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Paramagnetic Resonance Line Shapes and Magnetic Parameters
of Polycrystal ine Substances
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A closed-form expression for the paramagnetic resonance line shape of a polycrystalline substance is
derived on the assumption of axial symmetry, a crystallite line shape that is Lorentzian, random orientation
of the crystallites, and a spin Hamiltonian that consists of Zeeman, dipolar and exchange terms only. Some
representative line shapes are evaluated from this expression and are compared with previous, approximate
calculations. An iterative procedure for the derivation of magnetic parameters from polycrystalline spectra
is described. As an example of this procedure the magnetic parameters of polycrysta]line potassium per-
chromate are derivecl.

INTRODUCTION from polycrystalline spectra has involved simply the
comparison of these approximate line shapes with the
experimental curves.

The Lorentzian line shape for a crystallite has been
justi6ed theoretically in the common case of para-
magnetic ions with exchange; in the less common case
of no exchange, the Gaussian line shape is appro-
priate. " ' The delta function is not a realistic approxi-
mation to the line shape of an individual crystallite.
I et us assume that there is no fine or hyperfine inter-
action. Then, in order to study line shapes of polycrys-
talline substances one would like a closed-form expres-
sion based on a Lorentzian line shape of an individual
crystallite and on complete anisotropy. Ke have not
been able to obtain such an expression. On the other
hand, we give here for axial symmetry and a Lorentzian
line shape a closed-form expression for the paramag-
netic absorption line of a polycrystalline substance.
Since axial or near axial symmetry is common, this
expression should be a more useful one for the study of
line shapes than has been given previously.

In order to derive reliable magnetic parameters from

polycrystalline spectra, particularly when there is ap-
preciable anisotropy, it is necessary to carry out a de-

tailed comparison of a physically realistic calculated
line shape with the experimental line shape. An iterative
procedure, applicable to any line shape, is described
here for doing this. As an example, the magnetic
parameters of potassium perchromate, KSCr08, for
which a Lorentzian line shape is justihed, are derived

by this procedure.

' PARAMAGNETIC resonance absorption line shapes
of polycrystalline substances have been studied

by many authors' " in an attempt to understand th
unusual shapes and to determine the magnetic parame-
ters in the absence of single crystals. Calculations of the
line shapes have involved either the drastic approxima-
tion of a delta function for the line shape of each crys-
tallite or the assumption of small anisotropy of the g
tensor (Table I).Derivation of the magnetic parameters

TABLE I. Summary of line-shape calculations.

Crystallite
line shape CommentsReference

1
2,6,7

3
4

g tensor

axial
axial
anisotropic
isotropic

delta
delta
delta
delta ancl

Gaussian
delta,
clelta

axial hfs incluclecl.

anisotropic hfs includecl.

isotropic
isotropic

anisotropic hfs includecl.
zero field (S=3/2)

included.
expression valid only for

small anisotropy,
assumes small anisotropy;

closed-form expression
given for axial symmetry
only; expression identical
with 9.

axial Lorentzian

anisotropic Lorentzian 10

Lorentzian present
work

axial

*Present address: Department of Chemistry, Brookhaven
National Laboratory, Upton, New York.

f Present address; IBM Research Laboratory, San Jose,
California.

'B. Bleaney, Proc. Phys. Soc. (London) A63, 407 (1950);
Phil. Mag. 42, 441 (1951); Proc. Phys. Soc. (London) A75, 621
(1960).' R. H. Sands, Phys. Rev. 99, 1222 (1955).' F. K. Knenbiihl, J. Chem. Phys. 33, 1074 (1960).' S. M. Blinder, J. Chem. Phys. 33, 748 (1960).' H. Sternlicht, J. Chem. Phys. 33, 1128 (1960).' R. ¹iman and D. Kivelson, J. Chem. Phys. 35, 156 (1961).' H. R. Gersmann and J. D. Swalen, J. Chem. Phys. 36, 3221
(1962).

'L. S. Singer, J. Chem. Phys. 23, 379 (1955).
J. W. Searl, R. C. Smith, and S. J. Wyard, Proc. Phys. Soc.

(London) A74, 491 (1959).' A. K. Chirkhov and A. A. Kokin, J. Exptl. Theoret. Phys.
(U.S.S.R.) 39, 1381 (1960) Ltranslation: Soviet Phys. —JETP, 12,
964 (1961)j.

ABSORPTION LINE SHAPE

Let us assume that

(a) each ion has axial symmetry, i.e.,

g,=g„=g„g,=g„, and g'= g„' cos'8+gis sin'0, (1)

where 8 is the azimuthal angle';

"C. J. Gorter and J.H. Van Vleck, Phys, Rev. 72, 1128 {1947)."J.H. Van Vleck, Phys. Rev. 74, 1168 (1948)."J.H. Van Vleck, Suppl. Nuovo cimento 6, 993 (1957)."P. W. Anderson and P. R. Weiss, Revs. Modern Phys. 25, 269
(1953).
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(b) the shape f(a) of the resonance absorption line
of an individual crystallite is I,orentzian, i.e.,

f(H) ~ [(Il H—')'+b') ', (2)

where b is the half-width at half power and H' is the
resonance field;

(c) the linewidth from a single crystallite is inde-
pendent of the orientation of the crystallite;

(d) the crystallites are randomly oriented;
(e) the absorption coefficient K for a linearly polar-

ized rf 6eM and a polycrystalline sample is proportional
to'

K"g '[(g /g)'+1);

(f) the spin Hamiltonian consists of the Zeeman,
dipolar, and exchange terms only.

Then the paramagnetic resonance absorption line
shape of a polycrystalline substance can be written as'

vr/2

I(H) ~ Kf(H) sin8d8.

With the resonance condition

and the definitions

H, =hv/g, P and H„=hv/giiP, (5)

we obtain, upon changing the variable of integration

and tal ing into account Eq. (1), the integrals

Hn (1+H 'H")da'
I(H) ~

, [(H—H)+b)a'(H" —H, ')~

for H() &H, (6a)

I(II)~— (1+H)( 'H")dH'

[(H—H')'+ b')H" (H22 —H")'
for Hi& Hi i. (6b)

It apparently had not been realized before that the
evaluation of (6a) and (6b) is straightforward. Let us
take (6a) as an illustration. Make the substitution.
/=II —B' to obtain

[(H—t)
—'+H(

(

—2)dt
(7a)

(t'+b') (t' —2at+H' —H|2) ~

Note that

[(H—&)-'+H„-')(P+b')-'= A (P+b')-'
+B~(~'+b')-'+~(a —&)-'+D(a—~)-', (8)

where

A= (H' b')(EP+b') —'+H„'B=—C=2H—(H'+b-") '
and D= (H'+b') '. (9)

The substitution of (8) into (7a) leads to an expression
for I(H) involving four integrals, all of which may be
found in standard tables. "In this way we obtain

2bE

Ap2 Bbpg Ap—g+Bbp2 B H, 2r (H, p H,')—
I-2+ 2',+ sin-' ——+D for H„&II„

bI' H~ H 1 I 2 IIg'III'
(10a)

where

AP g+BbP2
I(H) ~ L2+

2bI'

AP2+BbPg —B
Tg — ln

bP H, H, (H2 H, P)&— —
(H22 H)P)&-

—D for H, &H„, (10b)
JIL +II

P—+[(H2 H 2 b2)2+4H2b2)$

P~ +[2=P+2 (H' K' —b'))'—,
(2+b2 —t=H H~—

I.g= ln
81 +C1 —t=H —H)))

'(b/~)+t» '(C' /8 )):H-H'„,
8& =p gt+bg (t2 —2at+H2 —H—,') &,

82 =y2t+82+ (—t2+2at+H, 2—H') &,

yg= (bP2 HPg)/P, 2—
8 =[ Hbp +(H' H, ')p, )—/P, —

P2
— [2P 2 (H2 H 2 b2))$

(2+b2 —t H H2—
I.2= ln—

82 +C'2 —t=H—H(()

72= [ts,n- (b/t) —tan- (C,/8, )),'=H:„;„
C'2= q2t+82,
C'2= Vi&+8~,

~.= (bp.+ap.)/P,
82

——[—HbP, —(H' H, ')P,)/P. —

In the evaluation of I(H) proper account must be taken
of the branch points of arctan and arcsin. "

Equations (10a) and (10b) for various values of H„,
H&, and b have been readily evaluated on an IBM 7090

"See, for example, W. Grobner and N. Hofreiter, Integrcltafel-
Erster Tei/-Uebestimmte Irbtegrale t,'Verlag-Julius Springer, Berlin,
1961), integrals 231.23a, 231.23b, 231.10, 231.9.

computer. The problem was coded in I'ORTRAN, a
symbolic language that is particularly well suited for
the various substitutions involved here. Typical line
shapes for a series of half-widths and Hll=3600 0,
H&=3300 G are given in Fig. 1. The maximum values

' We are indebted to Dr. G. Gioumousis of these laboratories
for a discussion of this point.
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Fro. 1. Calculated EPR (electron paramagnetic resonance)
line shapes. H» =3600 G, Hz ——3300 G.

of the curves have been set at unity; the relative values
of the true maxima are 963:35:3:1for b of 1:10:50:100.
It is not surprising that the curve for b= 1.0 G closely
resembles the curve based on a delta function for the
crystallite shape.

Comparisons can be made with the calculations of
Searl, Smith and Wyard' and with those of Chirkhov
and Kokin. "Both of these groups assumed that

g gr+(gii gi) cos 0)

a form which may be derived from (1) on the assump-
tion of small anisotropy, i.e.,

lg —g I/g«1 (12)

These groups assumed E to be constant Dor their work
preceded Bleaney's (1960) paper j, but this causes
negligible errors at anisotropies consistent with (12).
Closed-form expressions are given by both groups for
the case of a Lorentzian line shape and axial symmetry.
These expressions are identical, although Chirkhov and
Kokin fail to so note. Chirkhov and Kokin point out
that I(H) in their case is a function only of (H—H&)/b
and of (H„—Hi)/b. In Fig. 2 we reproduce the curve
given by Chirkhov and Kokin for (H~, —H, )/b=24,
and also give two curves of our own. (All three curves
have been normalized to unity. ) Agreement with their
work is poor, not only because of the striking diGer-
ences, particularly at high 6eld, between their curve
and ours, but also because our curves do not super-
impose, as is required in their formulation. As

~
K ~

—Hr
~

is decreased, our curves for various linewidths are more
nearly identical and the agreement with the curves of
Chirkhov and Kokin is improved because under these
conditions Eq. (12) is more nearly satisfied. There is
very good agreement between our calculation and that
of Searl et a/. for b=0.51 G, H&~=8508 6, H&=8504 G,
a case of very small anisotropy, although even here
agreement is poorer at the high 6eld side.

directly from the positions of the maximum and the in-
Qection point of the absorption curve. It is necessary,
at the very least, to compare in detail the experimental
curve with curves based on a physically reasonable
crystallite line shape and calculated for a series of
parameters. Although reliable parameters can be de-
rived by such a trial-and-error procedure, an iteration
scheme is to be preferred. The simplest, and in many
ways most easily justified, iteration scheme is a least-
squares procedure in which one minimizes

Z- ~(H) LI-i.(H) —I-.(H) 7, (13)

where the weight u (H) is taken inversely proportional
to the variance of the experimental point at H. An
important advantage of this procedure over the trial-
and-error procedure is that estimates of the errors in
the derived parameters are obtained. Since I(H) is not
a linear function of H&&, B&, and b, one solves not for
the magnetic parameters directly, but rather for the
changes in these parameters from initially chosen values.
SufFiciently reliable initial values can usually be ob-
tained with the delta function approximation.

The iteration scheme, of course, can be applied not
only to the intensity curves, but also to the derivative
curves, if desired. This is frequently a better pro-
cedure, for the experimental derivative curve is re-
corded directly in most experiments and is thus subject
to fewer errors than is the absorption curve, derived
from it by numerical or electronic means.

Clearly, the iteration procedure requires numerical
computation, preferably on an electronic computer.
Then since I(H), or its derivative, can be evaluated
numerically for any form of the g tensor and for any
crystallite line shape, no restrictive approximations are
necessary. In fact, one of the problems is the proper
choice of the crystallite line shape. In the following
example of potassium perchromate we first justify the
choice of a Lorentzian line shape, and then demonstrate
the usefulness of the iteration scheme for the derivation
of reliable magnetic parameters.

MAGNETIC PARAM. ETERS OF POTASSIUM
PER CHROMATE

Exchange-narrowed resonance lines have been shown

by Anderson and Weiss" to be of Lorentzian shape in

ITERATION SCHEME FOR THE DERIVATION
OF MAGNETIC PARAMETERS

From Fig. 1 it is obvious that except in those cases
where the crystallite linewidth is very narrow, it is
impossible to derive reliable magnetic parameters

LO

lent

I

10

FH".. 2. EPR line shapes reduced by the linemidth. For
curves 1 and 2 H0=3400 G.



POLYCRYSTALL I N E SUB STANCES 1917

Tash, E II. Magnetic parameters of K3Cr08 in gauss.

Parameter

Il 1 )

HL
b

Initial
guess

3508
3424

30

Cycle 1

3512.2
3429.7

23.8

Cycle 2

3511.9~1.2
3429.7&0.3

23.5~0.4

@cpe~al Curve

Calculated Curve

the center but to transform to Gaussian shape in the
neighborhood of the exchange fieM. They show that 3500

Magnetic Field in Gauss

I

3600

perimental Curve

lculated Curve

N 0
Cl

-1
3300

g-?
I

3400 3500
Magnetic Field in Gauss

FIG. 3. EPR signal from KSCrOS at 20'C. H, ~

——3511.9 G,
Hq=3429. 7 G, and b=23.5 G.

"Unpublished work by R. Meisenheimer of these laboratories.

(DHs)= bH„

where (AH') is the second moment and H, the exchange
field. The rigid-lattice second moment for polycrystal-
line I43Cr08 is found from the expression of Van Vleck"
to be approximately 1.27)&10' G', on the assumption
of an isotropic g. An approximate value of 0 of 30 G was
obtained by inspection of the experimental absorption
curve. A value of 4200 Oe for II, thus follows from
these values and Eq. (14). Since this exchange field is
very large compared with the linewidth of the reso-
nance line from KSCr08, it follows that each crystallite
must have a Iorentzian line shape. This exchange field
corresponds to a Curie-Weiss constant of (1+1) 'K, in
excellent agreement with the value of (0&2) 'E. ob-
tained by Meisenheimer" from static magnetic sus-
ceptibility measurements.

The experimental derivative and absorption curves
from a polycrystalline sample of K3Cr08 are given in
Figs. 3 and 4. The derivative curve was obtained on a
Varian V4500 EPR spectrometer at room temperature
with a modulation frequency of 100 kc/sec and an
amplitude of less than 0.1 G. The absorption curve was
obtained from the derivative curve by electronic inte-
gration with a Philbrick UPA-2 amplifier with capaci-
tance feedback. There was a phase lag during elec-

FIG. 4. Integral of EPR signal of KSCr08.

tronic integration; therefore the absorption curve has
been adjusted in field so that its maximum occurs at
the field where the derivative curve is zero. The mag-
netic field was calibrated with an NMR probe. A g value
of 2.000 corresponds to a field of 3400 G.

Magnetic parameters were obtained from the deriva-
tive curve by the least-squares procedure described
above. The derivative curve was read at 5 6 intervals;
the 50 points so obtained were weighted equally. Values
of I(H) were calculated from (10a,), and values of
dI(H)/dH were calculated from I(H) on the IBM 7090
with the use of central difference formulas. "Table II
illustrates the course of the refinement. The initial
values were obtained from the delta-function approxi-
mation and from inspection of the absorption curve.
The final values, even in this case of small anisotropy,
diBer significantly from these initial values.

The agreement between calculated and experimental
derivative curves (Fig. 3) is very good. The agreement
between calculated and experimental absorption curves
(Fig. 4) is not as good, both because of errors inherent
in electronic integration and because the iteration pro-
cedure was not applied in this case.

Ke feel that this good agreement between theory and
experiment justifies the approach described here. Else-
where" we shall show that the derived g values for
K3Cr08 together with ligand field calculations lead to
an understanding of the bonding in this unusual
compound.

Nofe added irl, proof. —Recently J. W. Searl, R. C.
Smith, and S. J. Wyard )Proc. Phys. Soc. (London)
A78, 1174 (1961)j have evaluated the integral (6b)
numerically for some specihc cases.

' A closed-form expression for dI(H)/dH can, of course, be
obtained by differentiation of Eq. (10). However, suiiicient accu-
racy was achieved on the computer with the use of central dif-
ference formulas."J.D. Swalen and J.A. Ibers, J.Chem. Phys. (tobe published).


