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Kinetic Equation for Plasma
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The collision integral for the kinetic equation describing a qunatum mechanical plasma is set up. It is
shown that the classical collision integral derived by Rostoker, Rosenbluth, Balescu, and Lenard is easily
obtained from the more perspicuous quantum mechanical result by letting A ~ 0. The kinetic equations of
Pines and SchrieGer, which describe the interactions of the electrons with plasma oscillations, are obtained
by isolating the contributions from the plasma oscillations.

1. INTRODUCTION

NUMBER of recent investigations' ' have been
devoted to the problem of establishing a kinetic

equation (Boltzmann equation) suitable for the de-

scription of nonequilibrium phenomena in a plasma.
In the case of the classical plasma, several authors, '—4

proceeding by different methods, have succeeded in
deriving a kinetic equation valid in the limit that the
number of particles in the Debye sphere is large,
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For an electron plasma in a uniform positive charge
background, one finds the coupled equations
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The single-particle distribution function f(x,v, l) is
normalized so that dt's dsn f(x,v, l) = V,
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the plasma, which is given by

q Pf(v)/~v7
X(q,(o) = 1+ d'v

M+1g —q' v
(6)

where co~'=brae'/te is the plasma, frequency and q is a,

positive in6nitesima).
The derivations' ' leading to the formula (4) for the

collision integral, while having the advantage of being
precise or rigorous in the limit (1) have at the same
time the disadvantage of being quite complicated
mathematically. Moreover, the result (4) itself is of a.

rather complex form and the various factors in it do
not at erst sight seem to have a simple physical inter-
pretation. One could not easily guess the form (4) for
the collision integral.

We would like to point out in Sec. 2 of this paper
that if one approaches the problem quantum mechani-

ca11y, rather, than classically, the whole situation seems
much simpler. Thus, the quantum mechanical analog
of (4) has a simple form which can be easily guessed.
And the classical result can be obtained from the
quantum mechanical one by a straightforward expn. n-

sion in powers of A.

Schrieffer and one of the authors of the presc~~t

paper have recently developed' an alternative version
of kinetic theory for a plasma which emphasizes the
role played by the collective mode or plasma oscilla-
tions. These aUthors start with a quantum mechanical
plasma and later reduce their results to the classical
limit by letting fz —+0. For the qua, ntum mechanical
ca,se one introduces the number of plasmons iV(q) with
wave number q or momentum AtI and the number of
electrons F(y) with wave number p or momentum Ap.
There are then two coupled equations describing the
time rate of change of these quantities due to emission
and absorption of plasmons by the electrons:

4' 8 co 1= —279»(q)+- —2 F(p) LI —F(p —q) 3(&~%—~p+ ~p-~),
q' V I'

BF(p) 1 47r'e'(u,
[&(&~,—~,~-,+~,)(—F (p) LI —F(y+ q)7 V(q)+& (y+q) L1—F(p) 7L~ (q)+17)

U ill«.

(7)

+5(ken, —e,+e, ,){—F (p)L1—F (y —q)7LiV(q)+17+F (p —q) L1—F(y) 7 V(q) ) ]. (8)

In these equations e„=5'p'/2m is the kinetic energy of
an electron and G)q and p~ are the frequency and decay
rate of the plasma oscillations so that cu=cu~ —iy, is the
complex frequency of the plasma oscillation. The decay
rate is given by the expression

2x'e' 1—ELF(p—«) —F(p)7&P~g —~v+~v-g7, (9)
co~ q' V I'

which we shall find useful below.
The kinetic equations (7) and (8) describe only the

collective eGects in the plasma and do not include the
eGects due to close collisions. Thus, there is a cutoR
in Eq. (8), q q„such that only plasma osciiiations

FIG. 1. Feynman
diagram for scatter-
ing of electrons via
a screened Coulomb
interaction.

for which the Landau damping (9) is small will be
included. In Sec. 3 of this paper we want to show the
connection between the quantum mechanical analog
of the collision integral (4) and the kinetic equations
(7) and (8).

exp(iy x),
QV

(10)

where p is the wave number of the electron so that Ap

is its momentum. U is the volume of the system, and
the volume in p space per quantum state is (2~)'/U.
We let F(p) be the number of electrons with wave
number y in the system. This is related to the distri-
bution function f(v) of Eqs. (2)—(5) by

f(v) = (m/2wh)'(1/e)F(p), v= Ap/m, (11)

where ~i is the density of particles in the system.
The "golden rule" gives for the transition probability

per unit time for scattering of two electrons from states
p, p' to states p+q, y' —q the result

2. QUANTUM MECHANICAL COLLISION INTEGRAL

To describe the quantum plasma, , we use single-
partide plane wave states

(2~/a)
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m
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However, in a plasma, as is well known, it is necessary
to take into account the screening eGects. This can be
done by dividing (13) by the dynamic dielectric
constant of the plasma:

The approximation (14) is generally called the random
hase approximation in the quantum mechanical liter-p a

ature. In field-theory language the matrix element,
corrresponds to the Feynman diagram shown in ig.

htoUsing the results (12) and (14), it is simple enoug o
write down a Boltzmann collision integral for the rate
of change of the number of electrons in state p:
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where the dielectric constant is given by the quantum

gpz/2
'

th en, egyof all electro a d+ ai 1 Rof (
is the matrix element for scattering with momentum
transfer Aq. For pure Coulomb scattering this matrix
element would be
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in the Pauli rinci le for later use. In the classical limit F(p)((1 and.Here we have included the terms representing t e au i princip . an
we can drop these terms. Changing ba,ck to the classical variables, Kq. (11), an ropping e au

'

terms, we find in place of (16)
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The classical result (4) for the collision integral can now be obtained by exp
'

g ( ) pb ex andin ~17~ in powers of h and keeping
'nde endent of A. Those readers interested in reproducing this expansion s ou

h
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dnote that it is necessary to keep the first-order correction terms in the expansions o o e e a u
the dielectric constant:
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expansion in powers of A.

irection contributes to the classical limit (4), i.e., theIt is clear that only scattering in the nearly forward direction contri u es o
that it is ossible to obtain another classical limit o. q in w icmomentum transfer Aq —& 0. It is interesting a i is p

of a velocit variable u,finite momentum trans ers p ay a ro e.f 1 1 Thus if we write the momentum transfer in terms o a ve oci y

fzq= mu,

the collision integral (17) can be rewritten in the form
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If we let Ii —+0 in (20), all that happens is that the
dielectric constant

XLA 'mu 5—'(~~m(v+u)' ——',mv')] ~ X(oo, m) =1, (21)

approaches its value for infinite arguments, which is
unity according to the definition (6). With X replaced
by unity (20) is just the ordinary Boltzmann collision
integral with the Coulomb cross section. This apparent
ambiguity in the classical limit is neither puzzling nor
serious. The classical limit (4) is logarithmically diver-
gent for large q (close collisions) and the classical limit
(20) with X= 1 is logarithmically divergent for small q
(distant collisions). For small q one should use (4) and
for large q one should use (20) with X=1.Or one can
use (4) with a cutoff at large q which corresponds to
taking the maximum scattering angle to be 180'. This
latter is the procedure employed in practice.

3. THE CONTRIBUTION FROM THE
COLLECTIVE MODES

In this section we want to trace out the connection
between the quantum mechanical collision integral as
given by Eq. (16) and the version of kinetic theory
discussed by Pines and Schrieffer, Eqs. (7), (8), and
(9). First we need an expression for the number of
plasmons cV(q). One way to obtain such an expression
is to start from a formula, for the density-density
autocorrelation function in a plasma with an arbitrary
nonequilibrium distribution of electrons F(p). One then
approximates this formula, using a method similar to
that given below, keeping only the contribution from
the poles of I/X(q, &u) corresponding to the plasma
oscillations. Using the approximate formula for the
autocorrelation function, one can calculate the energy
in the plasma oscillation fluctuations, which is also
given by»" (q)h&o~. We shall not reproduce the details
of this calculation, because the result obtained in this
way is just what one obtains from Eq. (7) by setting
the left-hand side equal to zero, i.e. ,

Return now to the quantum mechanical collision
integral (16). In order to obtain the Pines-Schrieffer
Eq. (8) we must pick out the contributions of the
plasmons. These come from the poles of 1/X(q, co).

Now X(q,a&) has two zeros:

X(q,a)) =0

M =Mq
—z'rg and Go = —M g 'ip g) (24)

and near these zeros X(q,&v) is given approxima, tely by
the first term in its Taylor expansion

2
x(q, (u) =—((u —(o,+iy, ),

(o)+~,+iy, ), cv —(v, . (25)

Here, we have used the approximation

d—x(q, (o)
du)

(26)

which is valid as long as the plasma oscillations are
weakly damped. The quantity which appears in the
quantum mechanical collision integral (16) is

In any event. , we shall assume the validity of (22) in
what follows. Given this result we can derive Eq. (8)
from the quantum mechanical collision integral (16).
First, we note that by combining the formula (9) for
the decay rate p~ with (22) we obtain another expression
for V(q):

1 2' 8 COg 1
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This gives the distribution of plasmons in an arbitrary
nonequilibrium distribution of electrons F(p) after
sufhcient time has elapsed for the plasmons to come to
equilibrium with the electrons, but before sufficient
time has elapsed for the electron distribution function
to change appreciably. Of course, the expression (22)
makes sense only if the conditions described in the
previous sentence are physically realized, and this
depends on the problem under consideration. Consider,
fol- example, the problem of calculating the dc electrical
conductivity of a plasma. This is a time-independent
problem with a nonequilibrium electron distribution,
and one would expect tha, t (22) applies.

where Im denotes the imaginary part. Using the
approximations
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obtained from (25) [by letting y» —+ 0 in (29)j, we find

2
q

2
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I X(q,~) I' 4v» 4V-»

This expression gives approximately the contribution
of the plasma oscillations to 1/~ X(q,+) ~'.

Substituting the result (30) in the quantum me-
chanical collision integral (16) we obtain

61'(p) 1 1 4n-e' ' fr~ '
CO

I

7I $ (Acd» Ep+»+ Ep) +7I——$ (AQ)»+ pp+» pp) 0 (6p+»+ pp' » pp Ep')
bt „ii. U e U I' q' 4y~ 4y,

&&(F(p)F(p')[1—J'(P+q)3[1—~(p' —q)]—~(p+q)&'(P' —q)L1 —~(p)3[1—~(p')3) (31)

Using the formulas (22) and (23) for iV(q) and X(q)+1,
it is easy to carry out the sums over p' in (31) and
obtain precisely the result (8).

Thus, we see that the quantum mechanical collision
integral (16) and consequently its cia,ssical limit (4)
contain the collective effects described by the equations
of Pines and Schrieffer insofar as the plasmons can be
regarded as in equilibrium with the electrons. The
collision integrals (16) and (4) contain also, of course,
the effects of close collisions.

%e remark that a certain amount of care must be
exercised when considering the plasma wave contri-
butions which are implicitly described in Eq. (2). As
we have seen, the quantum version of (4) contains
plasma wave contributions, which are, in fact, just the
right-band side of Eq. (8). On the other hand, as
Drummond and one of the authors have shown, ' one
obtains precisely the induced emission and absorption

'%. E. Drummond and D. Pines, Proceedings of the Salzburg
(".onference on Plasma Physics, Nuclear Fusion (to be published).

part of these plasma wave contributions by means of a
perturbation-theoretic treatment of the higher order
contributions to the nonlinear term on the left-hand
side of (2), i.e., those beyond the usual linearized
version. Thus, it might appear that the same class of
terms are included twice in (2): once in the nonlinear
terms associated with the left-hand side; once in the
plasma wave contribution to the right-hand side.

The resolution of this paradox is comparatively
simple. In both cases one is dealing with fluctuations
in the electric field associated with the plasma waves.
One must be careful not to count these fluctuations
twice. One can either describe these effects as fluctu-
ations in the electric 6eld which appears on the left
side of Eq. (2), in which case one should eliminate
them from the right-hand side and keep only the
single-particle effects or close collisions in the collision
integral (4). Or one can leave the plasma wave fluctu-
ations in the collision integral as in the treatment
above, in which case E(x,f) is to be regarded as an
averaged self-consistent field without fluctuations.


