90,0). (62)
knc

We can isolate the arbitrary time dependence in
Go(x,x’,7) by writing via (4.1)

Go(w,a”; 7) =1 (0| T{ (7)o" (+,0)} | 0)
+i0| T{[Pabo(x, 7)o (+,0)}|0).

In an extended zone scheme we write p=k4%, Sp=Skis,
¢p=crn, where £ indicates a reciprocal lattice vector.
Due to the second term on the right-hand side of (6.3),
Go(kh,po) contains the terms:

(6.3)

(=)

Do—grn,— 1M Rk

| i, 110 cia? 0)cins(0) [ 0) }

of the ¢, field for valence state k% vanishes. Therefore,
this eigenstate would be exactly the Hartree-Fock
valence state wave function and the advantage of the
O. P. W. method would be lost.

Remembering that we expand y, in plane waves, the
point of practical importance for the convergence of
the procedure is that the one-body effective potential
(V+P.4P,) with the O. P. W. selection for 4 behaves
like a very smooth potential for crystals with covalent
bondings. Accordingly, although the repulsive part of
the potential P.4P. is nonlocal and eigenvalue de-
pendent, various simplifications have been attempted.
Phillips and Kleinman,® and Antontik!® approximate
P.AP, with a local potential, which can be useful for

10 E. Antondik, J. Chem. Phys. Solids 10, 314 (1959). Czech.
J. Phys. 10, 22 (1960); 4, 439 (1954).
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qualitative considerations and interpolation schemes.
Cohen and Heine!! suggest a nonlocal but eigenvalue-
independent expression of the form (—P,V) which is
not Hermitian. The Hermitian expression (—P.VP,)
could be chosen, which would correspond to choosing
for the arbitrary operator g in our case the kinetic
energy operator p%/2m. The errors involved in these
approximations are eigenvalue dependent and are ex-
pected to be larger for higher energy states.

The problem of choosing the arbitrary part of the
Hamiltonian when two-body correlation terms are
present is not as simple as in the one-body case. A
reasonable generalization of the consistency require-
ment which we have there suggests that in the more
general case we choose for g the real part of the pole
which gives the excitation energy of a given quasi-
particle state. When the solution of the Dyson equation
is Ekh—}—il‘kh we require gknczEkh~

A more general formulation could be made by
stipulating that the arbitrary core-space operator of
(4.7) which determines P include two-body terms in
Pabo. An arbitrary self-adjoint two-body operator which
has no valence projection could be included in H s

H'= 3 <Sp1’

»1’,p1

p1'p1

+1

p1’ p2’ P1P2

The first two terms on the right-hand side of Eq. (7.1)
represent a one-body effective potential while the last
two terms together represent the residual interactions.
The one-body effective potential is the lattice potential
plus a nonlocal repulsive potential which depends on
the excitation energies, as discussed in Sec. VI.

We can expand the exact Go(p,po) in a perturbation
series whose terms are classified by the linked cluster
expansion.! All terms appearing in this expansion can
be represented by Feynman diagrams in which a solid
line indicates a zero-order Green’s function Go@(p,p0)
while wavy and dotted lines represent one-body and
two-body interaction matrix elements, respectively. A
two-body interaction line will connect two solid lines,
while a one-body interaction will have only one end
attached to a solid line. Detailed rules for suchdiagrams
are given in standard reference books.!? We here call
a diagram irreducible if it cannot be separated into
two disconnected parts by breaking a single solid line
of momentum p and frequency po. The self-energy =
appearing in Eq. (5.7) contains only irreducible dia-

11 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

12§ M. Jauch and F. Rohrlich, The Theory of Photons and
Lilectrons (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955). H. Bethe, S. Schweber, and F. D. DeHofi-
mann, Mesons and Fields (Row, Peterson and Company, Evan-
ston, Illinois, 1955), Vol. I.
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without affecting the valence field or invalidating the
commutation rules. The arbitrary poles as well as the
physical pole of Gy(p,po) would then be complex. The
core-state matrix elements of this two-body operator
would provide an additional parameter set which
presumably could then be adjusted to make the arbi-
trary poles coincide with the physical pole in the
imaginary as well as the real part. Detailed specifica-
tion of such a two-body core operator is, however,
quite a complicated matter.

We follow the simpler prescription of requiring con-
sistency in the excitation energy only, since I'y<KEn
and it is generally a good approximation to assume that
E(Ekh+i1‘kh, kk)ﬁE(Ekh,kh)

VII. EXCITATION ENERGIES AND LIFETIMES
FROM THE PERTURBATION EXPANSION
ON THE GREEN’S FUNCTION

The quasi-particle energies and lifetimes of our
system can be evaluated from a perturbation expansion
on the unperturbed Green’s function Go®(p,po). As
indicated in Secs. IV and V we go to the interaction
representation with the perturbing Hamiltonian

{V—"Vo} l5m>cm’t(t)5m(t)+ 2 (Spr l P{g—H.}P, | Son)p T (B)cp(t)

> <PvSm’>PvSm’ l Ve l PvSm;PvSm>C191‘T(t)cpz'4r (Oepa(Dep(t)

- (Pszu’ 1 U, ‘ PvSm)‘;m’T(t)Cm(t)-

p1'p1

(7.1)

grams. The pole E(p)-+iI'(p) of the analytic continua-
tion of Go(p,po) into the lower (upper) po half-plane
for po>u (po<m) gives the excitation energy E(p) and
the damping rate T'(p) of the quasi-particles of mo-
mentum p, where u is the Fermi energy. This pole is the
solution in the complex p, plane of the Dyson equation,

— pot e, +Z(p,0) =0. (7.2)

F1c. 1. First-order Coulomb
self-energy diagram.
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F16. 2. Diagrams giving screening of two-body interaction lines.
All bare interaction lines carry the same momentum g.

The irreducible diagrams include terms to all orders
and can be separated for convenience into those which
include only one-body interactions, those which include
only two-body interactions, and those which include
both. Without loss of generality we consider the rele-
vant self-energy diagrams in a plane wave representa-
tion. When the symmetrized combinations of plane
waves are used a linear combination of such contribu-
tions is obtained.

Before specifying which diagrams we shall retain as
contributing to Z(p,p), we must settle the choice of
U.,, the screening of interaction lines, and the choice
Of Vo.

It is most convenient to choose U, so as to cancel
the divergent part of the Hartree term represented by
the diagram in Fig. 1. The divergent contribution of
this diagram is

V2(0)[1—(p|P:[p)]

’

. arp " 0)}
x|y [ SRR 03

where IV is the total number of electrons in the aux-
iliary system, and f,® is the Fermi function for the
unperturbed system. The term in curly brackets is just
the number N, of valence electrons. There is also a
finite contribution from the diagram of Fig. 1 which is,
however, of second order in matrix elements of P, and
we shall neglect it in our discussion. Taking U, con-
stant, the first-order contribution of the last term of
(7.1) is

—(p|PUP, | p)=—U[1—(p|P:| p)].

The Hartree divergence is canceled by choosing

U,=Vy0)N,.

(7.4)

(7.5)

On physical grounds we expect that all interactions
should be screened by the two-body interactions. The
mathematical expressions for this screening are more
complicated than in the case of the uniform Fermi gas
because of the projection operators which appear in
the two-body interaction of Eq. (7.1). By using a small-
core approximation, which consists in neglecting inte-
grals of the type (#,,(1),p'(2)| Va|ua,(1),p(2)) as in
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Sec. II, the two-body operator in (7.1) becomes

'% Zm'm'mmq V2(Q)<P21—9l PV|P2>
@1,+q | Pv l p1>GP1'Tc?2’TCP25P1' (76)

The difference of (7.6) from the case of the uniform
Fermi gas is entirely contained in the P, matrix ele-
ments, and these can be associated with the vertices
at ends of two-body interaction lines. The selection
rules arising from these vertex factors are, for example,

(#'=q|Py| p)=8p—a,ps(p+1| Py p),

where % is any reciprocal lattice vector. Setting P,=1
would give the usual uniform-gas case delta function.
On using these selection rules, (7.6) can be written

3 2o ot V(@ (P +q| Po| pr'+¢+ 1)
X <p2+h2l P, | p2>cp1’fcp2+4+h2T6p26m’+q+hr (77)

Let us consider a two-body interaction line screened
as shown in Fig. 2, where the shaded circles represent
the sum of irreducible polarization parts and all bare
interaction lines carry the momentum ¢. We call irre-
ducible polarization parts all diagrams which cannot
be separated into two diagrams by cutting a single
interaction line of momentum ¢. They are displayed in-
Fig. 3. The dominant contribution to the irreducible
polarization parts is given by the first bubble of Fig. 3
as in the case of the uniform high-density electron gas
(see Gell-Mann and Brueckner).! The series in Fig. 2
then has a simple sum and gives for the screened inter-
action Vs:

Va(g)=V2(q)/ {143V 2(q) P?(g,90)} . (7.8)

The denominator in Eq. (7.8) is the dielectric function
€(q,90). The polarization propagator is given by

P*(g,q0)="P,4"(q0)

dp
=23 /——Go(o)(ﬁ,ﬁo)Go(O)(P—i“h“l“% Po+qo)
wJ o (2m)t

X(p+h|Py| pXp+q|Po| p4-g+1).

If we neglect terms of second order in matrix elements
of P, we retain only the 2=0 term in the summation
in (7.9). Since the integration over p, introduces the
factor fo(1— fpresn), the orthogonality coefficients are
nearly constant over the range of integration and can
be taken out from under the integral sign. We can,

(7.9)

+

 OACOFCD Ol +
ek p + + Q = D

F16. 3. Irreducible polarization diagrams. A slash in an inter-
action line indicates that the momentum transfer carried by that
line differs from ¢ by a nonzero reciprocal lattice vector.
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accordingly, use for the polarization propagator the
simple expression

P*(g,90)=(p| Po| p)av(p+q| Po| p+)avP’(g,0). (7.10)

The quantity P°(q,qo) is the polarization propagator in
the random phase approximation (r. p. a.) for the
uniform electron gas; its explicit expression was given
first by Lindhard.'* The subscript av indicates an
average over values of p within the Fermi sea. Because
the matrix elements of P, are nearly constant with p
we could equally well replace this average by the value
of the matrix element at any p so long as it is not too
far above the Fermi momentum. It can be shown that
diagrams similar to those of Fig. 2 but in which the
final bare-interaction line carries momentum transfer
¢'#q give rise to contributions which are of second
order in matrix elements of P,.. Therefore, we will use
(7.8) for the contribution of a fully screened two-body
interaction line, which we will represent by a double-
dash line.

For q=Fkq+%,4 lying on the surface or outside of the
first Brillouin zone Vi(%y)>V(g) will appear in the
slashed interaction lines in the strings of bubbles indi-
cated in Fig. 3. The dominant contributions of these
terms are those for which Va(k,) appears in every
slashed interaction line. The resulting correction to the
polarization propagator (7.9) is

Va9
(pt+q| 0] )= P+ V| p)wrconca= (p+q| V1 P>—l—(~—)<1>i P,| ?)2/

€(q,0

We can remove the P, matrix element from under the
integral sign just as in deriving (7.10). For the local
part O of U we then find, for g0

VE(Q)=(p+q| V%] p)=TV~(q)/e(q,0).

The simplified screening contained in (7.12) has the
same form as that obtained by Cohen and Phillips’ by
imposing self-consistency to first order in the O. P. W.
method and approximating the one-body interaction
by a local potential.

We choose the constant Vy to be the space average
of the local part VZ of the lattice potential. This removes
from the perturbation the term VZ(0), which cannot be
obtained from formula (7.12). The computation of this
term is discussed by Herman'® and by Woodruff,® who
also include exchange in the local part of the potential
by using the Slater approximation.

In applying the screening described above to the

(7.12)

13 J. Lindhard, Kgl. Danske Videnskab, Selskab, Mat.-fys.
Medd. 28, 8 (1954)
14 H, Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

XGo®(p'+q, po)p'+a| Po| p'+9) " +a V1l ).
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F16. 4. Screening of one-body interactions.
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— 1Pk, "Valkq) Pry, o {1+1Vo(ke) Pry "}

where Pr,,,” is the contribution of a bubble which does
not conserve momentum and Py, . is the contribution
of a bubble which preserves momentum. The term
Pyr," is first-order small compared to Py, ,° so that
this correction is second-order small with respect to
the polarization propagator (7.9) and can be neglected.

The one-body potential will also be screened by the
two-body interactions. Cohen and Ehrenreich!* have
shown that such screening is, to first order in the ex-
ternal field, equivalent to self-consistency in the
Hartree-Fock approximation. A general expression for
the screening of the one-body potential in the r. p. a.
can be obtained by summing the two diagrams of
Fig. 4, where on any interaction line the energy transfer
is zero and the three-momentum is a reciprocal lattice
vector. To first order in both ¥ and P, the screened
one-body interaction is

dp
(2m)

460(0)(P’,p0’)

(7.11)

effective one-body potential we must use some caution.
The effective potential in first quantization form is

V+Pc(g"H1)Pc,

and all terms should be screened according to formula
(7.11). However the repulsive potential is determined
by the choice of core-state eigenfunctions and eigen-
values and all screening is included if these are chosen
self-consistently. In practical calculations Hartree-Fock
results, when available, are used for the core states.

———————x
————————
+

%

[ S Yy

F16. 5. Low-order irreducible self-energy diagrams. The slash
on the particle line indicates that the momentum carried differs
from that carried by the incoming line by a reciprocal lattice
vector.

15 F, Herman, Phys. Rev. 93, 1214 (1954).
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With the above definition of the one-body and two-
body interaction matrix elements one can, in principle,
compute all the irreducible self-energy terms and solve
Eq. (7.2) for the excitation energies. In practice, we are
limited to a few terms in the self-energy and an approxi-

ROBINSON, GOODMAN, AND SCHRIEFFER

mate solution of the Dyson equation. We propose to
consider the diagrams in Fig. 5 only; this is an extension
of the usual energy band theory to include correlation
effects within the r. p. a. and to first order in matrix
elements of P.. Equation (7.2) in this case is

E(p)+il(p)= &, O+ (Sp| (O—=Vo) | Sp)+ 2 [E(P)"'Enc](‘sp 20 (thns | S )

(S ol (0= Vo) |Sp)+2ne LE(D)— En, KSp | thn,)(ttn. | S} |?

+2

p'#p

E(p)— ey ®

d'q
—i | ——Go@ (p+q, E(p)+q0)Va(g,90)(p | Pu| p){p+4| Pu| p+g). (7.13)

(2m)*

Equation (7.13) can be solved by iteration by replac-
ing E(p) with a perturbation expansion E(p)=E©®(p)
+E®(p)+- -+ and considering, as usual, matrix ele-
ments of V and P, first-order small. The first four terms
on the right-hand side of Eq. (7.13) will give the
perturbation expansion obtained by Bassani and Celli®
from the O. P. W. method, while the last term is a
correction due to exchange and correlation between the
valence electrons. The main contribution to this last
term is just the free electron self energy for po=E, with
modifications involving matrix elements of P.. The
magnitude of this correction has to be assessed by an
explicit calculation.

VIII. CONCLUSIONS

We have developed a formalism in which the O. P. W.
method is generalized to deal with many-electron prob-
lems in solids. The basic assumption is that core states
are dynamically independent of the valence electrons
and are adequately treated in the one-electron approxi-
mation. In consequence a model wave field has been
introduced whose valence projection is the valence wave
field of the physical system, but whose core projection
can be chosen to facilitate the use of low-order perturba-
tion theory. A major advantage of the scheme is that
one can work with field-theoretic techniques using in
zero order the Green’s functions for plane waves. One-
and two-body interactions enter on the same footing in
a joint perturbation expansion of the single-particle
Green’s function. This allows some flexibility in the
choice of the one-body interaction.

The formalism is adapted to practical computations
in that efficient use can be made of experience gained
both in O. P. W. calculations and in calculations on the
uniform electron gas. For example in (7.13) one can use
electron gas results in computing the screened exchange
term and existing O. P. W. results in the one-body terms.

With respect to previous work the present approach
offers a twofold practical advantage. On the one hand,
we can improve band structure calculations by including
some dynamical correlations between valence electrons.

On the other hand, we include effects of the crystal
structure on the dielectric function, e.g., (7.10), and
on plasmon frequencies.

APPENDIX

We give here two different proofs of our assertions in
Sec. VI regarding the choice of the arbitrary parameters
Zin,. In the presence of only the external one-body
interactions the operator which gives the irreducible
self-energy as defined in Sec. VII is

2(po| kI)=V L14+G O (po) 1—Pr) V. ]
=Ve=V GO (po) 1—Pin)Z(po| kh). (A1)

We have written

V.=V—Vot+P.(g—H)P,, (A2)
GO (po)=(—)[po—Hotin(1—2Pr )], (A3)
7=0+,
Pun=|kh)(kh|, (A4)
PF(0)=§ Pir for en@<er®.
From (A2) and (6.1) we have
OV o/ 3gkn,=Pin,- (AS)
On differentiating (A1) and using (AS) we obtain
IZ(po| kh)/0gin,=[1+V (1= Pra)GO (p) I
Pin [14+GO(po)(1—Pr) V. ] (A6)
The full effective one-body Hamiltonian is
H=H+V .=P,HP,+PgP,, (A7)
and its appropriately normalized eigenstates are
[vin)=[14G O (po) 1 —Pr) V.. I | k),
(Rl | veny=1. (A8)
The energy shift, or irreducible self-energy, is just
2 (khpo) = (kh| Z(po| k) | RY= (kR| V.| ois).  (A9)
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Accordingly, (A9), (A8), and (A6) show that
OZ (kh,po)/ Ogkn,= | (kmo|vin)|*.

We obtain another expression for the derivative of
the energy shift by differentiating the Dyson equation
and the full Green’s operator corresponding to H. The
full Green’s operator is

G(po)=(—)[po—H+in(1—2Pp) ],  (All)

where Pp refers to the Fermi surface of the perturbed
system. Since

(A10)

Hlkney=gin. | kn.), (A12)
we have
G(po) | kne)=——| bn.). (A13)
pﬂ*glrn,c
Differentiation of the identity
G(po)GH(po)=1
then gives
aG(PO)/aglch: "‘G(PO)[aG‘l(Po)/agm,ch(p()%
= —G(po)Pra G(p0), (A14)
== (P(]—gk'u‘.)ugl)];,yc.
Hence,
aG(khrPO)/agknf: - l <khlknc> [ 2/(170—“gkn0)2. (AIS)

Differentiation of the Dyson equation now yields
02 (kh,po)/ dgkn.

= —[G(kh,po) 1L 0G(kh,p0)/ Ogkn. ]
[ékh(")*}-z(kh;PO)"Po

gkne— Po

:rl (khlkncy|2  (A16)

Now take gin,# Ern and let po go to the root Ex of
the Dyson equation. According to (A16) and (A10) the
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energy shift 2(kh,Ey;) is independent of gi,, and the
eigenstate |vys) is orthogonal to |kn.). We have thus
substantiated our statements in Sec. VI, essentially by
explicit construction to all orders of perturbation theory.
A succinct nonperturbative demonstration follows
upon expanding the auxiliary field operator ¥, in a
complete set of eigenfunctions of Ho+V,. We write

Yolx,) =§(x|vm>bkr(i),

(HotV ) | vke) = ke | V), (A17)
bir() = €74y, (0).

The solution (6.2) of Eq. (4.7) gives, in this
representation,

Pknc 0(x7t) = exp(“itgkng)zr<x[ Pknc I vk1>bkr(0)- (Alg)
On the other hand, projection of (A17) gives
Progbo(x,t) =3 e (x| Pry, | v2r)r,(0).  (A19)

Since the b4,(0) are independent operators we equate
coefficients in (A18) and (A19). Therefore, we see that
for each kn. either

(kne|viry=0 for all 7, (A20)
or for some one 7’
ghne™= €xr',
(o v )50, (A21)

(kng|vrry=0if 7' =7

In consequence, the O. P. W. choice of the gin, is a
consistency condition, necessary if the expansion of ¥,
is to contain any smooth functions. As indicated by
(A21), the desired smoothness can be secured for one
band index at a time.



