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Complex Angular Momentum in Field. Theory*
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The notion of complex angular momentum is extended to relativistic scattering amplitudes satisfying
the Mandelstam representation. The domain of analyticity in the complex angular momentum plane is
enlarged by the use of unitarity relations, and the existence of Regge poles in a certain restricted domain
is established.

'HE concept of complex angular momentum, first
introduced by Regge in connection with non-

relativistic potential scattering' has recently been
applied to field theory. "The poles in the complex
angular momentum plane that naturally arise in this
approach, or the so-called Regge poles, may very well

be of great importance in explaining the large number
of experimentally observed resonances and also the
high-energy behavior of cross sections. ' ' In the case of
potential scattering, the continuation in the complex
angular momentum plane can be effected by simply
considering the solutions of the Schrodinger equation
for complex values of /. The proper analyticity domain
in the l plane and the existence of the Regge poles can
then be proved if the potential is restricted to a linear
superposition of Yukawa potentials, and also some
useful information about Regge poles can be derived

by studying the properties of the Schrodinger equation
in detail. ' ' In field theory, it has been found that a
suitable continuation in the complex angular momentum
plane can be defined if the validity of the Mandelstam
representation is assumed. ' ' About the existence and
the properties of Regge poles in field theory, however,
so far nothing has been established rigorously except
for some tentative results in the strip approximation. ' '
In this paper, starting from the Mandelstam represen-
tation, we will show how a unique continuation in the t

plane can be defined, and we will derive the form of the
two-particle unitarity relation in the complex / plane.
Then, using a slightly generalized form of Froissart's
result" about the unitarity limit on the scattering
amplitude and a simple analytic completion procedure,
we will be able to enlarge the previous domain of
analyticity in the t plane. We will show that this domain
can further be enlarged except for Regge poles if one
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utilizes the two-particle unitarity relation below the
inelastic threshold. Finally, we will discuss the physical
consequences of these results. It must be emphasized
that our results are rigorously valid if the Mandelstam
representation is correct and there have been no
approximations involved.

In what follows, we will restrict ourselves to the
scattering of identical pseudoscalar particles of mass
m&0. Although there is no real difhculty in extending
our results to scalar particles, the absence of the Born
term for pseudoscalar case will slightly simplify matters.
At the end of the paper, we will also say a few words
about the case of several particles of different masses
and particles with spin. We now start with the following
dispersion relation:
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where m=4m' —s—t, E is a suitable integer that will
make the integrals convergent, and the mass spectrum
starts at 4m'. The same spectral function occurs in
both integrals because of crossing symmetry. Using
the definition of partial-wave amplitudes, we get, with
z= cos8= 1+2t((s—4m'),
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For /~K, the orders of integration in (2) can be
interchanged, as the resulting integral. is then con-
vergent. If we also take l&e, the subtraction poly-
nomial does not contribute. For l& max(K, e}=I., we
therefore have

where
Q((s) = —f1+ (—1) ']R(s,l),

R(s,l) =
s—4m' 4~2

23
dh Q&(1+ A(s, t). (3)

s—4m'

Qi(x), the I egendre function of the second kind,
asymptotically approaches a function of the form
Cx ' ', where C depends only on /, for all x except for
x=&1." It therefore follows that Qi(1+2t/(s —4'))
is bounded by an expression of the form Ct ' ' for
large positive t. Hence, the integral in (3) converges for
l&E, as asserted previously. Furthermore, if E is the
greatest lower bound of the values of Rel for which the
integral in (3) converges, where ¹Knecessa, rily, then
the function R(s,l) is analytic for Re)&X, since the
function Q& is an analytic function in this region. We
now turn to the analyticity properties of R(s,l) as a
function of s, keeping Rel& S.The region of singularities
of R(s,l) is then the union of the regions of singularities
of Qi(1+2t/ (s—4'')) and A (s,((). From the Mandelstam
representation, it follows that A (s,t) is analytic in the s
plane except for cuts extending from 4m' to ~ and from
—4m' to —~. Qi(1+2t/(s —4m')) contributes a cut ex-
tending from s=4m' to s= —~. Therefore, R(s,l) is cut
along the real axis from —~ to ~. The part of the cut
extending from s=o to s=4m' is, however, purely
kinematical and can easily be removed. To this end,
we de6ne:

(s—4m'~ '
R(s,l) =

l l T(s,l),
& 4m' i

where the factor j (s—4m')/4m'$' is defined to have a
branch cut along the negative real axis. The nature of
the branch cut of Qi(1+2t/(s —4'')) is such that part
of it is eliminated by this procedure, and T(s,l) has
cuts extending from —~ to 0 and from 4m' to + ~.
Furthermore, since the l'th partial wave vanishes at
least like (s—4m')' at s=4m', this definition does not
give rise to poles for T(s,l) for integer values of /.

Next we come to the important question of the
asymptotic behavior of R(s, l) as ill ~ ~. In reference
1, the asymptotic properties of R(s,l) were obtained
by Regge through a detailed analysis of the Schrodinger
equation for nonrelativistic scattering, and his asymp-
totic estimate enabled him to write down a Watson-
Sommerfeld representation for the scattering amplitude.
In the relativistic case, Froissart' has shown that the
existence of a dispersion relation like (1) in linear
momentum transfer is suRicient to establish an asymp-
totic bound for R(s,l) which leads to a slightly modified
Watson-Sommerfeld integral. At this point, we would
like to stress on the importance of the proper asymp-
totic behavior of this function, since if one relaxes this
condition, given an arbitrary set of partial waves, it is
always possible to interpolate them by an infinite
number of analytic functions. In what follows, we
restrict ourselves to real s&4m2. Using the standard
estimate"

Q ( )= X'/lll'") p( —E*+( '—1)'"jR ~}, (5 )

where @=real and &i and C is independent of /, we
obtain:
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where all the constants in question have no l dependence.
In deriving the final result, we treated A(s, t) as an
ordinary function and ignored all distribution theo-
retical subtlities. The result can, however, be justified

by a more careful treatment. "
Equation (5a) shows that R(s, l) goes to zero as

ill —+ ~ for physical s, although it should be noted
that this is in general not true for nonphysical values
of s. One can then derive the Watson-Sommerfeld

"FIzgher Transcendental Puncti ons, 8ateman Manuscript
Project (McGraw-Hill Book Company, Inc. , New York, 1954),
Vol. 1, Chap. 3.

representation exactly as in reference 1, with two minor
modifications: There is an additional crossed channel
and the line of integration is moved to Re/=L. The
result is, with the restriction s&4m2,

L 1 ~"" 21+1
f(s,t) =Q (2i+1)a,(s)P(i) (s)+— (El R(s,l)

a=0 2i I. ;„sin&3

XLPi(s)+Pi( —s)j. (6)

This in turn implies Eq. (1), so that analyticity in
the linear momentum space with only a finite number
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of subtractions at infinity is completely equivalent to
analyticity and asymptotic boundedness in the angular
momentum space.

Next we turn to the questions of uniqueness of
E(s,l) and the two-particle unitarity relation. For this
purpose, we need the following theorem from the
complex variable theory. '

Given a function h(to), which is analytic for Reto 0
with the following additional restrictions:

(a) H(to) is bounded as ~to~ ~ ~ uniformly in the
angle —sr/2 ~ argto ~ sr/2.

(b) h(n) =0 for all positive integer rt The. n it follows

that tt (w) =0 identically.

It is now easy to see that a function which interpolates
the partial waves and which is asymptotically bounded
and has the proper domain of analyticity in the / plane
is necessarily unique, since if there were two such
functions, their difference wouM vanish by the above
theorem. A; another application, let us write the
two-particle unitarity relation in terms of the function
jIt'. (s,l) in the interval 4rrt'(s(b, where ft is the threshold
for inelastic processes:

R (s+t'e, l) R(s —i e, f)+—t((s—4rrt')/s 1'",
E(s+i,e, l)R(s i e, l) =0—. (7)

This relation was originally true only for integer l.
The Left side of it, however, satisfies the conditions of
our theorem and the equation stays valid for complex
values. Equation (7) and some other results derived
so far have independently been obtained in references 8
and 9 by different methods.

So far, we have established that E(s,l) is analytic in
the product of a cut plane in the variable s and the
region Rel&E in the / plane. However, Froissart has
shown that the scattering amplitude is bounded by
an expression of the form Cs Ln's for real t ~0 and large
s." Using crossing symmetry, it follows that A(s, t) is
bounded by Ctln't for real negative s, so that the
integral in (3) converges for Re/&1 if s is real and
negative. This result can be extended to complex s
as follows:

The scattering amplitude for large s is bounded by an
expression Cs&'+& " "'" ')"'+'~ for all 6+0 and for a
fixed t which falls inside the ellipse with foci W1 and
semimajor axis 1+8m'/(s —4m') in the s=coso plane
for large enough s. Correspondingly, Jt.'(s, l) is analytic
in the region Re)& 1+(S—1) Re (s/4rtt')'", for
Re(s/4rrt')~1. (The square root is defined to have
always a non-nega, tive real part). For a proof of this
result, we refer the reader to the Appendix.

The domain given above is certainly not the best
possible domain, since it is not even a natural domain
of holomorphy. To see this, we note that for a large
domain in the s plane, the corresponding domain

"E.C. Titchmarch, Theory of Functions (The Clarendon Press,
Oxford, 1932), p, I86,

in the 1 plane is Rel&E. %hen s crosses the curve
Re(s/4m')'ts=, 1, the domain in the l plane suddenly
starts getting larger. Such a discontinuous behavior,
however, violates the continuity theorem for the
surface of singularities of an analytic function of
several complex variables, " therefore, it cannot be a
natural domain of holomorphy. We now proceed to
construct the required domain of holomorphy.

The method essentially consists of mapping the cut
plane with s variable, into a simpler domain conformally.
In order to apply one of the standard results of
analytic completion, we use the following conformal
transformations:

co= (2/sr) arc sinL(s —2m')/2rrt'j,

where the function "arc sin" has a cut extending from
s=0 to s= — and from s=4m' to s= ~ and is
defined to be sr/2 at s=4m', Equation (8) maps the
s-plane cut from s=0 to s= —~ and from s=4m' to
s=+ oo into the strip between the lines Re(w)= —1
and Re(w) = 1 in the to plane. We now need a slightly
modified form of a standard result in the theory of
functions of several complex variables. "

Suppose that a, function of two complex variables z~
and zs is analytic in the union of two domains (A) and
(8), where (A) is the product of a small strip containing
the line Rez»= a» in the z» plane and the region satisfy-
ing Ress&as in the zs plane, and (8) is the product of
the strip a»~Rez»&b» in the z» plane and the region
Rez2)b2 in the z2 plane, with the real numbers u», b»,
a2, 52 satisfying a»(b» and a2&b2. Every such function
is also analytic in the larger region given by

u»~ Rez»(b», Rez2~ a~,

(52 tts) Re(tti —si)+ (h —
gati) Re(ss 82) &0.

Moreover, this is a natural domain of holomorphy.
H we consider T(s,l) defined in (4) as a function of f

and w as given in (8), we see that it satisfies the condi-
tions of the above theorem with z»=m, z2 ——l, a» ———1,
b»

——1, a2 ——1, b2=E, and the existence of neighborhood
of analyticity around Rem= —1, or equivalently,
around s~0 is proved in the Appendix. Transforming
back to the variable s, it follows that T(s,l) is analytic
in the domain given by Ref&1, with s not on the cuts
from s=0 to s= —~ or from s=4m' to s= ~, and

2 Re (l—1)—(1V—1)

2 s—2ns )
)&Re 1+—arc sin

i
&0. (9)

2rrt' I
'3 See Wightman's lectures on Analytic Functions of Several

Complex variables in Relations de dispersion et parti cules
elementaries (Hermann et Cie, Paris, 1960).

'4 H. Sehnke and P. Thullen, Theoric Der Funktionen 3Eehrerer
Xornptexer UertrnderHchen (Verlag Julius Springer, Berlin, 1934),
Chap. 4. One can also get the same result by setting Levi' s
determinant (see reference 13) equal to zero. LM. Froissart
(private communication)g.
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The next step is to enlarge the domain given by (9)
using the two-particle unitarity relation. The main
point is that it is possible to construct families of
functions E(s,l) with the property that the elastic
part of the cut is eliminated, a result familiar from
continuation to the second energy sheet. One such
function is

E(s,l)
='

8$'1 1X—
7(s,l) 2' 4 ~ s' —s

s 4sns

when Rel& l and s is not on the usual cut in the s plane.
Combining this with the previous result about the
domain of analyticity, we see that the strip in between
the lines

2 $—252
2 Re(/ —1)—(X—1) Re 1+—arc sin =0

2m2
and

2 2$
2 Re(/ —1)—(X—1) Re 1+—arc sin —0,

7r b

is the region where the Regge poles can occur.

Let us summarize some of the more important
results of the preceding sections. The double dispersion
"Here we are assuming that the analytic completion procedure

previously used for a domain of holomorphy equally well applies
to a domain of meromorphy. This has been proved by Kneser
with the condition that the boundary of the domain of
meromorphy be twice differentiable in a piece-wise fashion.
PM. Froissart (private communication}$. Also, in the case of a
finite number of poles, we can consider the intersection of the
original domain with a domain of the form ~IC(s,l}~ ~M (again
a natural domain of holomorphy), where the positive constant M
can be taken arbitrarily large. Unfortunately, the theorem has not
apparently been proved in all generality. It is the feeling of the
author that our discussion covers the physically interesting cases.

where the integral is analytic for Rel) 0. Since the part
of the branch cut in the s plane from $=4m' to s= b is
absent in E(s,l), as can easily be checked using (7),
we can now replace 4m' by b in (8) and use the mapping,

w= (2/m) arc sing(2s —b)/b7. (11)

Before applying the analytic completion procedure,
one must realize that E(s,l) may have poles. Such
isolated poles do not change the conclusion of the
theorem, however, " and solving for T(s,l) in terms of
E(s,l), we get:

The function T(s,l) is meromorphic in the domain
given by

2 Re(/ —1)—(X—1)

2 2s—b
XRe 1+—are sin &0, (12)

jr b

relation enables one to prove analyticity in the l plane
to the right of a certain line Re/= %. It is not possible
to say anything more without invoking unitarity. The
unitarity limit enables one to extend this domain to
that given by (9), and the application of the two-
particle unitarity relation further enlarges this region
to that given by (12), except for Regge poles. If one
could continue this procedure to the inelastic portion
of the branch cut, one probably would be able to push
the domain of analyticity up to the line Re/=1. At
this point, however, such a program seems very
dificult to carry out due to our lack of knowledge of
inelastic processes.

It is of some interest to note that (9) sets an upper
bound on the real part of the angular momentum of a
Regge pole in terms of its energy. The relation is not,
however, very useful since it contains an undetermined
constant.

We now turn to some possible generalization of our
results. In the case of scattering of scalar particles, one
can divide R(s,l) by the Born term and thereby elimi-
nate the additional singularity due to that term, and the
problem reduces to the one treated here with some
minor modifications. When one deal. s with the scattering
of particles with unequal masses, however, there are
some nontrivial complications. If the double dispersion
relation is valid, one can define two functions R~(s,l)
and Rs(s, l) corresponding to the t and ss channels,
respectively, and in general they can be analytic to the
right of two diferent lines Re/=lV~ and Ref X2. The
two particle unitarity relations in the s channel satisfied

by these functions are:

Rt(s+ie, i) Rt(s i—e, i)—
+iL(s—4ms)/sj'"PRt(s+ie, l)R, (s ie, i)—

+Rs(s+ie, l)Rs(s—ie, l)j=0,
Rs(s+ie, l)—Rs(s—ie, l)

+iP(s 4m')/s j'"PR—t (s+i e, l)Rs(s—ie, l)

+Rs(s+ie, l)Rt(s ie, l))=—0. (13)

The result (9) is still obtained when applied to each
R separately, with X replaced by E& and N2, respec-
tively, and 4m' replaced by the two-particle mass
threshold in the s channel. If one further defines a
matrix (R), given by

(s,+s, 0

the unitarity relation (7) can be written in the familiar
form in terms of (R). Then the line of reasoning that
led to (12) can be repeated, and (12) remains valid if X
is replaced by the larger of Ti and X~ and 4m' is
replaced by the proper two-particle threshold in the
s channel, provided this threshold is not an anomalous
one.



i836 K. BARDAKC I

The situation for particles with spin is not clear, and
to the author's knowledge, no clear-cut mathematical
definition of complex angular momentum has so far
been given in this case.

ACKNOWLEDGMENTS

which, for large s, goes over to

a/($)
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On the other hand, the unitarity relations imply

I a~($) I
(1.

(A2)

(A3)
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convergent for s inside the ellipse with foci at W1 and
semimajor axis equal to 1+8m'/($ —4nz'), we use the
bound (A2) for 1)($/Snab')'/'DnC+ (E 1) ln$] —and
bound (A3) otherwise. Combining this with the
estimates:

APPENDIX

Here, we want to sketch very briefly the generali-
zation of Froissart's result to complex values of t, since
the argument is a quite straightforward extension of
that given in reference (10). Exactly as in (10),
analyticity in the t plane yields the following upper
bound for the partial waves:

I Pg(s) I
(D max{

I Ls+ (s' —1)'/'y'
I }, (A5)

or

I
~~(s)

I
(Dl expL21(~/$)'"] I, (A6)

again valid for large s, we obtain:

f($,[)(+$~)+(N—1) Re(t/4me) +c)
Ia)($)I( $" 1+

s—4m' s—4m2 Here ~ is an arbitrarily small positive quantity and it is
used to get rid of polynomials in ln($) irrelevant for our
purpose. The result given in (A7) is of course only valid
in the ellipse of convergence of (A4).

8m2 |2 1/2 l

+ 1+
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