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crystals (Figs. 4—6) one weak absorption band is ob-
served in each case. The frequency of this band, which
is called os in Table I, is close to both vt(TO)+vio and
3v1. After subtracting out the background absorption,
the strength of this band is approximately an order of
magnitude less than the two phonon combination band
at v2. Exact agreement is not expected between the
values of 3oI (or vi+oio) and os since vI is the TO fre-
quency at zero wave vector which may differ considera-
bly from the TO frequency in other parts of Srillouin
zone. The question may be raised as to why the 2v& was
not observed for any of these materials. The frequency
of this band places it beyond the spectral range of the
transmission measurements, and it occurs very close to
the minimum in the refI.ectivity curves. Assuming the
strength of this band to be the same as that of the J 2

band, calculations showed that it would be very diffi-

cult to observe in the reQectivity.
As previously indicated, several sharp emission lines

of Sm + in CaF2, SrF2, and BaF2 were followed by a
group of lines which were considered to be the result of

interactions with the host lattice. One of the two

strongest satellite lines in SrF2 and BaF2 is separated
from the sharp electronic (magnetic dipole) transition

by 216 and 186 cm ', respectively. These values agree

very well with the measured TO frequencies of 217
cm ' and 184 cm ', indicating that the Quorescence

occurs to a vibrational level above the terminal elec-

tronic state. In SrF2, a weak satellite line with a sepa-
ration of =90 cm ' is observed and a relation to the
v =99 cm ' discussed above is likely. The fluorescence

of Sm++ in CaF2 is quite different from that in SrF2 and

BaFs. The major emission line of Sm++ in CaF, (14 118
cm ') corresponds to an electric dipole transition in-

volving a lattice vibration. The vibrationa] structure
following this intense line has several distinct maxima.
One of these maxima is separated from the main

fluorescent line by 250 cm ' (at 77'K), which is close
to the observed TO frequency of 257 cm '. Therefore,
vibrational levels occur for Sm++ in all three Ruorides

which can be identified with the TO mode of vibration
of the host lattice.
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The coeKcients 8, C, and D of the weak-Geld magnetoresistance in n-type germanium are calculated in

the phonon-induced hopping region at low temperatures. The shrinking of each donor wave function by a
magnetic Geld decreases the transition probability of electrons from a donor site to an unoccupied one and

gives rise to a magnetoresistive effect. The phase difference produced by the Geld between two neighboring

donor wave functions contributes to the magnetoresistance to the same order of magnitude as the effect of
the shrinking. The results show some characteristic properties of 8, C, and D different from those of electrons

in the conduction band: (1) The absolute magnitude of the coe%cients is larger for specimens utith smaller

carrier mobility; (2) the magnitude is much larger than that expected from the usual transport theory of

conduction electrons; (3) the isotropic part of the coefficients It is the largest; and (4) the coetficient D,
which represents the anisotropy of the electronic motion, is the smallest among the three coeScients. These

properties are in qualitative agreement with recent experiments in a slightly higher impurity concentration

range in n-type germanium.

I. INTRODUCTION

'HE theory of weak-field magnetoresistance was
developed for conduction electrons in m-type

germanium by Abeles and Meiboom' and Shibuya. '
By introducing a many-valley model with an aniso-
tropic effective mass in each valley, verified by
cyclotron resonance experiments, ' they could explain

*Supported in part by the National Science Foundation.
)On leave of absence from the Electrotechnical Laboratory,

Nagatacho, Tokyo, Japan, where this work was begun.
I B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).
s M. Shibuya, Phys. Rev. 95, 1385 (1954).
3 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368

(1955).

the large anisotropy of the magnetoresistance in e-type
germanium.

A phenomenological relation4 between the electric

field E and the electric current J in a weak magnetic

field H,

K=poPJ+A JXH+&II'J+CH(J. 8)+DMJ), (1.l)

holds generally in cubic crystals such as germanium,

where po is the resistivity in zero magnetic 6eld and

' F. Seitz, Phys. Rev. 79, 372 (1950).
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the tensor M is given by

Hx' 0 0
M= 0 Hss

. 0 0 83'.
(1.2)

' T. Holstein, Phys. Rev. 124, 1329 (1961).' G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).

when the coordinate axes coincide with the cubic axes
of crystals. Since the relation (1.1) can be derived
from the thermodynamics of irreversible processes and
the crystal symmetry, its form holds beyond the
limits of applicability of the theory of the galvano-
magnetic effects based on the band theory of electrons.
Therefore, we may use (1.1) in impurity conduction.

For the later discussion we clarify the physical
meanings of the coefficients 2, 8, C, and D in (1.1),
which is most easily illustrated by the simple case of
Maxwell-Boltzmann distribution of electrons in a con-
duction band with spherical energy surfaces and
constant mean free path. 4 The coefficient A is propor-
tional to the Hall coefficient, which is not considered
in this paper. ' The coeKcient 8 represents the isotropic
part and determines the transverse magnetoresistance
in this case. The coefficient C is negative in sign and
contributes to the magnetoresistance only as combined
with the 8 and D terms. The relation C= —8, which
holds in the present case, means zero longitudinal
magnetoresistance. The coe%cient D becomes zero in
this case, since it represents an anisotropy of the
electronic motion.

According to the theory of Abeles and Meiboom'
and Shibuya, ' the characteristic properties of 8, C, and
D in e-type germanium can be summarized as follows.

PA.Ij The coefficients 8, C, D are proportional to
the square of the mobility of electrons. This property
does not depend on the band structure of e-type
germanium, but is common to electrons represented by
nonlocalized wave functions in the usual energy bands.
In other words, this is deeply related to the curvature
of electron orbits by the Lorentz force.

PA.II) The relation C= 8holds un—der the
assumption of acoustic phonon scattering of electrons.

PA.III) The relation D—28 holds. This strong
anisotropy results from the strong anisotropy of the
effective mass of electrons in the conduction band,
which consists of the four spheroidal energy surfaces
with axes in the $111$directions.

Most of the electrons are in the conduction band at
room and liquid nitrogen temperatures and show a
behavior following approximately the properties fA.IP
LA.IIIj.'

At liquid helium and lower temperatures, however,
electrons are frozen into the donor impurity levels
(at lower impurity concentrations, ED&10" cm ') or
into the so-called impurity band (at higher concentra-
tions, Xn&10" cm '), to which the usual transport
theory cannot be applied. The situation at the lower

concentrations is particularly diiferent from that in
the conduction band. Electrons in the donor levels
can be represented by localized wave functions with
di6erent potential energies, induced by compensating
acceptor impurities. In an applied electric Geld, elec-
trons can hop to nearby vacant sites by the emission
or absorption of phonons to conserve the energies.
Many experimental and theoretical papers' 8 have
been published on the transport properties associated
with such phonon-induced hopping in zero magnetic
Geld. The agreement of the theory with the experiment
seems to be satisfactory apart from certain unsolved
problems. It is therefore desirable to study in detail
the eGect of the magnetic Geld on the hopping process,
using the same model that has been successful in zero
magnetic Geld.

Some interesting papers have already been published
on this subject. The eGect of a strong magnetic Geld
on an isolated donor wave function was theoretically
studied by Vafet, Keyes, and Adams, ' who showed
that the hydrogen-like wave function shrinks more or
less in all directions in a suKciently strong magnetic
field. Sladek and Keyes' " measured the strong-field
magnetoresistance of m-type indium antimonide and
germanium at low temperatures and interpreted their
results phenomenologically in terms of the shrinking of
the donor wave functions. Miller and Abrahams"'4
discussed the weak-field magnetoresistance using a
hydrogen model of the donor wave function, but they
did not give detailed consideration to the magneto-
resistance coeScients 8, C, and D.

Recently, Yamanouchi and Sasaki" have measured
the weak-field magnetoresistance at intermediate con-
centrations between the hopping (or nonmetallic) and
the impurity band (or metallic) regions and found
remarkable differences of the properties of 8, C, and
D from those of electrons in the conduction band.
Even though the experiments" are conGned at present
to the intermediate range, where the conduction
mechanism has not been satisfactorily understood,
one can infer from their results the characteristic
properties of 8, C, and D in the hopping region as
follows.

LB.I) The absolute magnitude of the coefficients
is larger for specimens with smaller carrier mobility.

7 N. F. Mott and W. D. Twose, Advances in Physics, edited by
¹ F. Mott (Taylor and Francis, Ltd. , London, 1961), Vol. 10,
p. 107;see this review article for a comprehensive list of references.

Recently, the two-phonon process was discussed by J.
Mycielski /phys. Rev. 125, 46 (1962)g.

9 Y. Yafet, R. W. Keyes, and E. N. Adams, J. Phys. Chem.
Solids 1, 137 (,1956).

M R. 1V. Keyes and R. J. Sladek, J. Phys. Chem. Solids 1, 143
(1956)."R.J. Sladek, J. Phys. Chem. Solids 5, 157 (1958)."R.J. Sladek and R. W. Keyes, Phys. Rev. 122, 437 (1961)."A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

'4 A. Miller, thesis, Rutgers University, 1960 (unpublished)."C. Yamanouchi and W. Sasaki (private communication)."C. Yamanouchi and W. Sasaki are now performing the
experiment in the hopping region (private communication).
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tB.II) The magnitude of the coe%cients is much
larger than that expected from the usual transport
theory of conduction electrons. The properties [B.Ij
and t B.II] are also expected from the experiments of
Sladek and Keyes" in a strong magnetic field.

t B.IIIj The coefficient 8 is larger than C.
LB.IVj The coefficient D is the smallest among 8,

C, and D.
It is the purpose of this paper to derive the properties

$B.Ij—LB.IV) using the currently accepted model of
the hopping process.

In Sec. II we discuss the various conceivable effects
of a magnetic field on impurity conduction and outline
a simple model for magnetoresistance in the hopping
region. The eHect of the shrinking of the donor wave
function is calculated in Sec. III. In Sec. IV we calculate
the e8ect of the phase difference between neighboring
donor wave functions produced by the magnetic field.
Section V is devoted to discussion of the results.

II. MODEL FOR MAGNETORESISTANCE

There are various conceivable eGects of a magnetic
field on impurity conduction, and it is instructive to
enumerate these to clarify the difference between
metallic and nonmetallic conduction. At higher im-

purity concentrations, electrons are represented by
nonlocalized wave functions in the impurity band, and
the effect of a magnetic field is somewhat similar to
that on the conduction electrons. (1) The Lorentz
force causes a curvature of electron orbits and gives
rise to a magnetoresistive effect. (2) If there is some
kind of localized spin ordering" "among the scattering
centers for electrons carrying the current, the applica-
tion of a magnetic field may decrease the scattering
rate and lead to a negative magnetoresistance. (3) The
structure of the impurity band may be more or less
sensitive to the impurity concentration, i.e., to the
overlapping of donor wave functions so that a magnetic
field changes the band structure by shrinking the
donor wave function.

On the other hand, there are four different effects of
a magnetic field at lower concentrations. (1) Shrinking
of the donor wave function by the magnetic field
decreases the overlapping of two neighboring wave
functions and gives rise to the magnetoresistance. (2)
The phase difference between two neighboring wave
functions also gives a magnetoresistive effect. (3) A
magnetic-field-induced change of the contributions
from four valleys to the ground-state wave function is

"The idea of the existence of a localized spin ordering in the
impurity band was proposed by Y. Toyozawa (private communi-
cation) to interpret the negative magnetoresistance found by
H. Fritzsche and K. Lark-Horovitz LPhys. Rev. 99, 400 (1955)j;
W. Sasaki and Y. Kanai LJ. Phys. Soc. Japan 11, 894 (1956)j;
W. Sasaki, C. Yamanouchi, and G. M. Hatoyama /Proceedings
of the International Conference on Sem7'conductor Physics, Prague,
1NO (Czechoslovakian Academy of Science, Prague, 1961),
p 1593."A similar effect in the magnetoresistance in dilute alloy was
discussed by K. Yosida LPhys. Rev. 107, 396 (1957)j.

expected in e-type germanium because of the diGerent
magnetic energies of valley minima" and the aniso-
tropic g factors of the donor electrons. " (4) If one
takes into account the excited impurity levels such as
the triplet states of 1s-like levels, " a magnetic-field-
induced change in the electron population and there-
fore a change of the resistivity is expected. When we
consider the zveuk-Geld magnetoresistance at very lorn

temperatures, effects (3) and (4) are of higher order
and are neglected in this paper.

We accept the well-known model of the hopping
process in zero magnetic Geld, which has been developed
by Kasuya and Koide" Miller and Abrahams"'4
Twose, ~ ' and Yamashita and Kurosawa. " We con-
sider e-type germanium with Ã& donors and AT&

acceptors which compensate the Xg donors and have
negative charge. At sufficiently low impurity concen-
trations, the potential energy difference due to the
nearby ionized impurities between two donor sites is
larger than the resonance or transfer energy. Then the
electron is localized on one donor site and can hop
into the nearby vacant site only by the emission or
absorption of a phonon. The transition probability of
the electron from a neutral donor (i) to the ionized
donor site (j) is proportional to the square of the
resonance energy" W:

W =I.—SJ,
I= (@;,( e'/~r;)—@;), —
s—= (0;p';),
J—= (4;,(—es/Kf )4;), '

(2.1)

(2.2)

where f(. is the dielectric constant of the host crystal, r;
is the distance from the donor site (j) to the position
of the electron. The ground-state wave function" of
the donor (i) is written as

(2.3)

where @„(r)is the Bloch function for the pth conduction-
band minimum and F„(r) is the envelope function

F (r) = (wa'b) & exp{—LS'+y')/a'+z'/by&) (2.4)

when we choose the s along the pth valley axis. We
now assume for simplicity that the conductivity is
proportional to a weighted angular average of the
square of W, without carrying out the complicated

' A similar eGect in the piezoresistance was discussed by P. J.
Price LPhys. Rev. 104, 1223 (1956)7 and H. Fritzsche )ibid 119, .
1899 (1960); 125, 1552, 1560 (1962)g.

se See, for instance, H. Hasegawa, Phys. Rev. 118, 1523 (1960);
and L. M. Roth, ibid. 118, 1534 (1960).

"W. Kohn, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 257."T.Kasuya and S. Koide, J.Phys. Soc. Japan 13, 1287 (1958).

~3 W. D. Twose, thesis, University of Cambridge, 1.959
(unpublished).

~ J. Yamashita and T. Kurosawa, J. Phys. Soc. Japan 15, 802
(1960).
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statistical calculation over the random distribution of
impurities. "The changes in 0', and +,„, i.e., in W give
rise to the magnetoresistance.

We must calculate the change in lV for three in-
dependent arrangements of J, E, and H to determine
the three coefficients 8, C, and. D in (1.1). The co-
ordinate system used in our calculation is shown in
Fig. 1, where (1,2,3) are the cubic axes of the crystal
and (X,I',Z) are in the $111), L112$ and $110) direc-
tions, respectively. We choose the current always in
the Z direction and specify three cases as follows.

FIG. 1. The coordinate
systems used in Sec. II and
the designation of valleys.
(1,2,3) are the cubic axes
of the crystal and (X,l', Z)
are in the (111j, L112j,
and t'110) directions.

l
Y

Case I:
Case II:
Case III:

H= (H,O,O),

H= (O,H,O),

H= (O,O,H),

mass equation reduces to

e' eH e'H'
I+ r' sin'0' ~I „(r)

2' xr 2m*c Sm*c'

in the (X,I',Z) coordinate system. From the relation
(1.1), one obtains

(p pp)l co—= (~+sD)H'
= (a+ -',D)Hs,

= (8+C+ ', D)H', -

(Case I)
(Case II) (2.6)

(Case 111)

where p is the resistivity in the magnetic field.

&8 8 ~ 82

+ ———-A„——F,(r) =EP„(r), (3.1)
2 8$ c Kf'

when the s axis is chosen along the Pth valley axis,
where m~*, m~* are the longitudinal and transverse
effective masses, respectively, and A is the vector
potential. In general, the effect of the magnetic field
in an arbitrary direction on the shape of the ground-
state wave function is very complicated and gives rise
to a deviation from the spheroidal shape of (2.4).
Fortunately, the strong anisotropy of the effective
mass of the conduction band, m&~—20m&* in e-type
germanium, permits us to neglect the first term of the
magnetic perturbation in (3.1) and therefore to con-
sider the shrinking of only the transverse spatial extent
by the magnetic Geld. A similar approximation was
made in the phenomenological analysis of the strong-
Geld magnetoresistance by Sladek and Keyes." %e
expect such an approximation to lead to an upper limit
to the value of the anisotropy D.

In the case of a spherical energy surface, the effective-

"We do not take the average oi
~
W ~' over the radial distribu-

tion of impurities in this paper, since the reliable average method
has not been given at present (see, for instance, reference 7, p. 150).

III. SHRINKING OF DONOR WAVE FUNCTION

According to the Kohn-I uttinger theory, " the
effective mass equation for Ii„(r) in a magnetic field is
given by

1 58 e '- 1 -(5 8 e2

————.4, + /

——-A.
f

2pps, * i as c 2pps, * Ki ax c

=L~'F„(r), (3.2)

when one chooses the symmetric gauge

A= —,'H( —y,x,0), (3.3)
where / is the s component of the angular momentum
and 0 is the angle between the position vector r and.
the magnetic 6eld direction. The linear Zeeman term
has no effect in this case, since 1 remains a good quantum
number for the perturbed wave function. In the case
of a spheroidal energy surface, however, the linear
Zeeman term may have some effects except in the
special case where H is parallel to the valley axis.
Qur assumption mentioned above corresponds just to
the consideration of such a special case and excludes
automatically the effect of the linear Zeeman term.

The effect of the quadratic Zeeman term on the
hydrogen-like wave function has been discussed by
Csavinszky26 using an ordinary perturbation method
and by Miller"" using a variational method. Both

"P. Csavinszky, Phys. Rev. 119, M05 (1960). Csavinszky
calculated the shrinking effect on the hydrogenlike 1s function by
an ordinary perturbation method, where the perturbation of the
quadratic Zeeman term mixes the 2s, 3s, 3d„4s, - states into
the ground state. He limited the calcul. ation to the mixing of the
2s function. Our calculation on the same model shows that the
mixing of the excited states has a slow covergency, e.g., if

+=+Ia+&+2s+P%e+
then

a =0 662 (xaPHP/m. Pc'), P =0.206(xaPHP/m*cs),

More seriously, the change of the resonance energy diverges at
the large separation of two donor sites, since the change of W due
to the mixing of the 2s, 3s, 4s, ~ - functions is roughly proportional
to exp( —R/2a), exp( —R/3a), exp( —R/4a), ~ . This tnay be
physically self-evident because the states with higher energies
have the larger wave-function tails at large distances. The same
difhculty of an ordinary perturbation theory and a modiied
perturbation scheme have been already discussed by many
authors Lace, for instance, M. H. Cohen, D. A. Goodings and
V. Heine, Proc. Phys. Soc. (London) 73, 811 (1959)j.» Solving Eq. (3.2) by the variational method with the effective
Bohr radius u as a parameter, Miller'4 obtained the shrinking
effect as

a= L1ap$(sapP/m*c—s)HP j
If we use this in a change of the transverse effective Bohr radius,
we obtain

8 = C= D = ,' (ap/R)PipRP—/m p*cP, —

which is smaller than (3.23) by a factor ~20(ap/R)'-. This is
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'Jr=+ pk1+F (+p ~p)] (3.4)

treatments, however, are not designed to give informa-
tion of the wave function at large distances from the
donor nucleus. We therefore apply another perturbation
method to the problem, which was developed by
Dargarno and Lewis, " and Schwartz. " According to
their theory, the perturbed wave function can be
expressed as

g2R2

2KQ

dv (tt v) e Bv/II

X t 1——,'R9 (tt'+3/tv')],

dv (tip —vp)e /tv/a

(tt, v~pp) and put sin O~ = 1 fol sllrlpllci'ty, we obtain

where the function Ii is given as the solution of an
inhomogeneous differential equation

VpV'F+2(VF) (V4p)

e'R'
XLi —-',R9.(tts+3ttv')], (3.11)

1

dv e /t (v—+~i/ (tat+„)

X[1—-„'R9 (tt+ v)'],

Here K is the perturbation Hamiltonian, i.e.,

g2H2
SC' = r' sin'8

8m*c'

in the present problem, and hence

(3.6)

)I.—=/tH'/24/tt*c'.

The integration of (3.11) gives the results

I. (e'R/su'—)e—~ a(1—R9,/2),
S~(R'/3u')e ~/ (1—2R9,/5),

(3.12)

(3.13)

(epP(."@p)= 'eH' us/4r/*tc .s

Equation (3.5) has the solution

(3 7)
while f e'//tR rem—ai—ns unchanged. Therefore, the
square of the resonance energy becomes

~

W
~

'~ (2e'/3/tu')'R'e '~/ (1—1.1R9). (3.14)
1 f(:H'

F=— Lr' sin'O~+-sr'u(1 —-'- cos'O~) ]. (3.8a)
24 m*c'

xII2
F r' —sin—'O~—(r&)u, sin'Q~ 1). (3.8b)

24 m~c'

If we again neglect the term (+p,E%'p) (u/r)'F in (3.4),
we obtain

1 «H'
e=ep( 1—— r' sin'0

I

24 m*cs ) (3.9)

at large distances from a nucleus. It is to be noted that
the perturbation expansion of (3.9) is invalidated near
the radius r, at which the magnetic energy becomes
equa1. to the Coulomb energy, i.e.,

We neglect the terms of order (u/r) compared with
unity and use the approximate solution

We now assume that an expression similar to (3.14)
can be used in the change of the resonance energy for
our complicated wave functions, since as will be seen
later the main contributions to

~
Wv

~

' come from pairs
in the plane perpendicular to the valley axis, i.e., to
the egectit/e magnetic field in our approximation. Thus,
the effect of the magnetic field to

t Wvj' is given by a
factor

H cos pp,
240 mg*c'

(3.15)

where p„ is the angle between the magnetic field and
the pth valley axis directions. The various assumptions
such as (3.15) made in this section are good to within
a numerical factor of order unity.

The resonance energy in zero magnetic field" is
calculated using (2.1) to (2.4):

e2/Kr = e2Hsr 2 sjn2OH/8r/secs (3.10)
(3.16)

We now proceed to estimate a change in the resonance
energy for one pair of donors in the plane perpendicular
to the magnetic field. If we use elliptic coordinates3

where
=u{(g. .s+y . .2)/u2+s. 2/b2}r/2

=R(1+n cos't) )'/s.

(3.17)

because the shrinking of the Bohr radius is determined by the
magnetic perturbation near the donor nucleus and hence it
underestimates the perturbation at large distances.

"A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1956).

n C. Schwarts, Ann. Phys. (New York) 6, 156 (1959).~ See, for instance, H. Eyring, J. Walter, and G. E. Kimball,
Qttantttm Chemistry (John Wiley tk Sons, Inc. , New York, 1944),
p. 367.

Here, n= (us/bs —1)—20 in arsenic- or antimony-doped
germanium, 8„ is the angle between the pth valley axis
and the direction of the donor pair (i)-(j). One can
see from (3.16) the separate contribution of four
valleys to ~W~s.

We take the angular average as follows. First, we
assume the vacant sites (j) are distributed with equal
probability around the occupied site (i), on a sphere
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TAnLE I. The weighted angular average of
I
W I' in (3.16). TABLE II. The values of cos'w„ in (3.20) for three cases.

Valley No. , p

(R re sn, -ta) /gme-mme

13
(a~/144nR)&

2, 4

(aw/16nR) &

Case

COS tp1
Cos~ ~pm

COS P3
COS tp4

(I)

1/9
1/9

(II)
2/9

2/9
8/9

(III)
2/3
0

2/3
0

E' „exp, 3.1.8

where
P„=1/3 for p=1, 3

1 for p=2, 4. (3.19)

The square of the resonance energy in the magnetic
Geld is obtained by inserting the factor (3.15) into
(3.18),

11 aE.' 4

H' P P„cos'y„, (3.20)
640 m g~c' u=&

(3.21)

where the values of cos'y„of each valley for three
cases of the magnetic field are given in Table II.
Using the relation in our simple model,

P Po ( I Wo I
')-

p, (I wI'), „
and comparing with (2.6), we obtain

8= C=D= (11/720) (KE'/m—g*c').

(3.22)

(3.23)

We conjecture that the anisotropy term D is the smallest
among the three terms because of an overestimation of
the mass anisotropy in our approximation.

IV. EFFECT OF PHASE DIFFERENCE BET%'EEN
TWO DONOR %'AVE FUNCTIONS

with the radius of the average donor separation E.
Secondly, the weight of the pair contributing to the
current is taken into account by multiplying by the
square of the direction cosine of the angle between the
pair and the current direction. " Thirdly, the average
is taken over the hemisphere in the current direction.
On account of the large anisotropy (rr))1) in the
exponential term of (3.16) the main contribution to
IWI' comes from the pairs with 8~—7r/2. From a
simple geometrical calculation we obtain the weighted
average of R„' exp( —2R~/a) for each valley in Table I
(see also Fig. 1 for the designation of valleys). Thus,
we can write

be chosen arbitrarily, usually at the position of the
donor nucleus Lsee (3.3)j. In the two-donor problem
we must fix the origin at a point, for example at the
donor site (i), then the wave function for the site (j) is
altered by a phase factor"4"

ieH
exp (x, y' —y, a')

.20k
(4.1)

where the linear term of Bvanishes in the course of the
calculation of O'. Thus, we must include the quadratic
term in the integrand of J. and 8 in (2.2), while

when the coordinate system is so chosen as the s' axis
is in the direction of the magnetic 6eld. The phase
factor (4.1) does not change the physical properties of
the donor (j), but affects quantities relating to two-
donor wave functions such as the resonance energy.
This effect on the magnetoresistance was discussed
first by Miller" using the hydrogen model of donor
impurities. In this section a somewhat detailed calcu-
lation will be carried out in n-type germanium to
determine the magnetoresistance coeKcients 8, C,
and D.

When the line between two donor atoms is in the
magnetic field direction, there is no effect of the phase
difference because xg=y;, =0. On the other hand,
when the pair direction is perpendicular to the held
direction, the phase difference leads to a magneto-
resistive effect. This effect may be interpreted in semi-
classical terms as follows. As an electron moves from a
site (i) to the site (j), its orbit is curved by the magnetic
field in the plane perpendicular to the field direction;
usually this effect is represented by the Lorentz force
in band conduction. Such an effect may remain in the
quantum transition in the present problem and disturb
the ease of the transition. In a weak magnetic field
this effect contributes to the magnetoresistance sepa-
rately from the shrinking of the wave functions, i.e., the
magnetoresistance is given by the sum of the two effects.

In a weak magnetic field, (4.1) can be expanded as

ieH
1+ (~'~'y' —y'~'~')

2'
1 8H)2

I (x y'-y; '~')'+ " (4.2)
2 2ca)

When we consider on donor wave function in a»E.Kemble, TheFNndumentalp
' '

/ fQ t M cha 'c
magnetic field, the origin of the vector potential A can. (McGraw-Hill Book Company, Inc. , New York, 1937), p. 29.



1960 N. M I KOSH I BA AN D S. GON DA

J~(—e//rR) is n.ot changed by the phase factor.
Using Eulerian angles (P,g,oI), we obtain the phase
factor in the coordinate system in which the s axis is
in the pair direction,

1 eH)2
1——

~

R 2 sinsco (x cosp+y sing) 2,

2 2') (4.3)

where g can be arbitrarily chosen, for example @=0.
Now, making use of elliptic coordinates" (p, p, s2) we

obtain for one pair of donors,

e'
c
—ip. R

K7t a y=l 4

Thus, we obtain for the square of the resonance energy

3a// c2 ' eRII '

20E6xa2 2cb p=~

Xexp( —2R„/a), (4.7)

where
~
Wo

~

' is given by (3.16).
The weighted angular average of the last sum of

(4.7) can be performed in the same way as in Sec. III,
using some geometrical considerations. The results are
given in Table III. Using (2.6), (3.22), (4.7), and
Table III we obtain the magnetoresistance coe%cients,

9e ~E.'
1 g 2

dp (p —V)e R&'"/

XL1—
sx(M„)2(p2 —1)(1—p2) cos' v ],

8=
320 mg~c'

C= 328 D

where e is defined by the relation

(4 8)

4

c—/p. R

xa' u-& 4

1 g 3

(+2 &2)& Rpp/a—
8

(eu'/AC)'= e (xu'/2/sg"C') (4 9)

TABLE III. The weighted angular average of (sin2~)R~'
X exp( —2R„/a) in (4.7). The unit is (1/72) (2rg/4nR) &R2

X exp( —2R/u).

e—0.67 for Sb-doped and —0.56 for As-doped german-

X[1——,'(&&„)'(/ '—1)(1—p') cos'2 j, (4 4)

where y is the wave number vector of the Bloch
function at the pth minimum of the conduction band.
In (4.4) we put, for brevity,

+Case
Valley No.g (I)

36

28

(II)
7

27
7

35

(111)

9
9
9

k =—(AH/2') since, (4.5)

where co is the angle between the pair line and the
magnetic 6eld direction (see I ig. 2). The integration
of (4.4) is simple and gives the results

ium if we take a(Sb) =69.3 A and a(As) =58.1 A,
respectively.

V. DISCUSSION

S

a'O' E R
X &,+&— — 1+—+

4 a 3a'

pair'

1'xG. 2. The angles used in the
calculation of the resonance energy
The main contribution to the
resonance energy comes from the
pairs with 8—7l-/2.

a2$2 g 2g 2

1+—+ — 1+—+ + (4 6)
a 3a' 2 a Sa' 15a'

Comparison of (3.23) with (4.8) shows that the two
effects, the shrinking of each donor wave function and
the phase difference between two neighboring donors,
contribute the same order of magnitude to the magneto-
resistance. This fact suggests the importance of the
phase-factor effect even in the strong-Q. eld magneto-
resistance, which has been interpreted so far by the
shrinking effect. A simple theory is given for the
strong-field case in a subsequent paper. "

The characteristic properties of the magnetoresistance
coefficients will be illustrated by plotting them vs
the donor concentration X~ and the carrier mobility p.
The concentration dependence of the coefFicients for
the two effects are shown in Fig. 3 for arsenic-doped
germanium, where B„~C~„D, represent the com-
ponents due to the shrinking effect and 8„, ~Ci p, D„
are due to the phase-factor effect. We see that 8,

~

C ~,
D are proportional to 1/JVr2. Moreover, 8„, ~C~ p, D„

"N. Mikoshiba, Phys. Rev. 127, 1962 C'1962).
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have an impurity species dependence through the
difference of a, i.e., the magnetoresistance coefficients
are large for the impurity having large e and small
impurity ionization energy. In Fig. 4 the mobility
dependence of the coeKcients is shown, using a simple
assumption that the mobility is proportional to
(~ Wp~ ) of (3.21), i.e.,

p =y (R/a)s" exp( —2R/a),

7 being a factor independent of K From Fig. 4 one
can see a remarkable difference from the p' dependence
of the coeKcients in conduction electrons.
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FIG. 3. The concentration dependences of B„, ~C~„, D„due to
the phase-factor effect and of B., ~

C~„D, due to the shrinking
eGect. We take for As-doped germanium the values ff:=16,
m&~/ms ——0.0813 (mo', free-electron mass), o(As) =58.1 X and
SD=R o

Generally speaking, the shrinking effect in hopping
conduction corresponds to the magnetic-6eld-induced
change in the band structure or the change in the
effective mass in band conduction. Such an effect is
usually very small compared to that of the Lorentz
force which corresponds to the phase-factor effect in
hopping conduction. A remarkable diGerence in the
mobility dependence of magnetoresistance can be
interpreted as follows. Electrons in the conduction
band experience the Lorentz force over the length of
the mean free path. Therefore, electrons with large

Pro. 4. The mobility dependences of B~, ~ C„, D~ due to the
phase-factor effect and of B„(C ~

„D,due to the shrinking effect
for As-doped germanium. We assume ii, =y(R/o)s's exp( —2R/o),
7 being a factor independent of R.

mean free path or mobility suffer strongly the magnetic
field effect and show a large magnetoresistance. In the
hopping process the mean average distance between
donors corresponds to the mean free path in the
conduction band, concerning the e8ect of the magnetic
field. In contrast to the conduction electrons, the
mobility is not proportional to such characteristic
("memory") distance and is very small in this case.
This difference leads to the different mobility depend-
ence and also extraordinarily large magnetoresistance.

Since there are no experiment in the hopping region
at present, a quantitative comparison of theory with
experiment is impossible. However, the formulas (B.I)—
LB.Iv) mentioned in the Introduction are displayed
qualitatively by our simple model.
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