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Recent efforts in quantum Geld theory have given rise to increased interest in nonlinear, gauge-type Geld
theories. In this paper, we examine the Yang-Mills field, which is a theory of this type, which lies between
electrodynamics and general relativity in complexity. The quantum Yang-Mills field is introduced to
satisfy the requiremerit of invariance under isotopic phase transformations of the second kind. The theory
is then put into its first-order form, so as to make it amenable to quantization by the methods of the
Schwinger action principle. Quantization is then carried out for the two different gauge conditions; the
first (which is the analog oi the radiation gauge in electrodynamics) leads to a perturbation treatment oi
the constraints of the theory and the second to a rigorous solution of them. Two conditions for a consistent
quantization are investigated. These are (1) the requirement that the Lagrange equations be identical to
the Heisenberg equations oi motion (the latter being evaluated using the field commutation relations) and
(2) the requirement that the constraint equations be conserved in time (which leads to a condition on
double commutators in the g-number theory). In the radiation gauge, these conditions are shown to be
satisGed in lowest-order perturbation theory. In the second gauge used, they are rigorously satisfied. It is
also shown for that gauge that the Geld Hamiltonian is positive definite when coupling to Fermion isotopic
currents is ignored. No investigation of consistency conditions arising from Lorentz covariance requirements
are made.

I. INTRODUCTION equations (explicitly evaluated using the equal-time
commutation relations) and the Lagrange equations are
consistent. Similarly, the consistency between the
constraint equ'ations and the dynamical ones depends
upon the form of the commutation relations (as will be
discussed below). Further, the transition to a q-number
theory involves a certain loss of gauge invariance since
the field equations and commutation relations will, in
general, not be inva, riant under g-number gauge
transformations. On the other hand, a Lorentz trans-
formation generally involves a concomitant q-number
gauge transformation, and so the Lorentz covariance
of the theory is not manifest. While attention has been
paid to these problems in electrodynamics, 4 a similar
discussion does not exist for the Yang-Mills theory. '
Though the type of difficulties here are similar to those
in electrodynamics, the situation is more complex due
to the basic nonlinearity of the field. The latter arises
from the fact that the meson carries isotopic spin and
hence the field acts as its own source. In this respect,
the theory is nonlinear in a manner similar to, but
simpler than, general relativity. It would therefore
seem to be an excellent area for testing procedures of
quantization of gauge invariant theories before applying
them to the more complex gravitational field.

In Sec. II, the isotopic triplet Yang-Mills (Y-M)
field, b„(x) (where lr =0, 1, 2, 3 is the spatial index and
a=1, 2, 3, is the isotopic index), is introduced by the
usual arguments involving phase transformations of
the second kind. The analysis is performed for the
q-number fields. The method of quantization adopted

N recent years, there has been a revival of interest in
the possibility that "gauge-type" mesons (arising

from the requirement of phase invariance of the second
lrind) play an important role in elementary particle
interactions. Thus, Sakurai' has introduced three such
strongly interacting vector mesons coupled to the
heavy-particle number, strangeness, and isotopic spin
currents, respectively. Mesons with similar properties
have been suggested by Gell-Mann. ' Further, some of
the observed two- and three-pion resonances represent
possible candidates for such particles. The heavy-
particle number and strangeness mesons are similar
(except, perhaps, in Sakurai's assumption of a mass)
to the Maxwell field. The isotopic meson was first
introduced by Yang and Mills' (with essentially the
same purpose in mind as in Sakurai's work).

The quantization of a theory possessing a gauge
invariance involves overcoming a number of specifically

quarts problems not found in the reduction of the
corresponding classical theory to canonical form. Due
to the presence of constraint variables (arising from the
gauge invariance) along with the arbitrariness of other
variables (due to the freedom of gauge transformations),
one does not know, a priori, whether the Heisenberg
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is that of the Schwinger action principle, ' which brings
forth the consistency requirements most clearly.
Section III is devoted to the form of the action principle
for the free Y-M field and the consistency conditions
to be examined. Canonical quantization cannot be
carried out without invoking a gauge condition. Two
conditions are examined: The radiation gauge, V h'= 0
in Sec. IV and the gauge b3 ——0 in Sec. V. The questions
of the consistency between the Lagrange equations,
Heisenberg equations, and commutation relations and
also whether the constraint equations are preserved in
time by the dynamical equations are examined in both
gauges. To analyze those points, one needs the con-
straint variables expressed in terms of the canonical
ones. In the radiation gauge, this can only be done in a
perturbation analysis, and the above consistency
requirements are verified to lowest order. Also, the
Hamiltonian is shown to be positive definite to second
order. The second gauge allows a rigorous solution of
the constraint equations, and the consistency require-
ments are verified rigorously. Here, the positive
definiteness of the Hamiltonian is rigorously established.
No attempt is made in this paper to examine require-
ments arising from Lorentz covariance conditions, nor
is any investigation made of the deeper consistency
questions involved in whether a local field theory in a
Hilbert space is actually well defined.

on the field variables:

6P = igni. (x)rQ
i—geo. (x)Pr, a=1, 2, 3.

(2.2)

The anticommutator has been introduced in Eq. (2.4)
to guarantee the Hermiticity of Zr (i.e., we will see
that b„does not generally commute with the Dirac
fields due to the existence of constraints in the system).

The isotopic transformation properties of the b„
field is now determined by the requirement that the
sum Zn+Zr be invariant under isotopic rotations

Here, v- are the usual 2X2 isotopic spin matrices,
co, (x) are three arbitrary infinitesimal c rsum-her junc
tioes, and the constant g is the "isotopic charge. "
The Lagrangian Z~ is not invariant under the trans-
formation (2.2). One finds that

(2.3)

where the c-number nature of co, has explicitly been used.
The Yang-Mills field may be introduced by imposing the
condition that the to/al Lagrangian be invariant under
these general isotopic spin rotations. This may be
accomplished by introducing an auxiliary Hermitian
field b„~(x) and adding an interaction term to the
Lagrangian of a form similar to that arising in Eq. (2.3):

II. THE QUANTUM YANG-MILLS FIELD 82D+82r =0. (2.5)

In this section' we give a brief description of the
basic properties of the quantum Yang-Mills fieM. The
field is introduced by the usual requirement of phase
invariance of the second kind for isotopic spin rotations.
For this purpose, let us consider the free-particle, Dirac
Lagrangian density for the nucleon field:

Writing the general transformation law for b„as
bb„'= U.s.b„'(o'+ V s,8„co', (2 6)

condition (2.5) determines the factors U, b, and Vs, .
Thus using Eqs. (2.2) and (2.6) and the fact that the
coe%cients of &v' and tes„ in Eq. (2.5) must vanish
separately, one finds

Qs = 2gfi» M egb~+ei s& (2 &)

In Eq. (2.1), p(x) and lt (x)=pt(x)7' are nucleon two
component isotopic spinors, and y~ are Dirac matrices
obeying fp",y") = —2t)"". (Thus, p't =—p', p't =p').
The commutators have been introduced into the
quantum Lagrangian Z& to correctly describe the
Fermi statistics obeyed by the nucleon field. Let us now
consider an infinitesimal isotopic spin transformation

J. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953).
A brief survey of the action principle is given in R. Arnowitt and
S. Deser (unpublished).

7The material in this section is a quantum treatment of the
method introduced by Utiyama for classical field theories: R.
Utiyatna, Phys. Rev. 101, 1597 (1956).

8 Natural units A=a 1 will be used throughout. Also, Greek
indices run from 0 to 3, and Latin indices (for both isotopic and
spatial indices) run from 1 to 3 except where otherwise noted
(i.e., in Sec.V).The signature of the Lorentz metric qI'" is —+++.
The symbols B„A(x) and A(x), „both mean BA(x)/8x&. Isotopic
indices will be written as superscripts or subscripts, depending
on which is typographically more convenjent, .

BZ~ BZg
52ii=— 8b„'+ eb„',„=0.Bb„Bb„„ (2 9)

Since b„'(x) and b„' „(x) are quantum fields and the
6b„' of Eq. (2.7) are q-numbers (even though e~'(x)

'Other Hermitian possibilities for Zl exist, e.g, , —,(Pyl'b„7 P
+H.c.). Such a structure destroys the antisymmetrization of the
fermion fields and is not commonly considered in corresponding
p,nalyses in electrodynamics.

where e b, is the totally antisymmetric three-dimensional
tensor (with siss ——+1).

It remains now to determine the free Lagrangian
density Zii for the b„'(x) field. In general, one may write

(2 g)

The requirement that the total 2 be invariant under
the "isotopic gauge-phase" transformations implies that
Z~ is a gauge scalar:
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are c numbers), the derivatives in Eq. (2.9) must be
given the appropriate quantum ordering. Thus, the
variations in Eq. (2.9) are to be inserted in the position
where the corresponding b„and b„,„stood in the
nonvaried Lagrangian. This implies that (BZii/Bb„)8b„~
is shorthand for Zii(b„'+lb„, b„,„) Zii—(b„,b„,.). A
similar meaning is assumed for the other partial
derivatives arising below. One may now introduce Eq.
(2.7) into Eq. (2.9). Three equations result, from the
vanishing of the coeflicients of M

p
Go py and N p„.

(BZii/Bb„')b„~4, »,+ (BZii/Bb„', „)b„,„e.», 0——(2.10)

BZii/Bb„»+2g(BZii/Bb, ',„)b,~4.». 0(2——.11)

BZii/Bb„', ,+BZii/Bb„' „=0. (2.12)

Equation (2.12) states that the derivatives of b„
appear only in the antisymmetrized form. Alternately,
one can then require that these derivatives appear in
Z& through the Hermitian, antisymmetric tensor f„,'.

f,.'(x) =b, ', ,—b, ',„—g (b„'b, »—b, b„')4,»„(2.13)

and thus 2& may now be viewed as a function of b„
and f„, , i.e., Zii=Zii(b„, f„„) From . the change of
b„' under the gauge transformation, i.e., Eq. (2.7), one
finds directly that

&tv = 2gfpv ~ &a»c~

i.e., f„;is an isotopic vector for c number ~»(x). Using
b„~ and f„„' as the independent variables, Eq. (2.11)
reads

in general, be invariant under q-number gauge trans-
formations. Indeed, the derivations of this section
break down at all stages for q-number co'(x). Hence,
the quantum theory has a much smaller gauge group
than the classical one. Similar phenomena, of course,
occur also in quantum electrodynamics. However, the
situation is more aggravated in the Yang-Mills theory.
Thus, in electrodynamics, for c-number gauge functions
a&(x), the change of the vector potential BA„=o&„ is a
c number. However, from Eq. (2.7) one sees that bb„
is not a c number, even if the oP(x) are. One may thus
expect more complicated quantum ordering questions to
arise even when one restricts oneself (as we shall do
here) to c-number gauge transformations.

III. ACTION PRINCIP'LE FORMALISM AND
CONSISTENCY REQUIREMENTS

Ke examine now the quantization of the Y-M field

by means of the Schwinger action principle. ' The
beginning of this section is devoted to a brief summary
of the fundamental results of the technique. The
general analysis is then applied to the explicit case of
the Y-M field and the consistency conditions mentioned
before are deduced.

Let
~

a'0 i) and
~

b"0.2) be two eigenkets of two complete
sets of operators on the respective space-like surfaces
o-~ and 0.2. The basic postulate of the action principle
is that

(3.1)

BeCii 1 BaCii Bf~p BZii
+ =2g

Bb„' 2 Bf,p Bb„' Bf„„"
(2.15)

where 8'» is the quantum action integral,

d4x Z (x). (3.2)
Again, the definition concerning the position of quanti-
ties in the quantum derivatives appearing in Eq. (2.15)
should be kept carefully in mind. Using Eq. (2.13), one
may carry out the indicated differentiation of f„
appearing in Eq. (2.15). Equation (2.15) then becomes
simply: BR'/Bb„»=0. Thus, one has the well-known
result that 2& depends on the Yang-Mills field only
through the combination f„„'.Finally, inserting these
results into Eq. (2.10), one finds

(Ban/B f„„)hf„„=0, (2.16)

which merely says that 2& is an isotopic scalar formed
from f„„.The simplest gauge and Lorentz invariant
choice for 2& is, of course, the quadratic function:

g~ — f sfpv (2.17)

The above discussion shows that when due care is
taken, the standard classical formulas hold for the
quantum Yang-Mills field. However, one distinction
should be emphasized. While the classical theory is
invariant under all gauge transformations including
those where a&'(x) is any functional of the dynamical
variables b„'(x), f(x), and P(x), in the quantum theory
such ~ (x) will be q numbers and the theory will not,

The Lagrangian density 2 (x), which must be Hermitian,
is taken to be in the generalized Kemmer or "first-
order" form where derivatives appear linearly:

In Eq. (3.3), y is a column symbol whose components
X,(x) are the field variables (in first-order form), A&

are a set of numerical matrices (i.e., generalized
Kemmer matrices), E(X,) is a function of the fields
(but not their derivatives) containing the mass and
interaction terms, and 8„$'& represents the usual
arbitrary divergence one is free to add to a Beld
Lagrangian. On the left-hand side of Eq. (3.1) the
variations to be considered are the changes of the kets
under the infinitesimal unitary transformations of
changes of bases. Thus, let the varied ket ~a'0) equal
U '~ u'o.), where U 1+iG, and G=Gt is the generator
of the unitary transformation. Two types of unitary
transformations may be considered. First, one may
make changes of the complete set keeping the surface
fixed. We denote the generators of such changes by
Gx. Second, the dynamical motion of the system
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Equation (3.5) says that the variation of the action
depends only on the endpoints. The explicit variations
of 8'~2 to be carried out are similar to those used in
classical physics. One makes an "intrinsic" field
variation, b2X, (x) (which corresponds to the classical
virtual displacement) and a coordinate variation,
hx'(x). The bx" (x) are arbitrary c numbers except that
on the endpoint surfaces, 0-& and 0-&, they are restricted
to be rigid motions:

bx (01,2) E (1,2) E v(1, 2)X ) fear 2p14 (3.6)

Carrying out the above variations' leads to the usual
Lagrange equations associated with I.agrangian (3.3)
(from the requirement that the variations in the
interior vanish). The end point terms allow one to
determine the form of G(&T) One fi.nds

G(&) = d&„[XA"bx+bW"]+ do„bx T", (.3.7a)

where
by=—82g+bx B„y+-,'i(8„bx„)S""y (3.7b)

and S"' are the usual spin matrices which arise from
the Lorentz transformation properties of the field

X(x). The quantity bX, must be an infinitesimal c
number for the integral spin Bose fields (which have
antisymmetric A1' matrices) and anticommute with
field variables for the Fermi fields" (where the A" are
symmetric). In Eq. (3.7a) T&" is the standard symmetric
stress tensor of classical physics except that in cubic
or higher terms, the order of the operators is determined

by the order chosen in the quantum 2 of Eq. (3.3). If
one considers only dynamical motions, G=G . For this
case one can show that bx vanishes, i.e. , by Eq. (3.6),

82)c= —e.B y 21ie.t)[i '(x 8&——x&8~)+—S"&jy—(3.8)

and hence G = e I' +2e pJ 1' (where P and J & are the
usual expressions for energy momentum and angular
momenta, respectively). Further, if one defines the
change of an operator under a unitary transformation
by AX,—=—U—'X,V+X,= —i[X„Gj, it can be shown
that AX=82& for this situation, i.e. , i|Io&= [)1&,G* j.

' J. SchwiIIger, Proc. Nat. Acad. Sci. 44, 223, 617 (1958) and
reference 6.

(corresponding to rigid translations and rotations of
0.) is also a unitary transformation (whose generator
we will call G,). One has, then, in general, that

B(u'0,
(
b"o 2) = i(a'0,

i
G(0 1)—G(o 2) i

b"o.2), (3.4)

where G(o)=Gx(o)+G, (0). For local systems, G(0)
must depend only on the fields on surface 0 and hence
comparison with Eq. (3.1) yields the quantum
Hamilton's principle:

(3 5)

Equation (3.7) then gives rise to the usual formulas:

[x& 3= —i~ x,

[y,J i']= [ i (x —8& x&8 —)+S i'jx.

(3.9a)

(3.9b)

do.„XA~8pX =
q j6pX„ (3.10)

leads to the usual canonical commutation relations.
The changes generated by G~ with S'"@0can then be
determined from Eq. (3.10) [since Eq. (3.10) generally
gives rise to a complete set of commutation relations7.

The action principle thus yields three separate
elements: the Lagrange equations, the Heisenberg Eqs.
(3.9), and Eq. (3.10). If the canonical commutation
relations arising from Eq. (3.10) are used to evaluate
the commutators of Eq. (3.9), explicit equations of
motion will result. These must be identical with the
Lagrange equations determined from Z. This represents
the fundamental consistency condition imposed by the
action principle. It is, in fact, the basic origin of the
condition Ax=-2'52y [of Eq. (3.10)j imposed for usual
theories. The consistency of these three elements will
be investigated (in Secs. IV and V) for the Y-M field,
where the situation is more complicated due to the
constraints arising from the gauge invariance. In
classical theory, Eqs. (3.9) and (3.10), of course, hold
with the appropriate replacement of comrnutators by
Poisson brackets (P.B.). Indeed, the operations carried
out in finding the canonical. variables of the classical
field (and then replacing their elementary P.B.'s by
commutators) is in one-to-one correspondence with
the steps involved in finding the commutation relations
by the action principle. One advantage involved in
using the action principle arises from the fact that it.

requires one to carry out the conventional analysis
completely within the quantum framework, and so a
consistent ordering of operator factors, as described by
the order chosen in 2, is adopted throughout.

We now examine the above formalism for the special
case of the free (uncoupled) Y-M field. Two possible
gauge-invariant, Hermitian Lagrangians giving rise to
first-order equations of motion are ava, ilable. These are"

~1= l [(b ~.f""} (~.»—; f"")j-
+ '[f f""+4gb, (f"")&—b„)j, (3.11a)

"The ambiguity arises, of course, from the cubic term in Z.
In general, one may form three independent Hermitian orderings
from a product of three operators. Since the cubic structure here
is bilinear in b„, two of the forms are identical.

Equations (3.9) represent the general field commutator
equations of motion. Turning next to transformations
leaving 0. fixed, i.e., 8x"=0, one has

G=G„=J d~„(xA~boq+5, W~)

For the simple generator with 8'~=0, the requirement
AX= 2'bpX and hence,
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~s= —-'L(b ~ f"") (—~ b. f"")]
+ '.&f-., f "+2g(f "; (b„Xb,))]. (3.»b)

The "dot" and "cross" refer to isotopic indices, e.g. ,

(b. 'b )=—(b. ».')

(b„,Xb,}.= (bs', b, ') e.a.

(3.12)

(3.13)

On a priori grounds, 2r and Zs are equally acceptable
and hence, in principle, two different quantum V-M
systems may exist. We shall see below, however, that
both 2& and Z2 yield essent;ially the same theory
(though 2i is a slightly better defined operator).

Both Lagrangians are in the standard form of Eq.
(3.3) where x is the thirty-component column symbol,
y=(b„,f„;) If on.e were to explicitly introduce a
matrix notation, one would 6nd that the A& matrices
are antisymmetric. Consequently, the variations 6b„
and bf„.are e numbers for this Bose system. Performing
the variations (remembering that b„and f„,are treated
as independent variables), both Lagrangians give rise
to the same Lagrange field equations

~ f""=i"=g(f"",Xb.—),
f„.=b„,, b, ,„g(b„—, Xb,)—,

and the same generator G„(with W"=0):

(3.14a)

(3.14b)

1
G„=—— de, [bb, f~" bf~" b„]. —

2
(3.15)

Here, j& is the isotopic current vector of the Y-M field
itself, the two Lagrangians are distinguished by the
fact that they give rise to different stress tensors and
hence a priori different Hamiltonians. Since, to within
an irrelevant divergence, T" is the negative of 2 when
the explicit time derivative terms in 2 have been
deleted, one may easily find for the two Hamiltonians:

1
d'~(2fos foe f s f s 2(bs '—f s}—

4gbs (f,sxb;) ——2g[bo, [fos,xbs]]) (3.16)

1
Pas= d'r(2fos foi+—

f&t, ' fp~

—2g[bs; [ba, Xfas]]). (3.1&)

In arriving at (3.16) and (3.17), some use of the
Lagrange equations (3.14) was made to simplify the

expressions.
Not all of the Lagrange equations are dynamical,

i.e., involve time derivatives and hence not all give
information as to how the system continues off an
initial Cauchy surface. The constraint equations (those
isdepeedeet of time derivatives) instead give inter-
relations between the field variables at a fixed time;

they allow one to eliminate redundant variables in
favor of a minimum set of independent dynamical
variables. The constraint equations of (3.14b) arise
when one chooses @=i and v= j. They allow one to
eliminate f,; in favor of b, (and its spatial derivatives)
in a fashion analogous to the relation 8= VXA in
electrodynamics. " The constraint equations from Kq.
(3.14a) arise when ti=O:

V E—g(E', Xb,) =0. (3.18)

Here, E,= (f,'i,f,as,f ") is a spatial (and isotopic)
vector. As in the analogous electromagnetic relation
(V E—p=O), Eq. (3.17) may be viewed as a differential
equation to eliminate one of the (spatial) components
of E, Th.e differential constraint, (3.18) arises due to
the gauge invariance in the theory. Their presence
produces the following complication: Eq. (3.18) must
hold for all time and hence one is free to take its time
derivative. But on explicitly doing this, the time
derivatives of E (and of b) may be elimina, ted by the
dynamical equations of (3.14). This gives rise to a new

(nondynamical) equation" which must clearly be
consistent with the previous ones, i.e., the constraint
equations must be consistent with the dynamical ones.
The calculation is most simply performed by taking
the four-divergence of Eq. (3.14a) since this relation
reads

(3.19)

Equation (3.19) says that if the dynamical equations
hold at a fixed time (i.e., the right-hand side vanishes)
then the time derivative of the constraint [i.e., left-
hand side of Eq. (3.18)] will vanish (which is just the
consistency requirement discussed above). From the
antisymmetry of f"", Eq. (3.19) reduces to the con-
tinuity equation for jt'

O=a„j =g(a„f ",Xb„)+g(f " X&„b„). (3.20)

For the classical theory, Eq. (3.20) is an identity as a
consequence of Eqs. (3.14). This is not a priori the case
in the quantum theory. One finds upon eliminating
derivatives by Eqs. (3.14), that

[f"".Lb. ; b ]]+[b"-[b" f"]]
+ [b"-,[f";b"]]=0 (3 21)

Thus, the consistency between the constraint and
dynamical equations in the quantum theory implies

"The existence of these so-called algebraic constraints is due to
the requirement of Lorentz covariance. Thus, as will be seen
below, in a particular I.orentz frame, two of the components of
f'" are independent dynamical variables needed to specify the
state of the system on an initial Cauchy surface. In other I.orentz
frames clearly the other components of the I.orentz tensor f&"
will enter (though they won't be independent). Thus, constraints
of this type also appear in the massive vector meson theory
I'which possesses no gauge invariance).

"Note that this phenomenon does not arise in the simpler
constraints of Eq. (3.14b) since the time derivatives of f;; appear
nowhere in the dynamical equations, and hence no new relations
arise from taking time derivatives.
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conditions on the commutation relations. " Equations
(3.21) thus constitute an additional check on the
consistency of the quantization.

IV. QUANTIZATION IN THE RADIATION GAUGE

In order to verify whether the consistency require-
ments discussed in the previous section are indeed
satisfied, one needs the explicit form of the canonical
commutation relations. In principle, these are to be
obtained from Eq. (3.10) with G„given explicitly by
Eq. (3.15). The possibility of performing gauge trans-
formations, however, complicates the analysis, since
then some quantities can be changed arbitrarily and
thus do not represent dynamical variables. In a linear
theory, such as the free Maxwell field, the gauge-
variant quantities automatically cancel out of G„(and
other relevant parts of the theory), leaving only the
independent dynamical variables. However, this is not
the case for the Y-M field, which, due to the appearance
of the self-interaction structures, has a form more akin
to coupled electrodynamics. As in that case, well-defined
commutation relations are obtained only after a gauge
condition has been imposed.

From general considerations, a gauge condition in-
volves specifying one condition on the field b (or more
precisely three when the isotopic index is not suppressed).
Thus, one component of b is specified throughout space-
time. The equation of the time derivative of that com-
ponent Lobtained from Eq. (3.14b)7 then may be used to
determine bo. One is thus left with two independent
components of b and (as was seen in the previous
section) two independent components of E. These four
variables (or including the isotopic labels, 12 variables)
are to be arranged into two conjugate pairs for the
purposes of quantization. In this section, quantization
using the radiation gauge will be considered. A complete
set of commutation relations cannot be obtained here
since the constraint equations cannot be solved in
closed form (to explicitly give the dependent variables
in terms of the canonical ones). In the next section, a
gauge will be exhibited allowing a rigorous solution of
the constraint equations.

In the radiation gauge, it is convenient to divide
spatial vectors into their transverse and longitudinal
parts, V= Vr+V~; here the transverse vector Vr obeys
V Vr—=0 and the longitudinal part, V~, is the gradient
of a scalar (and so VXV~=0). Thus, the gauge condition

v 1.=0, (4 1)

'4A similar phenomenon arises in coupled electrodynamics.
For classical point particles, the continuity equation, B„jt'=0, is
an identity. For classical fields it follows as a consequence of the
6eld equations. But in quantum electrodynamics, it is a conse-
quence of both the 6eld equations and the canonical commutation
relations I'a relation analogous to Eq. (3.21) also arising).

implies that b is a pure transverse vector: b,~=O.
Choosing the surface 0. to be perpendicular to the time

Decomposition of Eqs. (3.14) into transverse and
longitudinal parts leads to the dynamical equations

4r, o= &br g(&o—, Xbar} ', (4.3a)

Zb,—p f;b, ,——+g(bp, XEb} g fb;—,Xf~b}, (43b)

the constraint equations,

r, ,f, r,&(f, ,r Xf, r}, (4.4a)

&F,b =gf&b', X&br}+g(Kr, X t br}, (4.4b)

the condition that determines bp (now that the gauge
is fixed),

0=4' o= bo b+&b' —g(&o) Xbb'}' (4 5)

and the equation for the time derivative of K~

If one writes E~= Vp, one sees that Eq. (4.4b) should,
in principle, determine P (and hence E~) while Eq.
(4.5) can then be used to determine bo. That Eq. (4.6)
is consistent with these solutions )when time deriva-
tives are eliminated by Eqs. (4.3)7 is, of course,
condition (3.21) in this gauge. Further, br and —Er
are canonically conjugate, as can be seen from the
form" of G». In fact Eqs. (3.10) read explicitly

/br (r', t),G»7 = -,'ibobr (r', t),

t
Er (r', t),G„7=-', iS,Er (r', t),

which lead directly to

P ar(r t) g„br(r& t)7 0—
t ga( rt) rg„b, r(r~ t)7 (4 7a)

I b'r(r, t),E 'r(r' t)7= —ib. bb br(r r')—
1

= —s6~b 8~~2 r—r' 8,8~ . 4.7b
4pr/ r —r'/

The quantity 8,br(r) is the usual transverse 5 function
appearing in electrodynamics. In fact, relations (4.7)
are identical to those of three independent electro-
magnetic 6elds.

To obtain a complete set of commutation relations,
which are needed to verify the consistency conditions
of the previous section, one must express the constraint
variables in terms of the canonical ones. Equation
(4.4a) automatically gives f,; in terms of bbr Also, one.

must solve Eqs. (4.4b) and (4.5) for E~ and bp. Here
the situation differs from even coupled electrodynamics

"In general, if G„can be put in the form

p J tP& +(KAbOAA @ASH A)

then mz is canonically conjugate to @&, since such a G„arises from
varying an z of the form —', z(o'AsopbA —pbABpmA) —x(nA, obA),
where K is the Hamiltonian density.

axis, the generator G» of Eq. (3.15) becomes

1
G„=- dort( —E') S,br —b' S,(—E')7. (4.2)"2
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in that a closed form solution for these variables is not
available. " To obtain some (albeit unrigorous) in-

formation, we resort now to a perturbation solution of
these equations. To first order in the coupling constant,
one easily finds

(bs'(r'), X&),'(r') )
&o"'=—

g d'r'
4 fr —r'f

(4 8)

and
EL (&) =p b (r) (4.9)

Equations (4.8) and (4.9) are adequate for evaluating
terms up to order g' in the Hamiltonians of Eqs. (3.16)
and (3.17). Thus, the double commutator term of Eq.
(3.16) may be approximated by

2g[bo"', [K',Xbs']]

A direct evaluation using the canonical commutation
relations shows that this term vanishes. A similar
analysis for the corresponding term in Eq. (3.17) gives

The last three terms vanish, since by Eqs. (4.4a) and
(4.7a), the inner commutators are zero. The inner
commutator of the third term is a c number, albeit
infinite, and hence the commutator with ho&'& pre-
sumably vanishes. "Applying the commutation relations
to the remaining terms, one obtains:

[&) [bo"' bs']] = P),~" [& ' b "']]
L "(—')]'

=2ge„. d'y' . (4.14)
4~ fr —r'f

This expression presumably vanishes, because the
Levi-Civita e,&, symbol is totally antisymmetric. This
interpretation of the indeterminate structure assumes,
basically, that the b function of Eq. (4.7b) is to be
viewed as the limit of a spread out (c number) function,
and that this limit is to be taken at the end. Thus, to
the first nonvanishing order, the two consistency
requirements in the radiation gauge are satisfied.

2ggs'; [bo"',XEs']] V. QUANTIZATION IN THE GAUGE bs =0

The radiation gauge possesses the drawback that a
closed form solution of the constraint equations (for
the desired variables) is not obtainable. It is thus not
clear whether meaningful operator relationships exist.
In this section, we examine an alternate gauge
condition":

[& ''(r —r')]s(e.s.)'=4g' d'r' (4.10)
4)r fr-r'f

While expression (4.10) is divergent, it is a c number,
and hence will not presumably affect the Heisenberg
equations of motion. Thus, if one discards this infinite
c number, both Hamiltonians reduce to the same value
(to order g'):

(5 1)

While this gauge is not as esthetically pleasing as the
usual radiation gauge, it, does have the extra advantage
of allowing rigorous solutions of the constraint equa-
tions in terms of reasonably well-defined operators.

In this section, we shall adopt the convention that
spatial indices i, j run over only 1, 2 and explicitly
separate out components along the 3 direction. In
terms of this notation, the dynamical equations read

E'= P'g= E'2

d'y( EsE +4f;s f;),+—',E~(').E~(") (4.11)

b, o= bo. '+&'—g(bo, Xb;), (5.2a)

&',o= fear,i+fs', s g(&' Xboj+g(b&, Xfz,). (5.2b).
ibr o [br Po]

iEr, = [Kr,po].

4.12a
The constraint equations are

(4.12b) f,,= b;,s b, ,—g(b, , Xb,),—

f,s= b;, s= fs, , —
&' = —~';+g(S', Xb,),

(5.3a)

(5.3b)

(5.3c)

A straightforward calculation of the right-hand side,
using the canonical commutation relations (4.7) shows
that Eqs. (4.12) are identical to Eqs. (4.3), to the
required order. Note also that to order g', the Hamil-
tonian of Eq. (4.11) is clearly positive de6nite.

We consider next the second consistency check of
Sec. III. To the desired order, Eq. (3.21) reduces to

while the condition determining bo (arising from the
requirement that bs o

——0) is simply

(5.4)—~=&0 S.

where f,; and E~ are to be expressed in terms of
canonical variables by Eqs. (4.4a), (4.8), and (4.9). One
may now examine the Heisenberg equations of motion
for the independent variables br and Er:

[g ay p (1) ~ b y]]
+P~",[&~'; bo"']]+Po "),Ps', &s']]
+s[f' P" b]]+-'[s"b'[f' b']]

+s[bs' [bs' f~']]=o. (4.13)
's J. Schwinger LPhys. Rev. 125, 1043 (1962); 127, 324 (1962)j

has recently obtained a formal solution to these equations.

The final field equation is

&',o= fs;, +g(&,Xboj+g(b ', Xfs, ) ~ (5.5)
'7 In explicitly verifying that B„J& vanishes for the analogous

electromagnetic case (see reference 13), one must similarly assume
that the commutator of Ao with an infinite c number vanishes.

's This gauge was first considered for the Maxwell field (in
another connection) by J. Anderson.
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The condition that Eq. (5.5) be consistent with the
other field equations leads to Eq. (3.21) in this gauge.
The generating function Gx now has the form

equations,
ib;, p= [b;,Pp],

[+3Ppj

(5.13a)

(5.13b)
1

G =— d'y[bpb, " (—Li")—b "bp( —F')]'
2

(5 6)

[b'(r t) E(r', t)]—= ib, pb;, P (r—r'). (5.7b)

Equations (5.3) and (5.4) now allow one to eliminate'
the dependent variables f;,, f,3, E3, and bp from the
theory. Thus, Eqs. (5.3a) and (5.3b) explicitly express

f,, and f,3 in terms of the canonical coordinates b;. The
other equations have the solution

E3(r,t) = ds'[ —E' (r', t)+j'(r', t)j (5.8)

b, (r,t) = ds' ds"[E', ,(r",t) —j'(r",t)j, (5.9)

where r' means (x,y, s'). From Eq. (3.14a), one has
that

j'=g(&', Xb,) (5.10)

in this gauge, and hence depends only on the canonical
variables (recalling that i,j=1, 2 in this section). The
remaining commutation relations can now be found
from the canonical ones of Eqs. (5.7).

Having obtained a complete set of commutation
relations, we consider next the Heisenberg equations
of motion. The double commutation structure in Eq.
(3.16) vanishes. The corresponding term in Eq. (3.17)
becomes

2g[b;; [bp, XE'jj
= —48g(s —s)0(s—s)bp(x —x)b3(r —r), (5.11)

where b'(x) means b(x) b(y) and e(s) is the step function.
Though the right-hand side of Eq. (5.11) is indetermi-
nate, it is a c number and presumably will not affect the
Heisenberg equations. Thus, if one discards this
structure, the two Hamiltonians become identical and
take the form

jDO —Pp —Pp d3yP+5 gt+ 3 +3 g3

+pi f'3 f'3+3f"f'~), (5 12)

where f,:,, f,3, and E3 are given by Eqs. (5.3a), (5.3b),
and (5.8), respectively. The validity of the Heisenberg
equations can now be explicitly verified. Thus, using
the commutation relations, one may verify ithat the

which shows that b, and E' (i—=1, 2) now are the
canonically conjugate variables. "Condition (3.10) now

gives rise to the following canonical commutation
relations:

[b,'(r, t),b, '(r', t)j=0= [E,'(r t),E, '(r', t)j, (5.7a)

are identical to the Lagrange equations (5.2a,)
(5.2b). Note also that Eq. (5.12) shows rigorously that
I"is a positive definite operator.

Turning to the second consistency requirement, Eq.
(3.21) becomes, in this gauge:

—[&'Lb'»o jj
—[bt' [bp &'jj—[bp' [~t' b'jj
+3[f ' [b' »'Z+3[b", [bt',j'"jj

+-'[b,',[f;;.,b,'$j=O (5..14)

Utilizing the same arguments as those presented for
Eq. (4.13), one finds that the last four terms vanish
by virtue of Eqs. (5.3a), and (5.7), and the two remain-
ing terms become

[E' [b bp j]=3i(z—s)8(s—s)([E,',B,P(x—x)]
+2gP (r—r)P (x—x)0.3,) (5.15)

[b'[bp A ll
= 2g (s—s)8(s—s)b3(x—x)b3 (r—r) 0.3.. (5.16)

If one employs the previously mentioned interpretation
of the indeterminate structures, both of these expres-
sions presumably vanish, either because the commutator
of an operator with a c number appears or because the
Levi-Civita e,b, symbol is totally antisymmetric.

VI. CONCLUSIONS

In the preceding sections, some of the purely quantum
difhculties that arise in attempts to set up a consistent
quantum Yang-Mills theory have been discussed. In
particular, the consistency between the Heisenberg
equations (explicitly evaluated using the commutation
relations) and the Lagrange equations was examined,
as was the question of consistency between the con-
straint equations and the dynamical ones. Both of these
points arise basically from the gauge invariance of the
theory. Thus, the second condition (which is a re-
phrasing of the fact that the continuity equation must
be satisfied by the isotopic current vector due to the
antisymmetry of f„,) does not even occur for theories
without a gauge group. Similarly, the consistency
between the Heisenberg and Lagrange equations (which
is satisfied as a tautology in the classical theory) is
much less obvious in the quantum gauge theories than
in nongauge theories, due to the complexity of the
constraints. This is particularly true in a nonlinear
theory where the ordering of factors becomes more
complicated.

In order to verify that the above consistency condi-
tions are satisfied, it is necessary to have a complete
set of commutation relations. To obtain these, one must
impose a gauge condition. Two such conditions were
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examined: the ra, diation gauge (V b =0) and the
gauge b~ =0. The radiation gauge leads to canonical
commutation relations similar to those of electro-
dynamic. It has, however, the drawback that the
constraint equations cannot be solved rigorously.
The above consistency requirements were shown,
however, to be satisfied in lowest-order perturbation
theory. The gauge where b& =0 is more complex than
the radiation gauge due to the loss of three-space
rotational invariance. This gauge does have the ad-
vantage of affording a rigorous solution of the constraint
equations and hence a complete verification of the
consistency conditions. ' It might also be mentioned
that in this gauge, the constraint variable Es (and bs)
depend only linearly on the canonical variables and
linearly on the isotopic current operator Lsee Eqs.
(5.8) and (5.9)$. One might hope, then, that Es and bs

are operators with well-defined matrix elements.
For a nonlinear theory such as the Yang-Mills field,

the imposition of a gauge condition is a nontrivial
operation. This is due to the fact mentioned earlier
(in Sec. II), that the theory is invariant, in general,
under only c-number gauge transformations. Two

"One of us (S.I.F.) has investigated in this gauge the case of
the Yang-Mills Geld coupled to the nucleon Geld LBull. Am. Phys.
Soc. 7, 80 (1962)].The consistency conditions can be completely
verified here also.

di6erent q-number related gauges, will, more likely
than not, represent two physically different theories"
(with different predictions for cross sections, etc.).
As may easily be seen, the radiation gauge and b3 ——0
gauge are indeed q-number related and so the theories
of Secs. IV and V may have different physical content.
Should this be the case, and should both gauges be
Lorentz invariant, one would presumably have to
resort to experiment to decide which gauge was correct. .
In electrodynamics, a valid gauge is the radiation
gauge. "While the theoretical origin of this result is not
clear, the radiation gauge does possess a preferred
position in electrodynamics. It is the gauge in which
the total vector potential A„equals the gauge-invariant
part of A„(and hence is the gauge where the gauge-
variant part of A„has been set to zero). Due to the more
complicated nature of the Yang-Mills gauge trans-
formation $Eq. (2.7)], neither of the gauges considered
in this paper have this property. It wouM be of interest
to discover the nature of the analogous preferred gauge
for the Yang-Mills field.

However, the gauge transformations associated with Lorentz
transformations have g-number parameters and a valid theory
must be invariant under these.

2'It is not known whether or not, in a given Lorentz frame,
there exist other experimentally correct gauges in electrodynamics
that are f7-number related to the radiation gauge.
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The decay modes of the p (T= 1) and p (T=O} bosons of mass =4m are discussed, together with other
experiments bearing on quantum number assignments for these mesons. Using an effective interaction
which includes the inQuence of angular momentum barriers, we have made numerical estimates of branching
ratios. Arguments based on these estimates lead to the most likely spin and parity assignments of J"~=0++
for pand 0 for q. Study of the reaction x+He ~ (+He is proposed as a test of the 0+ assignment.

ECENTLY, renewed evidence has been presented
for an isospin 1 resonance at about 565 MeV

~ ~

=4m .' We present arguments below in support of a
suggestion that the quantum numbers for this resonance
(g) are either Spa= 0++ or 0+ . We furthermore discuss
the relationship of the neutral component ls to the rl

which has T=O and decays into three pions, and re-
examine the quantum numbers for the latter.

Since the rl and the p have about the same mass, all
presently existing experimental discussions of the decay
modes refer to some combination of the two particles.
For brevity, in this paper we use the name X for those

f Supported in part by the U. S. Atomic Energy Commission.'B. Sechi Zorn, Phys. Rev. Letters 8, 282, 386(E) (1962), in
which references for earlier evidence are found.

phenomena, which refer to whatever mixture of r) and l'
has been measured.

The arguments which we have used to arrive at the
above assignment for the l are based on the following
pieces of experimental evidence: (1) The decay of the

is primarily into m+ 7r' with a width less than 15
MeV. ' ' (2) The branching ratio for the X produced in
E+p ~A+X is &'1/20 for m.+ 7r as well as for
x+ m p, as indicated by the absence of these modes in
the data of Bastien et at '(3) This sam. e X has'
I'(neutrals)/I'(~+ m 7r') =3/1. (4) The experiment of

' B. Sechi Zorn, Bull. Am. Phys. Soc. 7, 349 (1962).' P. L. Bastien, J. P. Serge, O. L Dahl, M. Ferro-Luzzi, D. H.
Miller, J. J. Murray, A. H. Rosenfeld, and M. B. Watson, Phys.
Rev. Letters 8, 114, 302(E) (1962).


