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Electron Spin Resonance of Hydrogen Atoms in CaF,*t
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Ke report the results of a detailed investigation of the electron spin resonance of a hydrogen atom in an
interstitial position in CaFs. The following aspects of the problem are treated in detail: (1) apparatus and
sample preparation; (2) a spin Hamiltonian with four parameters describing the g value and hfs of the
hydrogen atom with the eight equivalent fluorine nuclei surrounding it; (3) the electron-nuclear double
resonance (ENDOR) spectrum and the resonance linewidth; and (4) an attempt to calculate the parameters
of the spin Hamiltonian starting from atomic and ionic wave functions. Our sample preparation technique
has allowed us to deuterate the specimens, and we have obtained spin Hamiltonian parameters for the
deuterium center as well. Most of the data were obtained at room temperature, but some data are available
on the hydrogen center at 77'K. We have essayed an explanation of the small proton-deuteron and tem-
perature-dependent differences of the spin Hamiltonian parameters,

INTRODUCTION

K report in this paper the results of a detailed
study of the electron spin. resonance (ESR) of

a hydrogen atom in an interstitial position in Quorite,
CaF2. Because of the well-resolved hyperfine interac-
tion of the unpaired electron with the surrounding
nuclei, it has been possible to study the local crystalline
environment of the hydrogen atom. In addition to
questions of sample preparation and experimental tech-
niques (Sec. I), it will be our object to establish the
position of the hydrogen in the lattice and to elucidate
the details of its interaction with its environment. We
will show that the hydrogen atom is at a body-center
position in the simple cubic F sublattice of CaF2. The
Ca++ ions occupy similar positions, except that they
only occupy every other body-center position.

The paramagnetic electron interacts with its proton
and the eight surrounding Quorine nuclei. We have
been able to fit the resonance spectra with the spin
Hamiltonian:

8
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The first term is the electronic Zeeman interaction; the
second, the electron-proton hyperfine interaction; the
third, the electron-fluorine hyperfine interaction (some-
times called superhyperfine interaction), and the last
two are the nuclear Zeeman interactions of the proton
and the Quorine nuclei, respectively. Each hyperfine
tensor Z is axially symmetric and hence reduces to
two parameters, T&l and Ti. . The quantitative de-
scription of the spin resonance spectra thus consists of
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ending the four parameters of this spin Hamiltonian:

g, 8, Tl&, T&. Values of the last three of these may be
obtained readily from the approximate eigenvalues of
(I).This is done in Sec. II, where the resonance spectra
are also displayed and the assignment of the inter-
stitial position to the H atom is justified in detail.
Interest in the fourth of these parameters, g, lies prin-
cipally in its deviation Ag from the value of g for the
free hydrogen atom. hg turns out to be small, and the
accurate knowledge of hg requires knowledge of the
positions of the resonance lines to a small fraction of
their linewidth. Extraction of hg from the data thus
requires a more accurate knowledge of the eigenvalues
of (1) than required to obtain 8, T„, and T&. This is
the subject matter of Sec. III. The origin of the line-
width is examined in Sec. IV, where it is shown that
the observed widths may be accounted for partly by
considerations discussed in Sec. III, but mostly by
unresolved hyperhne interactions of the electron with
the 24 next-nearest-neighbor Quorine nuclei. These in-
teractions are resolved experimentally by an electron-
nuclear double resonance (ENDOR) experiment. Our
identification of the center giving rise to the observed
resonance spectrum as being atomic hydrogen is
strongly supported by our ability to deuterate the
samples.

Finally, we believe more than just ordinary interest
in this center should arise from attempts to calculate
the parameters of the spin Hamiltonian from a wave
function of the interstitial atom. The theory of the
superhyperhne interactions is related, albeit indirectly,
to the theory of superexchange in antiferromagnetic
ionic crystals, particularly MnF2 and KMnF8. The
superhyperfine interactions we measure resemble strik-
ingly those in Mn: ZnF2, examined experimentally by
Tinkham' and by Clogston et al. ,

' and theoretically by
numerous authors. ' In Sec. U of this report we present

' M. Tinkham, Proc. Roy. Soc. (London) A236, 535 (1956).
'A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peters, and

L. R. Walker, Phys. Rev. 117, 1222 t'1960}.
'A comprehensive list of references relating to this and similar

problems may be found in the article hy W. Marshall and
R. Stuart, Phys. Rev. 123, 2048 (1961).
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tlute resul. ts of a. simple, standard essay of the calcula-
tion of 8, T», and T&, and a detailed, if inconclusive,
study of the temperature dependences and proton-
deuteron differences of these parameters.

I. APPARATUS AND EXPERIMENTAL
CONSIDERATIONS

A. X-Band Spectrometer

Most of the magnetic resonance spectra analyzed. in
this work have been obtained at room temperature
with a high-sensitivity 9 kMc/sec (X band) super-
heterodyne microwave spectrometer of novel design. In
this apparatus we make use of a single klystron super-
heterodyne, rather than the usual arrangement with a
separate local oscillator klystron. This arrangement,
to our knowledge, was first suggested by Feher. 4 It
not only eliminates the initial expense of duplicate
klystron power supply, and frequency stabilization
system, but in fact provides a simple way of utilizing
the superior sensitivity of a phase-coherent detection
system.

A block diagram of the spectrometer is shown in

Fig. 1. The necessary local oscillator signal, displaced
above (or below) the signal frequency by the i.f. fre-

quency of 63 Mc/sec, is produced by 63-Mc/sec am-

plitude modulation of a portion of the klystron output
power. Use of a balanced modulator bridge, followed

by a tuned transmission cavity enables us to obtain
su%cient sideband power for optimum operation of
the signal circuit mixer crystals (up to 2 mA each),
along with adequate suppression of the carrier fre-

quency and the unused sideband. The resonance signal
from the balanced signal circuit mixer crystals is fed
into a low-noise 63-Mc/sec i.f. amp1ifier of relatively
conventional design. Following about '70 dS of ampli-
fication, the resonance signal is coherently detected.
with a 63-Mc/sec reference signal obtained from the
same oscillator which drives the sideband-producing
modulator crystals. The phase-detected audio output
is 6nally narrow banded by coherent detection at the
magnetic ield modulation frequency, and the absorp-
tion-derivative lineshape displayed on a dc recorder.

%e have found it convenient to lock the klystron
frequency to the sample cavity with a frequency-
modulation type of automatic frequency control sys-
tem. Stabilization to the sample cavity, rather than
an auxiliary reference cavity as is often done, has the
following advantages: (1) It eliminates the need for
precise temperature regulation of the two cavities
which is otherwise necessary for utilization of the
ultimate sensitivity, and (2) the spectrometer responds
only to the pure absorption part of the resonance
signal, even when the sample bridge is significantly
detuned, or when the absorption susceptibility is much
smaller than the dispersion susceptibility under strong
saturation conditions, for example. These factors both

' G. Feher; Bell System Tech. J. 36, 449 (195'I).
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FIG. i. Block diagram of the coherent superheterodyne X-band
paramagnetic resonance spectrometer.

make data easier to obtain and to interpret. The small,
for this work, insignificant penalty which must be paid.
for this convenience is increased noise level of the dis-
persion signal by a factor of 5—20 over that of a well-
designed separate cavity stabilization scheme. '

B. K-Band Spectrometer

In order to extract the spin Hamiltonian parameters
from the data, large Breit-Rabi corrections ( 1%) are
required. because the external magnetic field is not
infinitely large compared with internal magnetic fields.
It is therefore of considerable interest to repeat the
experiments at a significantly different frequency. %e
have employed a crystal rectifier frequency doubler to
provide output at 18 kMc/sec (Z-band) from the 9-
kMc/sec input obtained from the existing klystron
and microwave layout. By the use of relatively con-
centrated sample crystals, useful spectra could be ob-
tained with a simple superheterodyne circuit equivalent
to the now famous "i.f.-type Pound stabilizer. " The
frequency doubler crystal is partially amplitude modu-
lated at 63 Mc/sec. By proper adjustment of the reverse
biasing network, we can produce an 18-kMc/sec carrier
with 63-Mc/sec sidebands by this process. The micro-
wave electric field reaching the K-band mixer crystal
thus has three component frequencies, each of which
is treated differently by the E-band sample bridge.
The carrier frequency, equal to the resonant frequency
of the sample cavity, is more or less completely ab-
sorbed in the cavity. The reAected wave at this fre-
quency contains the KSR signal. The two sideband.
frequencies are essentially totally rejected by the
cavity and form the "local oscillator" signal at the
mixer crystal. By employing an overcoupled sample
cavity, the sample bridge imbalance may be decreased
a,t the carrier frequency and increased at the sideband

'Since the work described here was completed, the sample
bridge system using a magic tee has been replaced by a microwave
circulator. The cavity is matched by a minor variant of the varia-
ble coupling scheme of J.Gordon LRev. Sci.Instr. 32, 658 (1961)g.
The revised system works at, least as wen as the older system, and
we have no reason to believe we'have not-increased the signal-to-
noise ratio by the factor of two "expected by the use of the
circulator.
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frequencies by the same setting of the adjustable refer=
ence reQection. Normal superheterodyne operation is
obtained because the two 63-Mc/sec beat notes of the
resonance signal with the two sideband signals are
essentially in phase, and hence can be fed into the
63-Mc/sec amplifier and processed as usual. Even the
same AFC system may be used.

Although the microwave power level is relatively
unadjustable, the 50 to 1.00 pW E-band power we ob-
tain is conveniently near, but safely below, the onset
of saturation of the H atom resonance lines. At this
microwave power level we estimate the sensitivity of
this apparatus to be roughly 50)& less than the high-
sensitivity X-band spectrometer previously described.

C. ENDOR

Our electron-nuclear double resonance (ENDOR)
data have been obtained at 77'K with a repetitive
form of Feher's "transient, spin-packet-shifting" type
of double resonance effect. ' This natural extension of
Feher's method does not appear to have been fully
exploited previously, although it offers two very signi-
ficant advantages. "(1)The signal-to-noise ratio is much
larger than the usual "single-shot" signal, by a factor

(integrating time constant) && (repetition frequency)
50X in our case. This allows one to study resonances

exhibiting a much lower degree of inhomogenous
broadening than the classical Ii center, for example, or
to operate at a much more cogvenient temperature
than the low helium range which is usually required.
(2) The line shape of the output signal, under suitable
experimental conditions, is directly the nuclear mag-
netic resonance (NMR) lineshape of the particular
class of nuclei being investigated. By contrast, in the
"single-shot" technique, the lineshape is essentially
determined by experimental parameters such as micro-
wave power level and rate of change of the nuclear
probing oscillator's frequency.

The ENDOR technique is of interest in the study of
KSR lines which are inhomogeneously broadened by
nonresonant interactions, for example by unresolved
hyperfine interactions with nearby nuclei. The physical
mechanism of repetitive ENDOR is discussed more
fully in the following several paragraphs, but it is
convenient to begin with a simple operational descrip-
tion. The static magnetic field is first adjusted to
satisfy the spin resonance condition and the field modu-
lation switched off. The microwave power is increased
to provide moderate saturation of the ESR transition.
With an auxiliary radio-frequency magnetic field, nu-
clear transitions are induced which convert resonant
centers into nonresonant ones, and vice versa. By
square-wave amplitude modulating the nuclear oscil-
lator, we cause a corresponding periodic disturbance of

' G. Feher, Phys. Rev. 114, 1219 i19$9).
~Note added srl, proof The erst compl. ete exploitstiort of this

technique seems, in fact, to have been by H. Seidel, whose work is
described in Z. Physik 165, 218, 239 (1961).

the populations of the electronic spin states. The re-
sulting ripple on the absorption signal from the spec-
trometer is narrow banded by synchronous detection
at the square-wave frequency, and the rectified dc is
stored in an integrating capacitor. This voltage is
displayed on a dc recorder and the ENDOR line is
scanned by slowly varying the nuclear oscillator
frequency.

The choice of frequency for the square-wave modul-
lation is obviously governed by the effective spin-
lattice relaxation time. If the modulation frequency
is too high, the nonresonant spin systems do not have
enough time to recover to the lattice temperature while
they are thermally disconnected from the microwave
source. If the square-wave frequency is too low, the
transient increase in KSR absorption when the nuclear
oscillator is switched on will occupy too small a fraction
of the modulation period. A reasonable estimate of the
optimum modulation period is simply the spin-lattice
relaxation time TJ,. A similar reasonable choice of
microwave power level would make the microwave
saturating time approximately one-half T~. In the
present case, T~ at nitrogen temperature is roughly
10 msec and a pre-existing 38 cps "twin tee" amplifier
was advantageously employed. ENDOR signals were
about four times smaller at 350 cps than at 38 cps;
lower modulation frequencies were not tried.

The effectiveness of this technique clearly depends
upon the thermal insulation between the several spin
packets that form the observed inhomogeneously
broadened KSR line. If the spin packets which are
interconverted by the nuclear transitions are separately
in thermal contact with the microwave radiation field,
obviously no disturbance of the electronic populations
is to be expected. We believe that such effects are in-
volved in the rather drastic decrease of ENDOR signal
strength of a heavily doped sample ( 10"H atoms/cm')
for nuclear probing frequencies within about 100 kc/sec
of the fluorine Larmor frequency.

Further support for such a spin diffusion type of
explanation derives from KSR experiments employing
the saturation curve technique of Castner. ~ In this
way, we find at room temperature that the KSR line
appears to be composed of about 20 distinct spin
packets, each with its own slightly different resonant
field, Ho. At nitrogen temperature, however, the ap-
parent spin-lattice relaxation time has increased by
about 300)( and the slow process which involve energy
exchange between spin systems resonant at almost the
same frequency become relatively more important.
Thus the saturation curve technique, which gives the
estimate of 20 different types of magnetic environments
at room temperature, gives at nitrogen temperature the
estimate of 2.5 different types.

Although this treatment is perhaps incomplete in
that it ignores Redfield-type saturation behavior, ' the

"T.G. Castner, Jr. , Phys. Rev. 115, 1506 (1959).' A. 0, Redfield, Phys. Ekev. 98, 1787 (1955).
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following qualitative conclusion appears still to be
valid: The electron T~ at nitrogen temperature is suffi-
ciently long to allow spin excitation, before ultimately
being diverted to the lattice by a T& process, to leak
into spin packets separated in resonant frequency from
the microwave frequency by many packet widths.
Operationally this eRect results in reduced sensitivity
to distant, weakly coupled nuclei.

The microwave cavity used for these double-reso-
nance experiments is essentially the same as the con-
ventional —,'Xg cavity used in the ESR experiments,
except that it contains a heavy vertical. copper wire
about 3 mm from the narrow vertical wall. ' This wire
carries several amperes of 12-Mc/sec current, thus
producing the 12-Mc/sec magnetic field necessary to
induce the desired AMg„„;„,——~1 transitions. The wire
is excited through a low-impedance transmission line

( 0.5Q) from a toroidal impedance matching trans-
former located well outside the magnet gap. With
about 15 W dc input to the untuned class-3 buRer
amplifier we obtain several gauss over a bandwidth of
10 Mc/sec. By using about 50 W dc input to a class-C
oscillator, more than 10 G (rotating) is readily available
in the sample.

D. Sample Pleyaration

Our recipe for production of interstitial hydrogen
atoms in CaF~ is the following:

1. "Pure" CaF2 crystals, -obtained from Harshaw,
and aluminum metal are well outgassed just below the
melting point of the metal. For the magnetic resonance
experiments, using CaF2 as free as possible from para-
magnetic ions is very important in order to avoid
spurious resonances. The common impurities in alu-
minum do not seem to give any difhculties: Perfectly
satisfactory samples were prepared even with chips of
commercial "25" aluminum sheet.

2. A few cm of Hg pressure of H2 (or D2) is
(cautiously) admitted; the temperature is increased to
900'C and maintained for a few hours.

3. After cooling and mechanical removal of excess
aluminum, the crystals are lightly acid etched and x
rayed for a few hours (typically 4 h at 30 kV and 30
mA). After x raying, the crystals appear very black in
reflection and essentially opaque in transmission for
crystals as thin as 1 mm.

4. The crystals are cleaved to the desired size. It is
useful to start with crystals of sufficient size that all
new surfaces may be exposed: this gives sharp edges
which aid in aligning the crystal in the microwave
ca,vity and prevents loss of cavity Q if a small amount
of metallic aluminum happens to remain on the surface.

5. Results —We have obtained densities of inter-
stitial atomic hydrogen as high as 10"/cm' with this
technique. The samples are thermally stable to at least

' This very effective technique was patterned after a much more
elegant cavity design by Dr. J. Townsend of. Washington Uni-
versity in St. Louis, Missouri.

+50'C, but appear to deteriorate slowly in a few
months' time. Apparently no other paramagnetic
centers are produced.

There are obviously some interesting questions to be
asked regarding the formation and stabilization of
atomic hydrogen in CaF2. in the present paper we shall
confine our attention to the (at least) equally interesting
magnetic properties of the resulting samples.

Since first reporting this work" we have received
private communications reporting the observations of
resonances our communicants believe to be of the
same origin as those we report here. Paul Handler,
University of Illinois, evidently was able to introduce
or "activate" hydrogen atoms in CaF2 by sustaining a
gaseous discharge in tubes containing CaF2 powder.
Jerome Sierro has reported privately to us the observa, -
tion of similar resonances in natural samples of CaF2.
We have also found that weak resonances may be seen
by repeating the treatment described above with the
substitution of He gas or a vacuum for the H2 gas.
Evidently both natural and synthetic fluorite contain
hydrogen in some form.

II. DETERMINATION OF THE SPIN HAMILTONIAN

All of the magnetic resonance experiments performed
on CaF2 crystals prepared as described are consistent
with the model in which an electrically neutral hydro-
gen atom is located at one of the body centers of the
simple cubic sublattice formed by the Auorines of
CaF2. The "box" formed by the eight nearest-neighbor
Quorines is sufficiently large and the hydrogen atom
suKciently small that the crystal lattice is probably
essentially undilated by the presence of the hydrogen,
(see, however, Sec. V) and, in any event the full cubic
symmetry is preserved. The hydrogen atom (in its
ground state) and the eight fluorine ions interact re-
markably weakly, and the hydrogen atom may still be
regarded to a very good approximation as existing as
an undisturbed atom in its spherically symmetric
ground electronic state. It is the spin of this unpaired
hydrogen electron which is involved in all the reso-
nance experiments to be described.

The experimental electron spin resonance spectra
show the strong hyperfine interaction of the electron
with a spin-2 nucleus (proton) plus a somewhat weaker
hyper6ne interaction with eight equivalent spin--,
nuclei (P'). Thus one sees two main groups of reso-
nance lines, corresponding to the two orientations of
the proton magnetic moment in the external Geld. If
pure CaF2 crystal is "doped" with deuterium rather
than hydrogen, the ESR pattern consists of 3 main
groups of lines separated by a much smaller magnetic
fieM of the centers of the groups, due to hyperfine
coupling with the proton or deuteron, is found to be in
the same ratio as their magnetic moments. Crystals
prepared in an atmosphere of 1/2 hydrogen, 1/2 deu-

"J.L. Hall and R. T. Schumacher, Hull. Am. Phys. Soc. 6,
247 (1.961.).
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terium, show both types of resonance patterns with

equal tota] intensity in each; crystals heat-treated in
the same ma, nner but in vacuum show no resonances
of this type.

In CaF&, the fluorine system forms a simple cubic
lattice with the F— ions at the corners. The Ca++

occupy alternate body centers: Because of the divalency
of calcium, only 1/2 as many Ca~ ions as F ions are
needed to establish )ocal charge neutrality. There are
accordingly a large number of unoccupied body-center
sites at which a neutral atom could be located. Each
hydrogen atom then has eight geometrically equivalent
nearest-neighbor Quorine ions with a hydrogen-fluorine
"center-center" distance R=&3a/2=2. 36 A. The Ruo-

rine ionic radius of 1.36 A leaves 1.00 A for the maxi-

mum radius of the hydrogen atom in this hard sphere
picture. All but 8% of the charge of an isolated hydro-

gen atom wouM be contained within such a 1 A radius
shell. While such an estimate would only be really
significant if it were to show that enormous lattice
distortion was necessary to accommodate the hydro-

gen, the result that the model is self-consistent in the
hard-sphere approximation is at least comforting. The
electron spin resonance data are entirely consistent
with the model in all the detailed predictions one may
make based upon it, even inc/uding the angular varia-
tion of the ENDOR resonances of the second and third
shell of Auorine ions.

The spin resonance spectrum of the interstitial hydro-

gen atom with the external magnetic field IIO aligned
parallel to the I 100$ direction of the CaFs crystal is
shown in Fig. 2. This resonance spectrum is observed
to consist of two main groups of nine lines each. As

pointed out above, the large spacing in magnetic field

between the centers of the two patterns is due to the

hyperfine interaction of the electron and proton. The
smaller spacing between the nine lines of each group is
caused by the hyperfine interaction with the eight
fluorine spins.

One may think in semiclassical terms that the elec-

tron has a characteristic magnetic 6eld in which spin
resonance occurs, which depends only on the micro-
wave frequency and the (6xed) magnetic moment of

the electron. The proton and the various Auorines
generate&stermal local magnetic fields which can add to
or subtract from the externally applied field. Thus,
several different values of external field can give rise to
electron spin resonance, corresponding to the several
possible values of the internal 6eld. For example, the
low-6eld group of lines corresponds to the proton
magnetic moment aligned parallel to the external field;
the lowest (weak) line of the low-field group corre-
sponds to all of the eight fluorines, as well as the
proton moment, aligned parallel to the external field.
The next to lowest line of the low-field group results
from seven fluorine moments parallel and one anti-
parallel. The third line, from 6 parallel, 2 antiparallel,
etc. The highest line of the low-6eld group corresponds
to proton parallel and all eight Quorines antiparallel to
the external field.

The intensity ratios between the nine lines of each
main group establish the magnetic equivalence of the
eight F ions: The arrangement of fluorine nuclei in
which all eight are parallel to the field is obviously
singular. The arrangement with 7 paralle), 1 anti-
parallel, has a relative strength of eight, since any one
of the eight Ruorines could be the antiparallel one. The
arrangement with 6 and 2 (the third line) can be ob-
tained in 28 ways; 5 and 3 (the next. -to-center line) in
56 ways. The central line, corresponding to four Quo-
rines parallel and 4 antiparallel, can be obtained in 70
ways. The pattern will be symmetric about this central
line.

The same arguments give the same predicted pattern
for the high-field group, corresponding to the proton
moment antiparallel. This set of predicted intensity
ratios, 1:8:28:56:70:56:28:8:1,is confirmed experi-
mentally within an experimental scatter of 3%.

Quite clearly, the reason such a simple spectrum
exists is that the local field produced by fluorine nu-
cleus j is exactly the same size as that produced by
another fluorine nucleus k. We obtain the total local
field by counting the number which aid the external
field, and subtracting the number which are in opposi-
tion: the field interval unit is the same size for each
and factors out of the summation. The spacing between
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adjacent lines is therefore seen to be the (common)
size of the local Geld. One says the eight Quorine nuclei
are magnetically equivalent for He parallel to [100].
%e will observe for later use that the vectors from each
of the Quorines to the hydrogen atom are parallel to
body diagonals of the cube and each makes the same
angle 55 with the external field which is parallel to
the cube edge.

The well-resolved doublet structure observed be-
tween each pair of the main lines in I'"ig. 2 arises from
transitions in which a Quorine nuclear spin as well as
the electronic spin reorient in the external field. These
"forbidden" transitions are discussed at the end of this
section.

We wish now to consider the case in which Bo makes.
some arbitrary angle with the crystalline axes. We will
allow the most general bilinear dependence of the
electron-Quorine hyperfine energy upon the direction
of the external field Bo, namely a tensor interaction of
the form

We insist that the interaction energy must be un-
changed by any of the symmetry operations which are
allowed by the model. Since the body diagonal of a
cube is a threefold rotation axis, the hyperfine tensor
must be axially symmetric about this direction. Ac-
cordingly, the third principal axis of the hyperfine
tensor is the body diagonal itself. The angular part of
the expansion of the hyperfine energy expression for
an arbitrary direction of the magnetic field, then, can
be written in terms of 8, the angle between Bo and the
body diagonal which passes through the Quorine of
interest. We thus have the result that the two Quorine
nuclei which share a given body diagonal are always
magnetically equivalent. Since such a pair of nuclei
on1y has three states which differ in energy, the maxi-
mum number of different hyperfine energies is reduced
from 2'=256 to 34=81.

There are four orientations of the crystal in the
external field which have been analyzed in detail in
this work: He parallel to [100], [111], [110], and

[112]. At [100], all four pa, irs of nuclei made the
angle 8=55, giving nine lines as previously discussed.
With [110]parallel to He, we have two pairs at the
angle 8=90', two pairs at the angle 8=35'. As might
be expected, the [110]spectrum (Fig. 3) shows "beat-
ing" as the two characteristic values of hyperGne split-
ting are combined with various signs and strengths,
corresponding to the various different conhgurations
of parallel and antiparallel Quorine nuclei. A maximum
number of 5&(5=25 transitions are expected and 25
are observed. The two characteristic splittings are
easily obtained from such data, but at this stage we
do not know whether the larger splitting corresponds
to 8=90', or 8=35'.

For He aligned. parallel to [111], there are three
pairs of Quorine nuclei at 8=71' and one pair at 8=0'.
This spectrum is expected to consist of 7)(3=21 trans-
itions: each of the seven lines due to the three pairs at
71' is split into 3 by the pair at 8=0'. The experi-
mental spectrum, I ig. 4, is seen to contain 11 principal
lines. By the assumption that the splitting due to the
0' group is twice that due to the 71' groups, one can
synthesize an 11-line spectrum with the following in-
tensity ratios: 1:6:17:32:46:52:46:32:17:6:1. These
intensities are in agreement with the experimental
values after the latter are corrected for the small varia, -
tions in width of the experimental resonance lines,
caused by the ratio of the two splittings not being
exactly two.

The fourth case which has been analyzed in detail is
for Hp parallel to [112].This produces two pairs of
Quorines at 8=65' and one pair each at 90' and 19'.
This spectrum consists of 3)(3)&5=45 lines, several of
which may be expected to be nearly degenerate. By
employing the smaller of the two candidates for the
90' hyperfine splitting as determined from the [110]
spectrum, the 25 lines of the observed spectrum can
be easily unraveled to yield the hyperfine splitting
constants at 19', 65' and to redetermine the 90'
splitting.

It is perhaps worth emphasizing that implicit in this
qualitative discussion of the spectra has been the as-
sumption that the eight Quorine hyperfine tensors are

Ho ll L ill ~

I'IG. 3. ESR absorption deriva-
tive, Pp!!Litt). The origin of the
eleven line pattern is discussed in
the text. The doublets between the
main lines are forbidden transi-
tions, and the line near 3.35 kG
is a DPPH g marker. This spec-
trum was taken with a more con-
centrated sample than that of
Flg. 2.
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H. ll L llOU

+ p~P~ r Ji( 3''r

FIG. 4. ESR absorption deriva-
tive, Ho~jL110). Each group con-
sists of 25 lines. The weakest pair
in each spectrum is not visible on
the 6gure except for a hint of a
line at about 3.71 kG. This spec-
trum was taken with the same
sample and g marker as Pig. 3.

5.2
I

5.5

numerically identical„differing only in which of the
body diagonals is its symmetry axis. Such equivalence
is obviously required by the cubic symmetry of the
model. We obtain below a more explicit "quantitative"
substantiation of the model from a comparison with
experiment of the predicted form of the angular de-
pendence of the hyperfine splitting constant.

For quantitative substantiation of the correctness of
our model we must Gt the data with the parameters
of the spin Hamiltonian

8

K=gpS, Hp+BIi' S+Q S Z I —gpp~

8

XQ I. Ho g„P~l "H—o (1).
The terms on the right side of (1) are written in order
of importance. The first two terms plus the proton
Zeeman term form the spin Hamiltonian of the free
hydrogen atom. The eigenvalues of this Hamiltonian
alone are given by the well-known Hreit-Rabi" formula:

W(F,3Ep) = ,'F g„P~MF—H—p-
&L1+2Mr, ~,+x']'" (2)

where
~= (gp+g.p~)Ho/&

The plus sign goes with Ii =1, M~ ——&1, 0; the minus
sign goes with Ii =0, My=0. The wave functions which
correspond to the indicated energies are:

1
I

»=
I

—&I+&——I+& I

—
&, «(0,0)

2x

W(1, —1)

I»= I+&I —&+—I

—&I+&, w(1,0)
2$

The other two terms of (1& split these upper and
lower Geld lines as discussed qualitatively above. %e
will treat these terms as a perturbation of the hydro-
gen atom Hamiltonian whose eigenfunctions and eigen-
values are written above. Although the interaction with
the Quorine spin system depends on which of the four
eigenstates of the hydrogen atom problem is being
considered, we will Gnd it convenient to write the
Quorine hyperGne interaction in terms of 3E„ taking
the state mixture demonstrated in (3) into a,ccount
later. In this sense the Quorine-electron interaction
does not depend on the proton quantum number M„.

The tensor g is, as discussed above, axially sym-
metric about the axis from the proton to the 0.th Quo-
rine. If this axis is in the s direction, we are free to
choose the x' and y' axes in any way. For any choice of
x' and y' axes, g may be taken to be of the form

T~ 0 0
g (r')= 0 T, 0

0 0 T„

where r' labels the fact that Z is expressed in its
principal axis system. It is necessary to express Z in
the laboratory coordinate system in which the s axis is
parallel to Ho. Let r= (x,y,s) represent a vector in this
system. If we choose x' and y' such that x', s', x, and s
lie in the same plane, then a vector x' in the principal
axis system may be related to r in the laboratory sys-
tem by a rotation about the y=y' axis by the rotation
operator R(8): r=R(8) r', where 8 is the angle between
r and r'. Then in laboratory coordinates we have:

~~ (r) =R(8 )g (r')R(8 )
—'

where
cos8 0 sin0

R(8~)= 0 1 0
—sin0 0 cosa

4= I+&I+& W(1,1) Hence

The strong transitions induced by the microwave field

obey the rules 63I,=&1, AM„=O. The "lower Geld
line" thus corresponds to the transition I1) &-+I 4), the
"upper field line" to the transition

I 2) ~I 3).
1~ G. Bl'alt ant& I. I. Rahi» Phys, Rev 38» 2082 (1931,).

Z (r)
Tr+ (Ti i

—Tr) Sill 8
0

(Ti i
—Tr) si118 cos8

0 (T„—T,) sin8 cos8 j
Tf 0
0 T,+ (T„—T,) cos'8")

(.~)
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We may write the 0.th fluorine hyperfine interaction in
terms of a local 6e)d produced at the Quorine nucleus
by the electron: [S.Z~] I~—=—gFPNHz, I~. Because', of
the large 6eld Hp, the expectation value of S is parallel
to Bo.We obtain the semiclassical approximation which
contains still all the principal physical effects by taking
S=M,z. The neglected terms lead to small corrections
which are treated in detail in Sec. III. We obtain

gFPz—zHI. = (O,O,M,) Z(r)
=Mg((T() Tz) SII18 COS8)0)Tz+ (Tf/ TJ) COS 8), (6)

We have left off for simplicity the superscript n. The
local 6eld seen at the nth Ruorine nucleus thus consists
of a Geld H» parallel to Ho and a field H& perpendicular
to Ho, where

gFpNKi TJ.+ (Ti I Tl) cos 8)

"tot

Ho

Electron t
(Ant iparollel to Ho)

Electron I

(Parallel ta Ho)

al (+)

total(+}

gFP~HI= (Tii —Tg) sII18 cos8.

The magnitude of Hz, (M,) is given by IH&(M.)l=
I

—M, l I (H„O,H„) I:
i
Hz, (M,) j

= '[HIP+H„'-$' '
= (1/2g P~) [T '+ (T„'—T,')cos'8$'" (7)

and the angle between the local 6eld Hz and Hp is
given by

(Ti i Tz) S1118 COS8
y=ta» I(HI/H„)=tan '

—Tz+(Tii —Ti) COS 8

The total field experienced by the nth fluorine is thus

H(.t,,I = ( HIM„O,Hp —HIM, ), so—
( H,.„I(M,) i

= [-',H,'+ (Hp —H„M.)'g" '. (9)

HgotpI makes an angle p with respect to Hp given by

P= tan '[—HIM, /(Hp —H((M,,)J. (10)

These relations are illustrated in Fig. 5.

Because the local Geld is about 12 kG while Ho is
about 3 kG, the direction of the total Geld for M,,
=+1/2 is nearly, but not exactly, 180' away from the
direction for M, =—1/2. The magnitudes in the two
cases are roughly equal. In each case we should properly
quantize the fluorine nuclear spin operators along
H, „I(M,). Since in our problem P differs from 0' or
180' by less than 45' we may label without ambiguity
the nuclear states such that ~+) means (I.) has a
positive projection along Hp and

~

—) means (I,) has
a negative projection along Ho. With this convention
for labeling the fluorine states, we write the interaction
energies of the four states ~M, )~MF ) for the nth
Ruorine nucleus:

E (M, MF )
=2M% F gFPzzP4'M, '+ (Hp —HiiM, )']'I'. (11)

The total fluorine hyperGne energy is

8

I-'I, I,,= Q F (M, ,FMI: ).

FIG. 5. Geometry of internal and external magnetic fIelds at a
fluorine nucleus, illustrating the approximate conditions responsi-
ble for the "forbidden" transitions visible in Figs. 2 and 3.

The fact that the spacing between the fluorine Mj;
levels depends on the s projection of the electron
mirrors the intuitive impression that the local and
external 6elds can be either mainly in opposition to
each other, or can mainly aid each other to produce a
total field of slightly differing magnitude in the two
cases. The fact that the direction of the total field is
different for the two electronic states has no effect on
the energies. These arguments justify our qualitative
description of the superhyperfine interactions in the
beginning of this section.

Following the procedure of Castner and Kanzig" we
Gnd it useful, here and in the next section, to quantize
the Quorine spin along the local rather than the total
field. This expedient has the advantage of giving the
hyperGne energies to within a few percent for arbitrary
orientation, and of giving the exact expression (11)
for 0=0' and 90', for which data are available from
the (100) and [112j spectra. The hyperfine energy for
the 0.th fluorine spin is approximately

g~ (M MF )=MF"{M,[TI+(T„'—T„)cos'8 $' '
—gFPzz cosg}. (12)

The observed quantities in the resonance experiment
are the energy differences between the initial and final
states of the system. The contributions to this energy
difference due to the hyperfine interaction of the elec-
tron and the ct;th fluorine are, from (12),

AEhI, (MF")=MF [T,'+ (T„'—T,') cos'8"j'i' (13)

Thus, apart from g-value corrections, the slight mixing
of electronic states by the electron-proton interaction,
and second order corrections in the fluorine system —all
of which we will show in Sec. III to be small effects-
the interval in magnetic Geld corresponding to the
energy difference between MF =+1/2andMF~ ———1/2

"T.G. Castner and W. Kanzig; J. Chem. Phys. Solids 3, 178
(1957).
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The field interval B(II) between a "forbidden" line and
the adjacent allowed line is

Ol
as

O~
ss

c

«l p

t t t I t t t I

0 .I .2 .5 A, 5 .6 .7,8 .9 J.O
COS' e

Iso. 6. Plot of the square of the observed magnetic field in-
terval between adjacent ESR lines vs the square of the cosine of
the angle between Hp and the H-I' axis. The ordinate is expressed
in terms of the proton magnetic resonance frequency, f=4.257
kc/gauss. The point labeled L112j at cos'8=0.9 is believed to be
in error and was not used to And TIJ and Tq.

is seen to be simply

The experimental data, fitted to the square of this
equation, are presented in Fig. 6. Values of T& and
Tlt, subject to the corrections mentioned above, are
obtained directly from the intercepts at cos'8=0 and
1, respectively. (See Sec. III).

A cursory examination of Figs. 2 and 3 reveals there
is a prominent doublet between each pair of lines whose
positions have been derived above. These transitions
are 'forbidden" transitions similar in nature to those
described by Trammel et al.'3 and identical to those
observed by Clogston et a/. ' Although the detailed
explanation of these lines has been given by these
authors, we will repeat it here since it will turn out
that their positions allow us to deduce the relative
signs of Tfi and Tg.

The "forbidden" transitions correspond to the selec-
tion rule AM, =~1, AMp=&1. They occur because
H&,&,i is reoriented neither by exactly 0' nor by exactly
j.80' when an electronic transition occurs. The initial
fluorine state ~Mi), quantized. along the total field

Hi, t,,i (M, =+1/2), will under these circumstances
have a nonzero projection upon the final fluorine states
~Ms&1), quantized along H«t, i (M, = —1/2). Thus,
each line of the simple spectrum, corresponding to
AMi 0, will give rise to——a doublet (with the exception
of the end lines of the spectrum for which only either
DMs —+1 or DM~ ——1 is a—llowed). These for—bidden
transitions correspond to a change in hyperfine energy
given typically by

"G. T. Yrammell, Henry Zeldes, and Ralph I.ivingstoii, .Phys.
Rev. 110, 630 (1958).

'4 See also Baker, Hayes, and O' Brien, Proc. Roy. Soc. (l.ondon)
A254, 2/2 (1960).

The intensity of a forbidden line depends on the
strength of the perpendicular component of the local
field at the fluorine nucleus. Clogston et al sg.ive the
following expression for the ratio of the transition
probability for forbidden transitions relative to allowed
transitions:

tan'(-', Q (M, =+1/2) f(M—,= —1/2) 1). (17)

Investigation of this relation shows that for our case
the relative forbidden to allowed strength shouM in-
crease with IIO. This effect is already evident in Figs. 1.

and 3 if one compares the low- and high-6eld groups.
Comparison of the X- and E-band data shows an in-
crease in the relative strengths of the forbidden transi-
tions by a factor of (5.7&0.5). Equation (17) predicts
an increase under these circumstances of a factor of
5.7.

Equation (14) shows that one can only obtain
~
T„~

and
~
T, i by measuring D(H). Equation (16) shows

that the field between an allowed line and an adjacent
forbidden line depends on cosg= (T„—Ti) (gPA) '
)(sin0cos0. The observed allowed forbidden field in-
terval is given by (14) to within 10% by' the assump-
tion that T,/T„(0, and to within 0.01% by the as-
sumption that T» and T& are of the same sign.

%'e should mention that at high microwave powers
it is possible to observe on each side of an "allowed"
transition, partially resolved satellite lines which are
separated in field from the allowed line by one fluorine
Zeeman interaction. These transitions arise, most
probably, from simultaneous electron and nuclear spin
Aips involving the 24 next-nearest-neighbor fiuorine
nuclei. The magnetic interactions of these nuclei with
the electron are described in detail in Sec. IV. There
it is shown that these electron-Quorine interactions are
much smaller than the nuclear Zeeman interaction.
These satellites, then, are of the same type as observed
by Trammel et at."They correspond to the case that
the total field at the fluorine changes direction by an
angle close to 0' when an electron spin Qips. Some
indication of these satellites may be seen in Figs. 2
and 4.

III. ACCURATE DETERMINATION OF 8, g, AND &

As remarked in the introduction, interest in the
g factor in Eq. (1) lies in its small deviation from the
free hydrogen value. In this section we obtain the
appropriate eigenvalues of (1) to the required ac-
curacy, and then develop expressions from which we
may extract the experimental values of 8 and g of
Eq. (1) from the experimental data. It will develop
that our knowledge of T«and T, from the appmxi-
mate treatment of Sec. II i» sufhcient. for our present
needs.
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YVe aie concerned here solely with the positions ot
the Mp ——0 lines: those for which, roughly speaking,
the total projection of the Auorine spin along Hp is
zero. %e may measure the positions of these two lines
to ~1:10'; we are thus required to find the eigenvalues
of (1) to this accuracy. Such an accuracy places, in

fact, a severe requirement on our ability to align a
single crystal in the microwave cavity. Our ability to
measure the position of a resonance for a given orienta-
tion greatly exceeds our ability to know and reproduce
the orientation. For this reason we have measured. the
spectrum of a powdered sample. The only contribu-
tions to the pair of lines (one for each proton orienta-
tion) are from the Mv ——0 components of the singlet
and triplet states of the pairs of fluorine nuclei along
the body diagonal of the fundamental cube. Except
for a few crystallites ( 1% of the total) the only
degeneracy among the fluorine nuclear spins is the
fundamental pair-wise degeneracy imposed by sym-
metry. The theoretical problem is also greatly simpli6ed
by this experimental expedient, since there is now no
necessity of treating, for example, the case of 70-fold
degeneracy, which would occur for Hp parallel to the
[100J direction.

In Sec. II we have obtained the eigenvalues of (1)
in the approximation that we have ignored terms in

(1) connecting different electron spin states. In this
approximation the transitions corresponding to AM,
= &1, AM„=O, AMp=O between Ml =0 states of the
fluorine system appear at 6elds unmodified by the
fluorine hyper6ne energy. The neglected matrix ele-
ments are on the order of 100 Mc/sec, the fluorine
hyper6ne energy, so the energy shift which we will

compute here will be on the order of (100)'/gPH
= (100 Mc/sec)'/10' Mc/sec= 1 Mc/sec. One sees that
the correction we aim to calculate will be a substantial
fraction of the total linewidth of about 5 Mc/sec.

The full hyperhne interaction is

S g I=(S,b sin8 cos8,0,$,(T,+b cos'8)) (I„I„,I„)
+(S,(Ti+b sin'8), SvT&,Sb sing cosg) (I„I„,I,), (18)

where b=T~~ T& Here —the .(x,y,z) coordinate system
is the laboratory system, with Hp=—S. In the calculation
that follows we will find it convenient to quantize I
along H~~, ~, rather than Ht, t,i. The fractional error in
the correction to the hyperfine energy we are calculat-
ing here is Ho' sin'g/Hr, '&~0.1. 10/~ of the expected
1-Mc/sec correction is 100 kc/sec or 150 cps in the
frequency of the proton fieM marker, which is on the
order of the scatter in the reproducibility of the data.

We wish to express the operators (S X) and I in
the coordinate system defined by H~ „~

——i".This corre-
sponds to a rotation in the x-s plane through the
angle (+P), defined by Eq. (8). In Sec. II we have
already calculated the major contribution to the hyper-
fine energy, which comes from those terms in (S Z),
which involve the operator 8,. The perturbation we are

interested in here may therefore be written:

Hi ——I" [(S.Z)"—z"A(8)j
= [S.I."T„T,/a(8)$+SvIv" T,

+S,I, b .sing cosg(T„+T,)/A(8). (19)

For notational simplicity we drop the double primes
on I, remembering that I, is now diagonal. It is con-
venient to rewrite H~ using the raising and lowering
operators I+, I, S+, 5 .

Hi ——S+[AiI++A2I, +A3I ]
+S [ABI++A2I,+A,I j, (20)

where

Ai ——4T,[(T„/6)—1], A2 hsing ——cosg(T„+T,)/2h,
A 3 ——-',T,[(T„/6)+1). (21)

All of these considerations apply for each of the 8
fluorine nuclei, so the total perturbation is the sum of
8 terms of the type (20).

This sum may be separated into 4 terms, each of
which pertains to the pair of nuclei which lie along the
same body diagonal. Since in the absence of H~ each
pair has exactly degenerate energy levels, it is con-
venient to work in the total angular momentum repre-
sentation for each pair. For the moment we confine
our attention. to a single nuclear pair. We define I
=Ii+I2 for each pair separately. The appropriate
perturbation for the pair is, accordingly

II„=S+[AiI++A2I.+A3I j
+S [AaI++A2I, +AiI-j. (22)

II„does not coniiect levels of different I2 in the ( I,Mr)
representation. Consequently we may use ordinary non-
degenerate perturbation theory. It is at this point that
the calculation for Ho parallel to [1,0,0J becomes
awkward because of the seventy-fold degeneracy of
the Mr ——0 state. We defer discussion of the [1,0,0]
orientation to Appendix A.

Since the perturation affects only one nuclear pair
at a time, and the proton not at all, the appropriate
energy corrections are calculated for each pair sepa-
rately. We need only AB(M„I,Mr) for M, =&~i, I=1,
Mq=0, and I=O, Mq=0, Standard second-order per-
turbation theory gives

AE(M„1,0)=4(A p+A32)M, /hv,

DE(M„O,O) =0.
The energy shift in the M, =&1 microwave transition
for the I= 1, M=0 state is thus 4(A/+A/)/hv. When
we include all four pairs, we see that each hydrogen
atom resonance transition consists of five lines whose

type, statistical weight, and frequency shifts are tabu-
lated in Table I. The Ave components are seen from
Table I to be symmetrically disposed about an average
energy shift of 8(Ai2+A32)/hv from the position ex-
pected on the basis of the calculation of Sec. II (which
is diagonal in M,).
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TAHI. ,K I, Second order hfs of a pair of fluorine nuclei.

Statistical wt. 'I'ype of state

4 singlet
3 singlet, 1 triplet SI=O
2 singlet, 2 triplet 3/I=0
1 singlet, 3 triplet iV=0
4 triplet, ALII=0

Shift

"Shift in units of 4(At~+A3) /he.

Before passing on to calculate the position of the
center of the resonance transition for the powder it is
worth remarking that the splitting of the singlet and
triplet 35=0 levels calculated in this section is the
same as that found by Castner and Kanzig" for the
Vy center. Of course, their Hamiltonian is formally the
same as ours. The difference of energies of the singlet
and triplet M=O states is just the manifestation of an
electron-coupled nuclear pseudo-dipolar interaction, the
magnitude of which, about 1 Mc/sec, is a hundred
times greater than the direct dipole interaction between
the fluorine nuclei.

The calculation of the line shape in the powder
expected on the basis of the above calculation is by no
means easy. Each crystallite of the powder gives a set of
five lines of relative intensity 1:4:6:4: 1, each split from
its neighbors by Tip(T~p/6+1)/hv=4(Ai'+Ap')/hv.
The powder line contains contributions from each crys-
tallite, with relatively more crystallites having 0 near
90' giving contributions since the orientations are
weighted by d(cos9), the relative probability of orienta-
tion. Unfortunately the angular dependence of the
splitting is not a simple function of cos0, so we have
not been able to obtain an analytic expression for the
powder line shape. It is an experimental fact, one which
is examined in detail in the next section, that the width
of each resonance line whose position we have calculated
here is about 5.3 Mc/sec, whereas the largest splitting
between components calculated here is about 7.0
Mc/sec, for 0=90'. Thus, the asymmetric shape which
would be predicted on the basis of an exact calculation
might well not be detectable experimentally. There is,
of course, a shift in the center of the resonance. We
have estimated that shift by plotting the line shape
expected from 113 randomly oriented crystallites. The
shape is, as expected, rather strangely asymmetric,
but we see no reason why the peak of the absorption
should not occur very close to the center of gravity of
the pattern, which is at 7TiP/h'vp=Ep/h in frequency
units away from the unshifted position.

We are now in a position to total the several con-
tributions to the energy of an initial state and to its
corresponding final state and write the energy con-
servation equation for the microwave transition which
connects them.

hv =Er(H atom) —E;(H atom)

+Ei (first-order hfs) —Ei (first-order hfs)

+E~(second-order hfs) —1':;(second-order hfs).

The energies for the hydrogen atom, Ei (H atom) and
E,(H atom), are obtained exactly from the Breit-Rabi
formula. The first order hfs energies are zero for the
particular transitions we are considering (in the
powder), and we have just calculated the second-
order hfs. Ke obtain the numerical results by three
distinct steps: (1) Approximate values of T~, and T,
are obtained from the study of the superhyperfine
spectra of a single crystal (see Sec. II); (2) the second-
order hfs energy is obtained using these approximate
values of T~~ and T&. From Eq. (2) we obtain g and the
proton hyperfine coupling constant B. (3) Using g and
8 we then obtain better values of Tlf and T&. Further
small corrections arising from the second-order terms,
as well as from the admixture of hydrogen atom states
are also necessary. Further iteration to find better
values of g and 8 is not required.

Values of Ti~ and T& were obtained from the 6' vs
cos'0 plot of Sec. II. The results are obtained in mag-
netic field units. Conversion to frequency units is first
made using the free H-atom g value, go. The observed
microwave transitions are at magnetic fields which
satisfy the equations:

hv= W(1,1)—W(0,0)+Ep (low-field line),
(24)

hv= W(1,0)—W(1, —1)+Ep (high-field line).

The known experimental data are the microwave fre-
quency and the fields-for-resonance. The g value may
be extracted from (24) with 8 eliminated, yielding

(g/gp)'Lw'(1+y/s) 3
—(g/go) (2yL3/2+2y/s+ 2 (w/s)'I)

+L2+ 3y/s+ 1w/s)'] =0, (25)

where w'= & f&/v', y= (f +fi)/2v, s=gpP/gi P~ ——658.216,
and v= v/s —Ep/sh. "f and fi are the proton resonance
frequencies at the fields of the upper and lower held
lines, respectively. v is the microwave frequency scaled
by s to express it as the frequency which would give
proton resonance in the same magnetic field that a g= go

sample would give electron spin resonance. One may
also solve the pair of Eqs. (24) for 8, with the result

(g/go) (f-—f~)+ (2yg/gp —1)(f-—ft)/s
(26)

S 2 —(g/g p) 3 +3/s

We may now obtain precise values for T«and T&. In
addition to better values from the accurate value of g,
we should also correct Eq. (12) by using the proper
hydrogen-atom wave functions:

1
I1&=

I

—
& I +)——I+& I

—
&,

2x

I4) = I+& I+&

"The value of gJP/g„PN=658. 216 for the hydrogen 1s state is
given by E. Lambe, Princeton thesis, 1959 (unpublished). The
result is quoted by H. E. Radford, V. W. Hughes, and V. Heltran-
Lopez, Phys. Rev. 123, 153 {1961).
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To lowest order in x we now have

E~(~~)=~p(1—1/8x')LT '+ (T '—T ') cos'gj'"

+ (M p/4x')gFPvHp. (27)

The subscript 1 indicates the fluorine hyperfine inter-
action has been included only to 6rst order. The corre-
sponding equation for the high-held line has the same
form; but note x is field dependent. The second-order
fluorine hyperfine energy E2(e) is calculated in Appendix
A. When both energies are included, we have

~ b.(0)=E~(0)+E2(0)

and hence

t T '+ (T '—T ') cos'tt]'~'

= (1+1/8x') (A,b, (0)—(gpp~HO/4x') —E2 (0) ) . (28)

This equation may be solved for Tj at 8=90', and Tl i

at 8=0'. The final values of T» and T&, exhibited in
Table II, were obtained from this equation.

Deuterium

The spin Hamiltonian appropriate to the deuterium
center is

X.=gPH pS,+CIA S ggPprH—OIg

+Q 8 Zg I —gpp~HOQ I;. (29)

The hyperfine coupling constant C is smaller for deu-
terium than for hydrogen by a factor of 7. For this
reason it is tempting to abandon the apparatus de-
veloped to treat the hydrogen problem, and extract
answers based on simpler approximations. However,
it should be apprecia, ted that the interest in the deu-
terium problem lies in small differences in g, T», and
T, from the hydrogen values, and in the deviation of
8/C from the free atom value. For this reason we
choose to determine the parameters of the deuterium
Hamiltonian by a procedure exactly analogous to that
used for hydrogen.

The deuterium spectrum simply repeats the super-
hyper6ne structure three times, corresponding to spin
orientations of the deuteron of M~= &1, 0. The super-
hyperfine transitions corresponding to the &&=0 con-
figuration depend on C only in second order. The
=entral line of that group depends on the fluorine hyper-
fine interaction also only in second order. Hence, we may
expect to obtain rather accurate values of T» and T&
from the central group, and quite accurate values of g
and C from the experimental data substituted into
expressions analogous to (25) derived from the Breit-
Rabi formula for deuterium. These expressions are ob-
tained in a straightforward manner, but suGer from
algebraic complexity, so they will not be reproduced
here.

It can be seen from Table II that, in fact, the values
of the deuterium spin Hamiltonian parameters are not
quoted with as much precision as are the ones for hydro-

pen. The poorer precision is a consequence of several
experimental factors. The primary hyperfine splitting
in the deuterium case is comparable to the super6ne
interaction. Hence, resonance lines in the single-crystal
data are occasionally dificult to identify and their
centers hard to locate because of "interference" between
two or more lines, However the parameters g and C
were made on a powdered sample to which both D2-
doped and H2-doped samples contributed. Thus, the
parameters C and g for the deuterium were determined
to the same relative accuracyin this rim as were B and

g for the hydrogen. Our relatively smaller experimental
uncertainty of g and B for hydrogen is a consequence
of more measurements, particularly measurements at
18 kMc/sec.

The only major experimental result not reported in
Table II is the change in splitting of the fluorine hfs
lines in the L100j orientation upon cooling to 77'K.
This result is, for the proton center,

6 (77'K) —5 (300'K)——=+ (0.97&0.50) X10 '
6 (300'K)

We also quote for future reference the following results:

8 (interstitial hydrogen)

8 (free hydrogen)

C(interstitial deuteron)

C(free deuterium)

1460.2~0.1

1.420.406

224.930~0.3

218.256

= 1.0280+0.0001,

= 1.0306~0.0014.

We also might remark, as pertinent to the ratio just
quoted for deuterium, that an analysis of the data on
the deuterium center allows us to place an upper limit
on the deuteron electric quadrupole interaction of
eqg (0.4 Mc/sec.

Finally, it should be remarked that all values of g,
8 T11 and Tj quoted in Table II fit the data at all
a,ngles to within 1/10 the resonance linewidth.

IV. ENDOR AND THE ESR LINEWIDTH

The spin Hamiltonian, (1), with which we have been
concerned represents the magnetic interactions be-
tween the hydrogen atom in its ground state and the
eight surrounding fluorine nuclei. The coupling energies
are large enough that essentially all of the structure
compatible with the various symmetry requirements is
actually resolved in the experiments. To understand the
resonance linewidths it is necessary to consider the
interaction of the unpaired spin with more distant
fluorine nuclei. The next shell consists of 24 fluorine
nuclei each at (11)'12ao/2 from the proton. Here a~ is the
lattice constant of the fluorine sublattice. It is con-
venient to write the relevant interactions, analogous
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TAaxK II. The experimental results.

Sample Temperature
I'requency
()4Mc/sec) Ã/Il»

Interstitial'
hfs constant

(Mc/sec)
~II

(Mc/sec)
TJ,

(Mc/sec)

Proton powder
Proton powder
Proton single crystal
Proton single crystal'
Deuteron powder
Deuteron single crystal

Room temperature
Room temperature
Room temperature

77oK
Room temperature
Room temperature

9
18
9
9
9
9

1.000106~0.000010
1.000111~0.000010
1.00023b ~0.00003
1.000000&0.000020
1.00008 +0.00003

1460.26 ~0.10
1460.118~0.22

~ ~ ~

1464.19 ~0.2
224.927+0.320

~ ~ ~ ~ ~ ~

173.826~0.300 69.025~0.300
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

171.94 ~0.50 67.69 ~0.50

a For protons this constant is the symbol B of Eq. (1); for deuterons it is the symbol C of Eq. (29).
b g/gp as reported here was measured in the L1007 orientation and not corrected for second order fluorine hfs. See Appendix A.

The parameters 2'ff and TL were not measured at 77'K, only the splitting d, (100). Its value is reported in the text. The value of g/go is inferred, and
is appropriate for a powder. The measured quantity was bg of' the M~ =0 t 1007 pattern upon cooling to 77'K from room temperature. The result was
d,g/go = —(98~15) )(10 6.

to (1), in the form

24

SC = gvPvH—pg I, +aS g I

+-', b g (3I. S.—I" S)(3 cos'8 —1),

of Eq. (32) in terms of the angle which can be changed
by rotation of the electromagnet. If L100] is a cube
edge, the second shell nuclei are in the directions given
by the 24 unit vectors that may be formed by the 24
distinct permutations of the components and signs of

(3()) the unit vector

hv =hvr&xsLa+b(3 cos'8 —1)]. (32)

vp is the Larmor frequency of fluorine nuclei in the
external field Ho.

To compare the expected angular dependence of the
ENDOR spectra with experiment and to obtain values
for the constants a and b, it is necessary to express the
characteristic dipolar angular factor E(8)—= (3 cos'8 —1)
"For Eq. 30 to be strictly correct it is necessary that r be at

least a threefold axis. It is not a threefold axis for the Quorine ions
in the second shell, but presumably the smallness of a and b

preclude our observation of deviations of the data from axial
symmetry about r~.

where 8 is the angle between Hp and the vector r
from the proton to the eth fluorine in the second shell.
Note that this Hamiltonian is axially symmetric about
r .This approximation is found to give only reasonable
account of the angular dependence of the F-center
ENDOR lines of LiF and other alkali halides. However
we shall see that our data may be fit very well by Eq.
(30). Because of the strong electrostatic interaction
with the proton in the present case, the unpaired elec-
tron is very well localized compared with the F-center
electron; thus we may expect the magnetic interaction
with distant Quorines to be very much like that be-
tween semiclassical point dipoles. "

In computing the eigenvalues of (30), we may ignore
the nondiagonal operator components, which would
lead to electron-coupled pseudodipolar interactions be-
tween nuclei of the second shell. These effects are
unobservably small because of the smallness of the
constants a and b. We obtain the following energy
levels for the ath nucleus in the second shell;

E (Mv, iV,)= —gFp~HpMF

+MvM, I a+b(3 cos'8 —1)]. (31)

The ENDOR frequencies are given by

1
r.= (+3, +1, ~1).

(11)iIs

In our experiments the CaF2 crystal was aligned so
that a L110] axis wa, s parallel to the rotation axis of
the magnet. Thus IIO always had equal projections on
L100] and $010], and could pass through L001] and
L111].At an arbitrary angle p from the (001] direc-
tion, a unit vector parallel to Hp has the form

IIp= (sing/%2, sin7/V2', cosy)

expressed as cose =IIO r" . Working out the angular
factor 3 cos'8 —1 in terms of the laboratory angle p
gives the following seven angular functions:

E,= (21/11) cos'y+(9%2/11) sin2y —5/11,

Es (21/11) cos'y —(9V——2/11) sin2y —5/11,

Its ——(21/11) sin'y+ (6V2 (11)sin2y —g/11,

E4——(21/11) sin'y —(6%2/11) sin2y —g/11, (33)
Es= (3/11) sin'y+ (342/11) sin2y —g/11,

Es= (3/11) sin'y —(3V2/11) sin2y —g/11,

Eq (27/11) cos'y ———1.

These functions are plotted as the smooth solid curves
in Fig. 7.

The positions of the experimental ENDOR lines can
be fitted correctly with the expressions (33) to within
about one-third of the 30-kc/sec ENDOR linewidth.
ln addition to lines described by (33), we observed at
simple orientations such as Hp~~ L100], (111],and L110]
a few extra lines which we attribute to third shell Quo-
rine nuclei. We And we may fit them with an expression
of the form (32) using angular factors E(y) apropos'
third shell nuclei, with b being within a..few percent of
the classical dipolar coupling for this shell and b&)a.

The ENDOR results are summarized in Table III,
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ThsLz III. hfs parameters of first three Quorine ion shells.
R,O—

1
i I L I I I

I

gnLI fILerite SINII

Shell
No. (Mc/sec)

103.96 ~0.25
0.415~0.015
0.020+0.025

b
(Mc/sec)

34.93 ~0.16
0.872+0.015
0.360+0.025

(classical
dipole)

b
(Mc/sec)

5.6
0.804
0.354

1.0—

d5-

00

& Distance from proton to jth shell fiuorine in units of —,'a =1.36 A.

where we include for comparison the equivalent a and
b parameters for the first shell.

The angular dependences in the ENDOR experiment
are a consequence of the symmetry of the paramagnetic
center. Thus, the success in properly accounting for the
angular dependence of the ENDOR data constitutes a
very important corroboration of the proposed model
for the environment of the hydrogen atom. The fact
that none of the ENDOR lines due to nominally equiva-
lent nuclei were split is suggestive that the crystal is
locally perfect, at least out to the second fluorine shell.

AVe may now compute the contribution of the 24
second shell fluorine nuclei to the second moment of
the ESR line. The result, fol1owing Van Vleck, " is

24

(dv')=-' P Pa+b(3 cos'0 —1)]'

Because of experimental uncertainties in the alignment
of the crvstal in the magnetic 6eM, it is more meaning-
ful to compare the second moment of the powder
sample lines to (34). The appropriate angular average
of (34) is easily obtained and extended to include all
fluorine nuclei:

(»')» '~"=l Z -~'L~'+s&') (35)

The running index j labels the sheHs 2, 3, . . . , and
S, is the number of fluorine in the jth shell.

We have evaluated (35) over fluorine shells j=2
and j=3 using the values of u, and b; in Table III, a,nd
over j=4, 5, 6, and 7 using the classical dipolar value
for b;. Using the relation for Gaussian lines that.
L~vjmax. Slope= 2L(~v )j ~ we fin L~vlmax. slope =4 94
Mc/'sec.

To compare with experiment it is necessary to in-

clude the contribution of the electron-coupled ps.udo-
dipole interaction between first shell fluorines. In Sec.
III we calculated that the effect of this second-order
interaction is to shift the center of the powder sample
resonance by 7Trs/vs —3.6 Mc/sec at 9.3 kMc/sec. For
each crystallite, four of the five unresolved lines due to
this interaction are shifted, with shifts ranging from 2

units of T,'/vs to a maximum of about 30T~'/vs, de-
pending upon the orientation of the crystallite in the
external field. The resultant envelope for the powder
has a full width of about 8Trs/vs, about 4 Mc/sec at
X band. Since the pattern is not symmetrical, a,nd we

"J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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FIG. 7. Angular variation of ENDOR lines for second shell F
nuclei. Solid lines are graphs of Eqs. (33) in the text. u and b are,
respectively, the isotropic and anisotropic hyper6ne parameters
for the second shell nuclei. The angle 0. in the Ggure is the lab-
oratory angle 7 in the text. Circles represent experimental points
which we were able to assign unambiguously to second shell
nuclei.

do not have a tractable analytic expression for the
shape, it is not feasible to make quantitative com-

parisons with great precision. The data are presented
in Table IV. There are four lines to compare, two at
each microwave frequency. They are identified in
Table IV by the resonant 6eld. The last column gives
the "excess" width of the experirn. ental line over the
value of 4.94 Mc/sec calculated from (35). We ascribe
this "excess" width to the second-order interaction,
and point out that the large change in the "excess"
width between 9 kMc/sec and 18 kMc/sec is in agree-
ment with one's expectations as to the microwave fre-

quency dependence of the second order interaction.
However we cannot explain on this basis the smaller
width of the high-6eld lines as compared to the low-

field lines at each frequency. The energy denominator
in the second-order interaction involves the microwave

frequency, not the magnetic 6eld.

V. THEORY

The problem of calculating superhyperfine interac-
tions has been of interest to theorists concerned with
magnetism since Tinkham's' experiments on the fine

structure of the paramagnetic resonance spectrum of
Mn as a dilute solute in ZnF2. The spin resonance of
the F center in alkali halides led theorists interested in

TABLE IV. Resonance linewidths for powder samples.

Field for
resonance

(gauss)

3060"
3580b
6510e
7030"'

Observed width
(Mc/sec)

{6.26~0.2)
(5.98~0.20)
(5.63~0.20)
(5.37+0.20)

Calculated
width'

(Mc/sec)

4.94
4.94
4.94
4.94

"Excess"
width

(Mc/sec)

1.32
1.04
0.69
0.43

& Calculated from Eq. (35) in the text. No second-order &rst shel1 1nter-
actions included.

b Microwave frequency 9 kMc/sec.
& Microwave frequency 18 kMc/sec,
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-3(I r)(S.r) I S Ssr
X}yfs—2/+5 +—I S~(r) . (36)

r3 3

P is the Bohr Magneton, y is the nuclear magnetogyric
ratio of the nucleus of spin I= 1/2, and 5= 1/2 is the
electron spin. For interaction with the proton r is the
electron-proton vector, and for interaction with a Auo-

rine nucleus r is the electron-fjuorine vector. We reduce
Xgf to the spin Hamiltonian (1) by calculating the
expectation value of BCi,~, with integration over spatial
coordinates only. The results of this calculation are, in
frequency units,

&= (g/3)7 8&4 l~(r) I4&, (37)

For a survey, see B.S. Qourary and F.J.Adrian, in Solid Stale
Physics, edited by F. Seitz and D. Turnbull &Pcaderniz Press
Inc. , New York, 1960},Vol. 1.0, pp. 127—247,

that problem along similar lines. " In this section we
present a calculation of the hyperfine and superhyper-
fine parameters based on the simplest approach likely
to yield interesting results. A discussion of the various
theoretical approaches may be found in the paper by
Marshall and Stuart. ' In their language, the calculation
presented here is based on the simple Heitler-London
model.

%e are required. to calculate 8, T„, T&, and hg. It
should be noted that only the Z tensor is calculated in
the MnF2 problem since the Mn hyper6ne interaction
is not easily susceptible to quantitative calculation. The
P-center problem requires Ag and Z and the hyperfine
interactions must be calculated over many shells of
neighboring ions. Both the MnF~ problem and the
F-center problem require knowledge of rather compli-
cated wave functions. In our problem we start with
one of the simplest possible systems, the hydrogen
atom, and expect to calculate, in a,ddition to g, the
magnitude of the wave function at the proton as ob-
tained from B.

We give first a calculation based on the assumption
that the interstitial hydrogen atom is fixed at the
center of the cube defined by the eight nearest neighbor
Ruorine ions. Such a calculation is inadequate to ac-
count for temperature dependences in 8 and Z; nor
can it explain the observed diGerence between the
Z 's for the proton and deuteron.

Under the heading "Dynamic Calculation" we re-
calculate the hyperfine structure tensors from a simple
dynamic model. We will show that the motion of the
hydrogen or deuterium atom in its potential well does
not alter the magnitudes of these tensors significantly.
It does account partially for the small changes in the
hyperfine tensor observed after deuteration or cooling
to 77'K. These data will be discussed in the light of
this dynamic calculation.

A. Static Calcu1ation

We take the electron-nucleus interaction to be of the
form

TABLE V. Overlap integrals and their derivatives at E =4.46 au.

&'H &s)
(H 2s)
(H 2pol
(H g. 2s)
(H g„2p~)

Integral

0.0039—0.064
0.135—0.0056
0.025

First derivative Second derivative

—0.0039 0.0032
+0.055 —0.038—0.078 0.037
+0.0054 —0.0059—0.023 0.023

= (g/3)v PQ I~(r—R-) Ik)
+ (1/~)v F4&0 I g- I 4&, (38)

2,-= (8/3)~.~&~I~(r- R-) l~&
—(1/2~h PP&P I g- I 0) (39)

In the above expressions
I
R.

I

= 4.46 a.u. (atomic units)
!s the proton-fluorine distance, and 8(r—R ) requires
that Ipl' be evaluated at the fluorine nucleus. g
=(3cos'0 —1)r —', where r is the electron-fluorine
distance and 0 the angle between r and E. . In the
derivation we have assumed the electron wave function
lg& to be axially symmetric about each R .

The argument which allows the use of a one-electron
expression for the hyperfine interaction energy is given
by Gourary and Adrian. ' If we assume a purely ionic
model for the F ions in CaF2 we require If) to be
orthogonal to the core electron wave functions of the
eight surrounding fluorine ions. The experimental re-
sults strongly suggest that the most reasonable pro-
cedure is to start with a simple hydrogen-atom wave
function and modify it slightly to achieve the required
orthogonality. The appropriate expression for lit) is

I4&=&LIH) —2 &i-IH) li-)),
2&A

»T=I1-Z
I
&'-IH&l'j-:-

(40)

I
H) =m "e '" is the free hydrogen atom wave function

in atomic units. Ii ) is the wave function of the ith
orbital on the nth fluorine ion. The summation on ~
runs over all eight ions, and the summation on i runs
over all 1s, 2s, and 2p orbitals with spin parallel to the
H-atom spin.

The values of various integrals required by 37, 38,
and 39 are listed in Table V. The appropriate deriva-
tives are also given in anticipation of the discussion of
Part 8 of this section. The fluorine-ion wave functions
used were numerical functions of Froese. ' No attempt
was made to follow the suggestion of Marshall and
Stuart' that free-ion wave functions must be modified
for calculations in crystals. We present a brief descrip-
tion of our method of evaluation of the various inte-
grals of Table V in Appendix II.

The results of the calculation are: 8= 1660 Mc/sec,
T» ——196 Mc/sec, and Ts 96 Mc/sec. ——

These values are all higher by about 10orz to 30'Po
than the corresponding experimental values. Consider-
ing the simplicity of the calculation the agreement of
T. » and T& with experiment is perhaps surprising.

» C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).



The large value of 8, however, most be counted a
serious discrepancy, since it is relevant to compa, re
(1660-1420) Mc/sec= 240 Mc/sec with (1460-1420)
Mc/sec=40 Mc/sec. This discrepancy illuminates the
nature of the incompleteness of our calculation. The
only crystalline modification of the free hydrogen wave
function we have taken into account has been in re-
sponse to the Pauli exclusion principle, which is effec-
tively a repulsive interaction. The effect of this repulsive
interaction is to increase the charge density at the
proton over the free atom case, at least for values of
E as large or larger than R =4.46 a.u. Other inter-
actions with the crystalline surroundings, such as Van
der Waals forces and effects attributable to the dielec-
tric constant of the medium, have the effect of spread-
ing out the wave function and decreasing the charge
density at the proton. For hydrogen atoms trapped in
rare gas matrices Foner et at."have found the attractive
interactions can sometimes overcome the repulsive in-
teractions to the extent of decreasing the charge density
a,t the proton from the free atom value.

Adrian s' and Jortner and Coulson" have estimated
the magnitudes of the attractive interactions. We
believe estimates of the type they have made are too
crude to explain our results. Suppose we begin with a
wave function of the type used by Jortner and Coulson:
~Hq)=X+s~'vr "'e "", where X(1 is a parameter esti-
mated by a variational technique. Were we to use

~Hq) in place of ~H) in (40) the desired effect on

(P~&(r) ~P) might be achieved, but inevitably at the
expense of larger values of the overlap integrals, since
the hydrogenic function clearly spreads farther out
into regions where the is, 2s, and 2po fluorine-ion
functions are large. The result would be increased
values of Tl l and T&, when these parameters are already
too large in the present calculation. What the data
seem to require beyond the present calculation is a
detailed examination of the effect on the hydrogen
atom of the actual crystalline environment. This en-

vironment would have to both decrease the overlap
integrals somewhat and spread the electron out away
from the proton. If we assume the interstitial position
is a normally unoccupied body center position, then
each hydrogen sees a Ca+" ion through the six faces of
its cube. If the electron is attracted towards these
ions and repelled by electrostatic forces from the Auo-

rines, the desired effect is achieved. In different lan-

guage, the crystalline potential mixes in Sg hydrogenic
functions. It is unfortunate the only isotope of Ca
with a magnetic moment is 0.13jz abundant, since if
the above considerations are correct they would lead
to a substantial hyperfine interaction with the calcium
nucleus, and the data could provide an additional check
on more detailed calculations.

A discussion of hg will be given at the end of the

"S.N. Foner, E. L. Cochran, V. A. Bowers, and C. K. Jen,
J. Chem. Phys. 32, 963 (1960)."F.J. Adrian, J. Chem. Phys. 32, 970 (1960)."J.Jortner and C. A. Coulson& Molecular Phys. 4, 451 (1961).

next section. In all the above formulas it was tacitly
assumed that g=2.00, an assumption sufficiently ac-
curate for the calculations.

(Ã') = 1 21+0.0468(x')

(g ~5(r ) ~P))=0.372+0.0129(x ),

((P i
5 (r—R.) i P))=0.031+8.6X10-'(x'),

((lt ~g ~f))=0.133+2.87&(10 '(x').

(41)

sV is the normalization factor of ~P). We include it
explicitly because the major effect of displacement x
on the integrals D, occurs through the change in
normalization. (x')= (7t |x'

~ z) is the mean-square vibra-
tional amplitude of the atom in its effectively one-
dimensional potential. There is, of course, no term
linear in x since (x)=0. The hyperfine parameters,
expressed in frequency units, are

8= L1660+57 5(x')j Mc/sec,

T, ~
=$196+5.05(x')) Mc/sec,

T,= L96+2.9(x')$ Mc/sec,

5(100)= (-'7"„'+'T,')"=L138+3.74(x')j Mc-/sec.

"H. Mimura and Y. Uemura, J. Phys. Soc. Japan 14, 1011
(1959).

B. Dynamic Calculation

The inhuence of the vibrational state of the hydro-

gen atom in its potential well on the hyperfine tensors
for the U2 center in KC1 has been discussed by Mimura
and Uemura. "They were, however, unable to compare
this aspect of their calculations on the U2 center to
experiment since detailed, precise data such as we have
presented here are lacking for the U2 center.

Ke start, with Mimura and. Uemura, by realizing
that if x is the normalized wavefunction of the hydrogen
atom in its potential well in the crystal, we wish to cal-
culate (D,)= (y~ D,

~ y), where D, represents (/~ 6(r) ~P),
($~8(r—R ) ~P), or (P~g ~P). The simplest potential
we can envisage which should have some relation to
reality is one which allows H-atom motion only in the
simple cubic directions in the crystal, i.e., towards any
cube face. In three-dimensional language, we have
chosen a weak potential along L100) directions, a very
strong potential along t'111] directions. This choice of

potential reduces the problem to that of one-dimen-

sional motion for the H atom and allows us to calculate
the value of D, as a function of the displacement x of
the hydrogen atom from its body-center position.

Upon a displacement x of the type described above,
the fluorine-proton vector goes from r = (R /v3) (1,1,1)
to r,+br, = (R /V3) (1+x, 1, 1). We assume x/R ((1,
and keep all terms to x'. Thus

~

r-+Sr„~ =R +-',x

+sx'/R . All of the three integrals D, may now be
calculated at this new position if we assume all elec-

tronic wave functions may follow the nucleon motion
adiabatically. The results are
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(x'-) is expressed in units of Bohr radius squared. 6(100)
is the splitting between superhyperhne structure lines
when Bo is parallel to [100j. We note to begin with
that the coefficients of (x') in each of the above equa-
tions are small enough that even (x')=1 amounts to a
correction of 2%—3% to the results of the static
calculation.

The experimental data we would like to be able to
explain are the temperature dependences between 300
and 77'K of B and 6(100), and the mass dependences
of 8, Tlf, and T&. Ke point out that in both types of
data there are apparent anomalies that we are required
to explain. A comparison of 8 with C, the equivalent
parameter for the deuteron, shows that there is very
little mass dependence of the spin density at the inter-
stitial nucleus. The data on the mixed powdered crys-
tals show an increase in the spin density at the deuteron
over the proton of (7&5)X 10 ' a.u. On the other hand,
the superhyper6ne coupling parameters Tl& and T& are
greater when the interstitial nucleus is a proton than
when it is a deuteron by about 1%. Similar anomalies
exist in the temperature dependence data. The param-
eter B increases by 4.2 Mc/sec upon cooling to 77'K
from room temperature, whereas A(100) increases by
only (0.1+0.05) Mc/sec. Even the fractional increase
in 8 is three times the fractional increase of h.

Any attempt to achieve a consistent explanation of
these data should allow for the possibility that the
fluorine-interstitial nuclear distance may depend on
the mass of the interstitial nucleus. If we imagine the
static calculation is appropriate to O'K and to the
impossible condition of no vibrational amplitude of the
interstitial atom, we may write

8
Ip(0) I' sRH+0.013(xH'),

BR

fp (o)I2= I4(o)l2

ip(0) I
m +oo13(* ')

M g„

ig(0) I' and its derivative are the results of the stat. ic
calculation, 5EH and 8ED represent the change of the
fluorine-interstitial nuclear distance due to the presence
of the interstitial hydrogen or deuterium, respectively.
Subtracting, and multiplying by (8/3)P&„/ao' to put in
frequency units, we get

3.21=407RHD —57.5XHD',

where the numbers are in Mc/sec, RHn= [BORH
—8Rnj,

and &HIP [(xH') —(xrP)7. The same procedure may
be applied to the Tf &

or T& data, either of which yield

1.9= —334RHn+ 5.05XHn'. (45)

Equations (44) and (45) have the solutions (bRH —8Rn)

== ==0.007, and (xu') —(czar)= —0.1 in units of ao and
cp', respectively. These results are at least internally
consistent: The larger mean square amplitude for deu-
terium occurs in a larger box. The same simple har-
monic oscillator potential for both H and D always
requires (xH') —(xn')~&0, equality being achieved only
in the limit of very high temperatures or weak po-
tential, when the equipartition theorem requires (x'-')

=~2"/k (independent of mass), where k is the simple
harmonic oscillator force constant. On the other hand,
in a one-dimensional square well potential the quantity
(x') is independent of mass for each individual quan-
tum state, but since the deuteron is twice as massive
as the proton the excited state energies are smaller by
t.wo than for the proton. Since the value of (x') is
larger the higher the energy of the state, greater
thermal excitation of the deuteron implies (xn')—(xH') &~0, equality obtaining either when both atoms
occupy the ground state exclusively or in the very
high temperature limit. As an example, with both atoms
in the same one-dimensional square well of width 2up,
and infinite repulsive potential for

I
x

I
&~ao, (xzp) —(xH')

=0.03ap', and the energy difference between the ground
and 6rst excited states is 2~T for the proton and ~T for
the deuteron at room temperature. A quantitative
comparison of the mean square amplitudes of vibration
and the differences in dilation of the local lattice pa-
rameter would require detailed calculations involving
the elastic properties of the lattice and wiH not be
attempted here.

We now turn to the temperature dependence data.
The same procedure as in the H-D case allows us to
write the pair of equations

B(77)—B(3oo)= [a ip(0) I'/~Rj~ [~R»—~RSO03

+0.013[(x;P)—(x30(p)j, (46)

A(77) A(300) = (86/BR)g $6R» 8R3ooj

+2.37X10—'[(xvP) —(xgoo') j, (47)

where A(T) is the splitting between adjacent super-
hyperfine lines with a Ho parallel to (100) at the in-
dicated temperature. 5877—6E3pp is the difference in E.
at the two temperatures, and (x»') —(x~00') the differ-
ence between the mean square vibrational amplitudes
of the hydrogen atom at 77 and 300'K. In megacycle
units these equations become

4.2 = 407Rr+58Xi ', —

O. 12= —2SSR,+3.7SX,',

(48)

(49)

where Rr and Xr' stand for the brackets in Eqs. (46)
and (47). The results are

(xpP) —(x30(P)=0.08a(P,

~&77—~&3pp= 0.74X &0 '+p.

These results are also internally consistent in the sense
that the larger mean square vibrational amplitude goes
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with the larger R . The remarkable feature of the result
is that R is larger at 72 than at 300'K, in spite of a
thermal contraction of the lattice which alone would
require 8R3pp 5277 +0.0137ap. It should be noted
that there is approximately the same difference be-
tween (x77) and (x3pp) as between (xn') and (xn'),
whereas the difference between 8R77 and 8R300 is a11,

order of magnitude smaller than HARD
—5RH.

We will not speculate further on these results, but
will only acknowledge that the temperature dependence
results seem to violate one's physical intuition. We
emphasize that the connection between these results
and the experimental facts has become very weak,
since they depend firstly on a calculation of hyperfine
constants, which is accurate only to about 30'Po,
secondly on calculations of derivatives of hyperfine
constants which have not been directly compared to
experiment, and thirdly on a detailed model of the
interstitial nuclear motion which was chosen mainly
for simplicity of calculation. On the other hand, as we
pointed out before, the experimental facts themselves
are not intuitively understandable. A paradox to ex-
plain them is not necessarily satisfactory.

We turn finally to the question of the g shift. . The
most striking feature of this parameter is that it is
small but positive when calculated with respect to the
free hydrogen atom value. It is interesting to compare
Ag with the same quantity for the Ii center. With the
possible exception of the most interesting case for us,
LiF, kg&0 is observed for all Ii centers. "The experi-
mental results for LiF have been contradictory" with
the weight of the evidence seeming to be towards a
small negative value. A mechanism responsible for a
negative hg has been discussed by Adrian, " and cal-
culations by him and by Blumberg and Das" yield
results in qualitative agreement with experiment for
the Ii center. The essential point of the argument for
the Ii center must apply to our experiment also: The
admixture of fluorine ion 2po wave functions in the
hydrogen atom electron causes the electron to experi-
ence strong spin-orbit forces which are manifested in
the spin Hamiltonian by a shift in the g factor. The
interesting feature of this mechanism is that it always
predicts a negative g shift, in our case about one part
in 10', whereas the measured hg is pos3tiwe by the same
amount. Our experimental accuracy does not allow us
to detect a, change in Ag between the hydrogen by
about 1:10' upon cooling to 77'K. If the g shift were
simply related to the vibrational amplitude of the atom
in its potential well one might have expected on the
basis of the analysis of the previous section that there
would by the same change of Ag upon deuteration a,s
upon cooling the hydrogen-doped crystal to 77'K. At.

"Positive g shifts in I.iF have been reported by tA'. W. Lord,
Phys. Rev. 105, 750 (1957) and J. S. Hyde, ibid. 119, 1483 (1960),
and negative ones by K. C. Holton and H. Slum, ib7'd. 125, 89
(1962)."F.J. Adrian, Phys. Rev. 107, 488 (1957)."W. E. Slumberg and T. P. Das, Phys. Rev. 110, 647 (1958).

present we can offer no explanation for the observed

g values. It should be noted, however, that positive

g shifts were reported by Foner et ut."for hydrogen in
some of the rare gas matrices.

It is clear that additional experiments would be
useful in clarifying some of the complications we have
raised. In particular, measurement of ajtl hyperfine pa-
rameters of the spin Hamiltonian (1), as well as hg, as
a function of hydrostatic pressure both at room tem-
perature and at 77'K on the deuteron center as well
as the hydrogen center, would probably furnish enough
information to resolve some of the problems we have
discussed. It is possible that measurements of the spin-
Hamiltonian parameters as a function of uniaxial strain
could yield much the same information, particularly
since a properly chosen strain will ca,use an electric
field gradient at the deuteron and produce an electric
quadrupole interaction with the deuteron. We have not
estimated this quantity yet to see if a splitting might
be observed. Observations of the changes of the hyper-
fine coupling parameters as a function of pressure and
strain could also provide experimental magnitudes for
the matrix elements for spin-lattice relaxation if the
mechanism for such relaxation is modulation of the
hyperfine tensors by the lattice phonons.

VI. CONCLUSIONS

In this paper we have described the magnetic inter-
actions of a hydrogen atom with its surroundings when
it is placed in an interstitial position in a CaF2 lattice.
We have shown that the hydrogen atom remains very
much as it is in free space, in agreement with the fact
that 90% of the electronic charge of the atom may
be contained in the interstitial space defined by the
classical ionic radii of the surrounding fluorine ions.
The relatively weak magnetic interactions with the
surrounding fluorine nuclei have, however, a profound
effect on the paramagnetic resonance spectrum of the
center. We have measured the resolved interactions
with the eight nearest neighbor fluorine nuclei, de-
termined by ENDOR techniques the intera, ctions with
the 24 next-nearest-neighbor fluorines, and seen some
indication of the interaction of the hydrogen electron
with the third shell. These measurements provide a
quantitative measure of the localization of the electron
on the proton. Our sample preparation technique has
allowed us to deuterate the specimen and observe the
sma, ll mass dependence of the interactions. We have
also observed the smaB changes in the parameters
describing the magnetic interactions after the crystal
is cooled to 72'K.

Questions which remain to be examined and which
have not been seriously studied in this investigation
include the mechanism for production of the hydrogen
interstitial atom and the mechanism for its thermal
bleaching. Nor have we observed. any well-defined op-
tical absorption effects which could be uniquely related
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to the presence of the hydrogen. The question of op-
tical bleaching has not been examined at all.

In Sec. V we presented a calculation of the param-
eters describing the magnetic interactions of the elec-
tron with the proton and surrounding eight nuclei. The
calculation is presented in the spirit of an inquiry into
the results one does obtain with the standard theoreti-
cal techniques which have been used previously in
more dificult or less well-defined problems, such as
the Ii center or Mn++ in ZnF2. The agreement of this
calculation with experiment was found to be only
fair—the calculated parameters were up to 30% too
large. The calculation was somewhat optimistically ex-
tended to a dynamic model in an attempt to under-
stand the small proton-deuteron and temperature differ-
ences. It is hoped these attempts will stimulate work
which will treat the whole problem properly and which
will be satisfied only by excellent agreement with the
experiments. It should also be emphasized that a
"standard" calculation is inadequate to explain even
qualitatively the observed g shifts.

We conclude by emphasizing our belief that we have
studied an impurity center which provides unique op-
portunities for theorists to calculate from basic prin-
ciples the measured interactions. We have shown that
the wave function of this impurity center is quite close
in its main features to that of a free hydrogen atom.
At the same time the solid-state effects which have
caused deviations from free atom behavior are well
defined and susceptible to very accurate measurement,
and the substitution of the deuteron for the proton
allows an additional check on those aspects of the
theory which involve local lattice dynamics.
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APPENDIX A. SECOND ORDER hfs CORRECTION
FOR Hp)) [1,0, 0,]

We have remarked that the number of degenerate
energy levels of the 8 first shell Quorine nuclei can be
quite large for special orientations of the crystal in the ex-
ternal Geld. For example, for Hp~~ [100j, the P =P MIi'
=0 state is seventy-fold degenerate. We can calculate
with certainty the pseudodipolar effects only for the
twofold degenerate problem which arises from the
"pairwise" degeneracy characteristic of the model. By
taking our data for the 8=90' interaction from the
Hp~~ [112] spectra and our data for the tt=0' interac-
tion from Hp~~ [111j,we have been able largely to skirt.
the problem, since these alignments produce only single
nuclear pairs at the desired angles. This approach is
somewhat limited, however, because of the accidental
overlapping of lines which occurs at the [111)orienta-
tion. Also it is clearly of interest to make detailed
comparisons of the observed and predicted superhyper-
fine spectra at many orientations, especially those which
give the best signal/noise and resolution, i.e., those
with a high degree of degeneracy. In this Appendix we
will focus mainly on the effects of degeneracy upon the
second order calculations for the 8 equivalent Quorines
of the [100j alignment, since this result is also useful
in comparing the [100jg value with the powder sample
result. In the process we discover in what sense the
nuclei really are equivalent.

Our approach is to follow Sec. III to the extent of
starting with four pairs of nuclei of total spin for each
pair I= 1 and 0; I,=I~,+I2, is the s component of the
total angular momentum operator for each pair, and

~
M) is the eigenfunction of I,. The second order con-

tribution to the energy of the state
~
M,,) ~

M) for each
pair is

&M &MIH IM')IM')&M'I&M'IH IM)IM )
AE2(M„M) =

Des'M' L~'(M „M) E(M,',M')— (A1)

The perturbation H&, is given by Eq. (20) in Sec. III.
We ignore the mixture of 3f, states of the hydrogen
atom and approximate the energy denominator by hp.
Contracting on spin coordinates j/I, and on nuclear
spin coordinates 3I' we have

1
AEp( —1/2, M) = ——(Mi II.i i Hi iM),

'

llV

(A2)

pE, (1/2, M)= &M[II VI /M)—
i'IP

In (A2) the perturbation H~ ha, s been broken into
two parts Hq 5+H++5 H . ——

(A2) demonstrates in clearer form the fact already
mentioned in Sec. IIl that the spin Hamiltonian (1)
contains buried within it a bilinear coupling between
fluorine nuclei on the same body diagonal. We can
see in addition for Hp~~ [100$ that H~ produces a cou-

pling among the pairs. From symmetry the strength~

of the coupling between the various pairs must be the
saIQe; the importQ, I&t point concerns their relatl v»

phas|;s,
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In terms of the laboratory system dehned in II, the
positions of the Quorine nuclei are described by the
following vectors:

H+tH+(ngn') =g [» ized(n)'q(n')'I„I-„+
n=l

+»zzrz*(n)zz(n')I. ,I„,+»zzI.+I. ]. —
(A7)

r,=~ (v2,0,1),
r,=a (0,&2,1),
r,=W(—&2, 0, 1),
r4 ——a(0, —v2, 1).

(A3)

A principal axis vector in the r' system, (0,0,1), is
transformed into z'& and r2 by a rotation through angle
+8 by the rotation operator R(8) about the y and x
axes, respectively. A vector (0,0,1) is transformed into
r& and r4 by R(—8) about the y and x axes, respec-
tively. Similarly the angle P between the local field and
Ho is positive for rl and r2, corresponding to a rotation
about the y and x axes, respectively, and is negative
for r3 and r4, corresponding to rotation, respectively,
about the y and x axes in the opposite senses. If we
proceed as in Sec. III, we are interested in writing
Hi~Hi in the a" system, where i" is in the direction of
the local field. This procedure in Sec. III leads to Eq.
(19).We can show that the pairs labeled by 1 and 3 in
(A3) will differ in the sign of S, in Hi. The pairs 2 and
4 in (A3) will be the same as 1 and 3 except 8, and I,
will be interchanged with S„and I„, and pairs 2 and 4
will differ in the sign of 5„.Ke may summarize these
results by writing the perturbation in the form

H+(n) =LE(n)'»iI ++q(n)»zI .+»zI ],
A4

H (n) = L»zI„++g'(n)»zI„,+vP(n)I„], — AEz 4(» iz+» zz)//zv. —— (AS)

Similar expressions can be written for H ~H . Note
that in (A6) zt (n) has always appeared to a high enough
power to give +1. If the signs of the cross terms
I„+I„,etc. of (A7) were always positive, it would be
possible to diagonalize this term by transforming to the
IP and II, representation, where II=P„ i' I„, II,

i' I„,. If the cross terms of (A7) did not exist at
all, the representation labeled by the nuclear pair
quantum numbers I, M would be diagonal. However,
as things stand neither representation gives an exact
answer. Since the size of the second order shift is on
the order of »iz/hv= 1 Mc/sec, which is a fraction of
the resonance linewidth, we will content ourselves with
two estimates of (A2). We may either arbitrarily take
the cross terms to be positive and work in the IP, II,
representation, or neglect them entirely and work in
the I, 3f representation. We perform the estimates for
the BE=0 line.

In the II', ll, representation the submatrix corre-
sponding to 3E,=O is of dimension 70)&70. We expect
the artifice of taking all cross terms to be positive will
overestimate (A2). Equation (A6) gives the energy
directly if we read 0 and II, for I and I„and drop the
summation. For the purpose of estimating, we average
over the I=O, I, 2, 3, 4 states using the statistica, l

weights of i4, 28, 20, 7, j., respectively. The result is

H~tH~=+ „H+t(n')H+&n),

H tH =+.„.H t(n')H (n).
(AS)

The operators (AS) contain terms which connect states
I M,) I M) which differ by M =&1, &2, as well as terms
which connect states which do not differ in their M
quantum numbers. It is clear from the form of (A2)
that only the latter contribute to AJi2. The effect of the
remaining terms in (AS) appears only in higher order
than we are considering here.

The summation (AS) may be considered in two
parts m=e' and ss/ss'. These terms are

where g(n)= (i)" '. (A4) is Eq. (20), Sec. III, for any
nuclear pair labeled by e= 1, 2, 3, 4. We have, as in
Sec. III, dropped the primes on coordinates in (A4);
I,:=I," is diagonal.

The operators H+tH+ and H tH in (A2) are given
by the product of the sum over all pairs:

At v =9 kMc/sec this term represents correction to the
L100] g value given by first order theory of only —96
parts per million (ppm).

We obtain the average shift in the pairs-only repre-
sentation in the same way as in the powdered-sample
problem, except that the average over 0 is obviously
not required. The contribution of each type of nuclear
spin state is multiplied by the statistical weight for
that state, summed, and the result normalized by
division by the total number of states, 70, for the
&V=0 line of the

I 100] spectrum. The result is:
»iz+»zz 24 Az'

AZz=g + (A9)
hv 7 hv

At 9 kMc/sec this represents a correction to the g shift
as calculated from 6rst-order theory of —298 ppm.
The second-order correction for the powder data, a
correction in which we can have confidence, was —220
ppm, approximatelv midway between the two esti-
mates made here.

H+tH~(n= n') =Q ( APP„,It ,z(I„-1)].. . . —
n=l

+» 'LI--I-(I-+»]+»"(I-) ), (A6)

APPENDIX 8.- CALCULATION OF OVRRI, AP
INTR GRALS

AVe are required to evaluate integrals of the form
&HII'i(cos8 )f(r ) Iz ), whe~~ &HI = (zr) '"~ ', and &i
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is a 1s, 2s, or 2p fluorine function. The angular parts of
(i ~

are, of course, just the appropriate spherical har-
monics, and the radial functions we used are given in
the form of numerical tables by Froese."For the overlap
integrals (H~1s), (H~2s), and (H~2po), P/(cos8 )f(r )
is just a constant. In the integral (H

~ g ~i ), g
=2P2(cos8, )r, '. We make use of the expansion of
e "about the fluorine nucleus as given by Barnett and
Coulson".

(23+1)
e—"=Q P~(cos8.) f, , ~(1,r„;R.).

(=0 (r R )&

P~(cos8 ) is the /th order Legendre polynomial; 8 is
the angular position of the electron as measured from
the proton-Auorine internuclear line, r is the electron's
radial coordinate as measured from the fluorine nu-

'7 M. P. Sarnett and C. A. Coulson, Phil, Trans. Roy. Soc.
(London) 243, 224 (1950-1951).

cleus. |q, ~(1,r; R ) is a certain combination of products
of Igy]/2(r„), and E&+&/&(r ) as given by Barnett and
Coulson. The I and E functions are half-integra] Bessel
functions of imaginary argument. AVith this expansion
the angular integrals are easily performed, and the
radial integrals are of the form

co
r 'R„,/(r )f(r )1 ~ ~(1,r; R )dr,

where the fluorine radial functions E„,&(r ) sa, tisfy the
normalization condition Jo y 'R„,P(r, )dr = 1. The
radial integrals were evaluated by the CIT Bendix
G-20 computer using Simpson's rule. The Bessel func-
tions were generated by the computer using a sub-
routine developed by members of the group of Professor
R. G. Parr in the Department of Chemistry. The
values of the required integrals were obtained in steps
of 0.20ao for R between 3.8ao and 5.2ao. Derivatives
quoted in Table V were obtained graphically.


