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Ground State of the Charged Bose Gas*

M. GIRARDZAU
The Enrico Fermi Institute for Nuclear Sttuties, The University of Chicago, Chicago, Illinois

(Received April 13, 1962)

The ground-state energy of the charged Bose gas is calculated by the pair-correlation variational method
of Girardeau and Arnowitt. The method is exact in the high-density limit (r,«1) and provides a variational
extrapolation to intermediate densities. The leading terms of the high-density expansion, obtained by
iteration of the variational integral equation, are uo ———0.804r, t —(1/8) lnr, +0(1),where uo is the ground-
state energy per particle in Rydbergs and r, is the ratio of the mean interparticle spacing to the Bohr radius.
The first term was obtained previously by Foldy, but the logarithmic term is new; it is related to screening
of the long-range correlations at a distance f 0~r, '"p '", in analogy with the logarithmic term in the corre-
lation energy of the electron gas. Results of numerical solutions for the intermediate-density region are
presented, ranging up to r, =10.On the basis of a comparison with the energy calculated from the known
low-density expansion, it is estimated that the transition into Wigner s electron crystal (here a boson
crystal) should occur at r, 5.

l. INTRODUCTION

HE high-density charged Bose gas has recently
been studied by Foldy' using the canonical

transformation method of Bogoliubov', the reader is
referred to Foldy's paper for a discussion of background
and motivation. The Bogoliubov method is a weak-
coupling treatment which takes advantage of the nearly
complete Bose condensation into the state k=o. That
it is applicable to the charged Bose gas at high density
follows from the fact that the only dimensionless number
which can be constructed from the parameters available
is r, e'p 'I' in units with 5=nz= 1; thus, weak coupling
(small e') for given density is equivalent to high density
(large p) for given e'. This argument is of course
identical with that used in the electron-gas problem,
e.g., in the paper by Gell-Mann and Brueckner. '

As a method of extending Foldy's high-density
results to intermediate density, the pair-correlation
variational method of Girardeau and Arnowitt' im-

mediately suggests itself; that method was, in fact,
derived as a variational extension of the Bogoliubov
method to intermediate coupling strengths. The
present paper consists of a straightforward application
of the general formulas derived in I to the special case
of the Coulomb interaction. However, the results
obtained in the case of high density bear no resemblance
to those previously given' for the case of weak repulsive
interactions; the latter results were limited to finite-

range interactions, whereas the infinite range of the
Coulomb interaction is decisive in the present problem.

The mathematical formulation is given in Sec. 2. In
Section 3 the leading terms in the weak-coupling
expansion for the ground-state energy are obtained by
analy tical interation of the variational integral equation

*This work supported in part by the U. S. Atomic Energy
Commission.' L. L. Foldy, Phys. Rev. 124, 649 (1961).

s N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 (1947).
'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(1957).' M. Girardeau and R. Arnowitt, Phys. Rev. 113, '755 (1959),
denoted herein by I; Eq. (n) of this paper will be denoted by (I.n).' M. Girardeau, Phys. Rev. 115, 1090 (1959); Eq. (n) of this
paper will be denoted by (II.n).
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starting with the Bogoliubov approximation; the
essential di6erence from the result of Foldy is the
occurrence of a logarithmic term related to the screening
of the Coulomb interaction. The results of numerical
solution of the integral equation are presented in Sec. 4;
these extend up to r, =10, whereas the high-density
expansion is only useful for r,(&1.

&o/~= (po/p)Is+(4w'p) '—$k'+Is (k)j
4'(k) 4 (k)

&( -1Ir(k) — k'dk, (3)
1-4'(k) 1-4'(k)

where po& Ir, and Is are given by (I.22), and'

Is=—Ir(0)—Is(0). (4)

It is convenient, following Gell-Mann and Brueckner'
and Foldy, ' to define dimensionless quantities

uo —= (2/e') (Eo/tt),

r,—= (3/4r p)'tse',
5)

p =—(4srpe') —"4k,

g(p) =—4 (k).
o We shall 6nd that the integrals I&(0) and Is(0) are both

divergent in lowest order, but that their djfFerenqe Iq is convergent,

09

2. FORMULATION

In units with 5=m= 1, the Hamiltonian is

II=Q —,'k'apta&+-', 0—' P' (4sre'/q')ax+, ttt&, tat, tsar, (1)
k qkk'

where the prime implies omission of the terms with
@=0,corresponding to cancellation of the boson charge
by a uniform background charge so as to preserve
over-all charge neutrality. Equation (1) corresponds
t.o Eq. (I.2) with

o(k) =4xe'/k', kx0; u(0) =0. (2)

The variational trial ground state is given by Eqs.
(I.16), (I.19), and (I.20), and its energy is given by
(I.21). Assuming P spherically symmetric, P(k) =P(k),
one 6nds
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The parameter r, is the ratio of the mean interparticle

spacing to the Bohr radius, mo is the ground-state

energy per particle in Rydbergs, and p is a dimensionless

momentum de6ned so that in the high-density case

(r,«1) one has, as will presently be shown,

g (p) =p
—'; p))1, r.«1.

uo= 2X—3'"r, s/'fi +2X3" 'r, s/'

g'(P) . g(P)
X LP'+i (P)j +'-(P) dP, (7)

s 1—g'(P) 1—g'(P)

where one 6nds after performing the angular integra-
tions in (I.22)'

f=
p&&/p

=—1—2 X3 /4sr r,
g'(P)

P dp~1-g'(P)

P+P' g(P')
i&(p) —= (4srpe')

—'k'It(k) =3—&/4sr-'r, '/4P p' ln dp'
s p —p' 1—g'(p')

P+P' g'(P')
i,(p)= (4sr—pe') 'k'Is(k) =3—'/4&r-'r '"p p' ln dp'

P P' 1—g'—(P')

is= (4'—pe') "'Is=2X3 &/4sr 'r,"4 g(P)
dP.

1+g(P)

According to (I.23), the variational trial function g(p)
is determined by the nonlinear integral equation

Cf—it(p) 3t.1+g'(P)3
—2LsP'+f+is(p)+P'ssjg(P) =o (9)

which, when formally solved for g(p), becomes

g(p) =~ 'LIf —(I~'—~')'"3,
~(p) —=f—it(p),
Ii(p)= lp'+f+ (P)—+P' "

(10)

3. HIGH DENSITY

The leading terms in the high-density expansion of
mo can be obtained by analytical iteration of the
variational integral equation, in analogy to the pro-
cedure used previously' for the case of finite-range
potentials. In constrast to that case, however, the
Bogoliubov approximation

g"'(P) = 1+sp' P'(1+ 'P')'", — (1-l)

obtained by neglecting all the integrals in (10) including

that occurring in f, cannot now be used as the lowest-
order approximation to g in evaluating uo, because the
integrals

g(P)it(P), dP
1—g'(P)

g'(P)
is(p) dp (12)

1-g'(P)

in (7) would then diverge logarithmically at their
lower limits. ' As in the case of the charged Fermi gas, '
this can be taken as an indication of the fact that the
correct g(p) is such as to eA'ectively provide a low-
momentum cutoR proportional to some positive power
of r„ thereby replacing the logarithmic divergence by a
logarithmic dependence on r, . This conjecture will be
verified by the subsequent analysis.

A better approximation to g(p) is obtained by retain-
ing the various integrals in (10), but making the
Bogoliubov approximation in evaluating these in-
tegrals. When one makes this approximation in the
condensed fraction f LEq. (8)j one obtains the zero-
order approximation

fi&» —1 3—&/4w —lr 8/4

1
—P' dP= 1 ,'(4/3) "47—r -'r, s/'E(2 '/') = 1—0.2114r,'/'

(1+—'p4) '/'
(13)

where E is the complete elliptic integral of the hrst kind; this result was obtained already by Foldy. Similarly,
the corresponding approximation to i3 is

(0) —3—1/4~—lr 3/4 1— —&fp=0 2899r,'/'.
2 (1+t P4)&/2

(14)

'The ubiquitous term (4mpe'}'/' is just the classical plasma frequency.
The functions i&& &(p) and is& &(p), obtained by replacing g by g& & in (8), vary linearly with p as p ~ 0 Lsee Eq. (16)g, whereas

g&e&/L1 —(g&'&)'g and (g&'&)'/L1 —(g& &)'j behave like P '.
' E. Jahnke and F. Emde, Tables of Fttnctions (Dover Publications, Inc. , New York, 1945), f&p. 52ff.
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The functions 21&2&(P) and 22&2&(P),

2 (&&) (p)
—3—1/4~—1r 2/4P

(0) (p)
—3—1/4~—lr 2/4p

p+p &/p

ln
P P'—2P'(1+-'P")"'

1+1p/4p+p'
ln 2P

1 /

P P' —2P'(-1+4P")"'

(15)

are not expressible in closed form except for small and large p. It is shown in Appendix A that

i "'(p) =i '2"'(p) =—'}(,'3 '/42rr, '/'P=0. 5968r 2/4p, p(&1;

ii &'& (p) —~ 0.6341r,'/4, 2, &'& (p) —~ 0.2114r,'/ .

f= 1—0.2114r,'"+ (19)

the terms not explicitly indicated being of higher order.
Similarly, the leading term in i 2 is is&a& LEq. (14)j; but

The first-order approximation g'" to the solution g
of (10) is obtained by replacing f, ii, i 2, and is by their
zero-order approximations (13) to (15); thus

g"'(p) = (~"') '(&"'—L(&'")'—(~'")'j"'),
A &'& (p) = 1—0.2114r,"'—ii&" (p), (17)
8&'& (p) =

2p'+ 1—0.2114r,s/'+is&'& (p)+0.2899r, '/'p'

In the low-momentum limit"

g&" (p) =1—1.5452r "'p" p(&r "' (18)

whereas g(" reduces to the Bogoliubov approximation
g&'& LEq. (11)j for p))r,".The effective low-momentum
cutoff in the integrals (12) thus occurs at p r, '/', for
p((r,"one sees from (18) and (16) that the integrands
behave like p'/', so that the integrals converge at their
lower limits. On the other hand, for r, '/'((p((1 the
functions g('&/L1 —(g&»)'$ and (g(")'/L1 —(g"')'j behave
like p

' and hence the integrands behave like p '. It
is thus clear that the integrals (12) have a logarithmic
dependence upon the effective cutoR r, '/'.

We are now in a position to evaluate the leading
terms in the ground-state energy. I et us begin with the
first term, proportional to fis, in (7). According to (13),

since the second term will also be needed, we shall
evaluate the integral more accurately by using g(')
instead of g&". Thus, by (8) and (17) one finds after a
little algebraic manipulation

~3—1/4~—Ir 3/4
/+0) +0) 1/2-

op. (20)
(,fl(1&+g 0)

3—1/4 —Ir 3/4fs L 3~P

—3—1/4~—lr 3/4 dP+0(r, s/'). (21)

To evaluate J;.,~/4" we first note from (17) that

8&» —3 &'& = -,'p'+ii&" (p)+is&'& (p)+0.2899r,"'p'
8&»+2 &'& = 2+ 12p' —0.4228r, s/'+is& & (p)

—i&"(p)+0.2899r, '/'p'.
(22)

The leading term in 3&"—A&" for p)r '/' is —',p',
while the leading term in 8&"+2&1& is 2+-', p4. Thus,
expanding in inverse powers of these leading terms, one
Ands

In view of (18) it is desirable to consider J;"'" and
J'„,~/4" separately. It follows from (17) and (16) that
the integrand of (20) is 1+0(r,"') for 0~& p&&r, '/'; hence

ygI/4

(
g (1) g (1)) I/2

~&»+~&»i p2

p' ii&"& (p)+i2&" (p) 0.2899r,'"
1+ +

2 (1+2 P4) 1/2

0.4228r, '"+ii &" (p) —is&'& (p) —0.2899r,"p'
+

2+ 1p4
(23)

The dominant contribution to J;,~«" in the neighborhood of its lower limit comes from the first two terms in this

"Equation (18}is obtained by dropping the term —,p in A&'&, inserting the low-momentum approximations (l.6} to 4&&s& and 42&'&,

and expanding the resultant expression for g'" for small p. Since (1/2}p' is no longer negligible when it becomes comparable to
0.5968r,3/ p, (18) is only valid foI' p&&r, '/ .
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shown in Appendix 8 that this logarithmic term is
related to a screening of the long-range correlations at
a distance

—z/2 —s/3. (31)

for r, '/'ro«r«ro the pair correlation function falls off
like r ', whereas for r)Pro it falls off like r 4. It is note-
worthy that the correlation length ro is the same as
that of the high-density electron gas; although (31)
can be derived for the electron gas by a simple Thomas-
Fermi calculation, '" such a derivation is not applicable
to a Bose system.

As a consistency check on the derivation of (30)
one has available the following well-known consequence
of the variational theorem for the ground-state energy
+0 ~

I-'o=Eo(0)+ g 'J'o(g)dg, (32)

+o= gvo(g)dg, (33)

where vo(g) is the potential-energy part of No(g), and
No(g) is obtained from No by replacing r, by gr, . Sub-
traction of (28) from (30) gives

vo(g) = —1.0042g '('r, o('—s ing —sr lnr, +0(1) (34)

and hence

gvo(g)dg = —0.8034r, s(' —ts lnr, +O(1). (35)

Aside from a difference of three in the last place in the
coefficient of r, "4, which represents the error of the
numerical integrations, (35) agrees with (30).

It is shown in Appendix C that the lowest-order
corrections to No due to "non-pair" processes, the
simplest of which is a three-plasmon "vacuum fiuctua-
tion" process, are of order unity and higher. Hence,
the term of order unity is not signi6cant either in
Foldy's theory or in ours.

4. INTERMEDIATE DENSITY

The high-density expansion (30) was derived under
the assumption r,«1. Even when this condition is
satisfied the expansion is most probably asymptotic
rather than convergent, and hence gives no information
about the behavior of the ground-state energy at
intermediate densities. Our variational method is not
subject to this limitation, although one has to resort to
a direct numerical solution of the variational integral
equation (10) when r, is not small. Tlie numerical
"D. J. Thouless, l'Ae Quunt2fni mechanics of Na'v y-Body

5ystems (Academic Press Inc. , New York, 1961), pp. 144 ff.
"The unperturbed. ground-state energy g~'0(0) is, of course,

zero for the Bose gas.

where Eo(g) slid Vo(g) are, respectively, the total and
potential energies of the ground state when the interac-
tion e'jr is replaced by ge'/r. Noting (5), one finds"

results described below show that (30) is already in
error by 4% at r,=0.1 and by 40% at r, =1. In the
opposite limit of low density (r,))1) the potential
energy dominates the kinetic energy and, as was
pointed out by Foldy, the ground state is a crystal
with energy"

uo= —1.792r, '+2.65r,—"'+O(r ') (36)

The domain of validity of this expansion, estimated by
requiring that the second term be less than 10% of
the first, is r, &200. There is thus a large intermediate
range of r, for which neither the high- nor the low-
density expansion is useful. This range can be at least
partially spanned by our variational method, which is
exact in the high-density limit and should, therefore,
remain accurate up to intermediate densities.

The variationa, l integral equation (10) can be solved
numerically by iteration, the new approximation
g"+'& being obtained by substitution of g(~' for g in the
evaluation of the integrals (1—f), ii, is, and is. The
numerical calculations leading to the results presented
here were performed on an IBM 1620 computer; for
each value of r, the iteration was continued until two
successive approximations to bio, calculated by Eq. (7),
differed by less than 1%. For the smallest values
of r, the iteration was started with a modification'-"
of the Bogoliubov appro»mation g("' LEq. (11)) and
for larger r, it was started with an approximate g
obtained by extrapolation of the solutions for smaller
values of r, . The logarithmic singularities of the
integrands of ii and is PEq. (8)] at p= p' had to be
treated carefully in evaluating the integrals numerically;
the method employed is described in Appendix D.
Difhculties with convergence of the iterative process
were encountered for r,& 3, but it was possible to
secure convergence up to r,= 10 by a minor modification
of the algorithm. "Convergence again failed for r,)10.

'~ The leading term is the Madelung energy of Wigner's electron
crystal (E. P. Wigner, Phys. Rev. 46, 1002 (1934)j, and the
second is the zero-point energy /Rosemary Coldwell-Horsfall and
A. A. Maradudin, J. Math. Phys. 1, 395 (1960); W. J. Carr,
Jr., Phys. Rev. 122, 1437 (1961)g. It was shown by Wigner
that the effects of statistics Grst enter in overlap terms of order
exp (—constr '/2)

'o Since the integrals (12) diverge when g is replaced by g(o), it
is necessary to modify (11) at low momentum when using it to
start the iterative process. The subroutine for the evaluation of
the integrals (12) implicitly assumed the integrands to vanish at
p=0, as is indeed the case for the correct solution g, and indeed
already for the first approximation g") (see Appendix A). This is
equivalent to modifying g(') at low momentum so that the 6rst
approximations to (12}converge.

2' The integral equation (10) can be written symbolically as

g= 3(g),
where 5 denotes a certain inhomogeneous and highly nonlinear
functional defined by (8) and the right side of (10).The iteration
algorithm employed for small values of r,. was

g (i+)) —3:(g (i)}
This process converges for r„&3, but for r, &3 the successive
approximations oscillate in an undamped fashion. It was possible
to secure converge in the region 3 &r, &10 using the modified
algorithm

g(i+1) —(1/2 }Lg8)+3 (g(() )j
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—I.O

I

low density
expansion ~~+

method

the pair distribution function D(r) PEqs. (81) and
(BS)$, the relative probability of finding two particles
with a separation r, were also calculated numerically
for r, =0.1, 1, and 10, and are plotted in Figs. 3 and 4.
The salient feature of the momentum distributions is
the increase in the high-momentum components with
decreasing density (increasing r,); the pair distribution
functions show the outward displacement of charge
responsible for screening of the Coulomb interaction,
and the increasing effectiveness of this screening with
decreasing density.

-IO
.I

I

I.O

I

10 IOO
S. DISCUSSION

FIG. 1. Ground-state energy.

Although it might have been possible to obtain solutions
in this low-density region by further re6nements of the
iteration algorithm, this was not attempted since our
variational method cannot be expected to retain
accuracy there; a crystalline wavefunction would be
more appropriate for low-density calculations.

The computed values of the ground-state energy z&0

and the condensed fraction f are given in Table I and
Figs. 1 and 2. One notes that the energy calculated

I.2

j.o—
I

0.8—
r (k}

0.6—

S=O. I

—
Is

s
= IO

By use of a variational method based on a trial
ground state involving pair correlations, we have
obtained the leading two terms of the high-density

TABLE I. Ground-state energy and condensed fraction. 0 4—

0.01
0.03
0.10
0.30
1.00
3.00

10.00

eo (Ryl
—24.6—10.5—4.05—1,65—0.582—0.211—0.0666

0.995
0.991
0.983
0.971
0.956
0.945
0.937

0.2—

0--
0

K==—J I

I 2 5 4 5

FIG. 3. Momentum distribution functions.

t.o-
f 9—

.OI

I

I.O IO

I'zG. 2. Condensed
fraction.

the mean number of particles with momentum k„and

"Note, however, that this estimate is rather uncertain due to
the poor convergence of (36) at r,.=5.

"See Eq. (I.32).

from the low-density expansion (36) (the dashed line
in Fig. 1) lies lower than that given by our variational
method when r,&5; hence the transition into Wigner's
electron crystal probably takes place at r, 5." The
condensed fraction f displays a marked insensitivity
to the density, only falling from 1 to 0.94 as r, varies
from 0 to 10; this is to be contrasted with what (19)
would predict were it to remain valid up to intermediate
values of r, . The momentum distribution function"

IP—

rs = O. I

—--r =I
S--- r = lOs

FIG. 4. Pair distribution
functions.

expansion for the ground-state energy LEq. (30)$ as
well as a numerical upper bound (Table I and Fig. 1)
valid both at high and intermediate densities. This is to
be compared with Foldy's application of the Bogoliubov
method, which only gives the 6rst term of the high-
density expansion correctly and is not applicable at
intermediate densities.

We have not examined the excitation spectrum since
the excitation energies in the pair theory LEq. (1.37))
do not satisfy a variational theorem and are hence less
accurate than the ground-state energy. Foldy has
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x(&)= —2fEfI(k) —f2(t)7+fI2(()+f22($),the pair correlation function x(r) by

x( )=—D(r) —1 g(P)
p sin(gp)dp,

1—g'(P) (85)
f (P)

—2 X3—I/42r-lr 3/4+I81)

" g'(P)
f2($) = 2X3 I/42r Ir,2/4+I P sin($P)dP.

o 1-g'(P)I'0/n=2p x(r)(e'lr)d'r (82)

The potential energy per particle of the ground state
can be expressed in terms of x(r) by

(—= (42rpe2) '/'r

and performing the angular integrations, one finds

(83)

10
—= (2/e') (V /n0) =3'"r, 2/2 X(t)gd(

where, according to (81) and (I.28),

x(r) occurs in (82) instead of D(r) because of the
compensation of the average boson charge by the
uniform background; the inhnite term with q= 0
omitted from (1) can be written in coordinate space in
the form 2pJ (e'/r)d'r when particle-number conserva-
tion is taken into account.

Introducing the dimensionless quantities (5) and a
dimensionless distance

f.(~)-f.(~)

2 X3 I/4~ —Ir 2/4P —I g(p)
p sin(pp)dp. (86)

0 1+g(p)

Approximating g by g(" and noting from (17) and
(22) that to lowest order in the small parameter r,

8'"=1+(1/2)P'
j3(l) g(I) (1/2)P4+iI{0) (p)+i2(0) (p)
13")+3")=2+ (1/2) p'

(87)

for all values of p, one finds after algebraic reduction

Because of a near cancellation of the low-momentum
contributions of fl and f2 to the term in X involving
fl f2, i—t is desirable to also separately evaluate the
integral

f,(() 3 I/4~ lr 3/4+I {(2+1P4)EIP4+„(0)(p)+;, (0) (p)j) I/2p sin((p)dp

f (P) 3—I/42r —lr 2/4+I
1+1p4

(2+lp')'"Elp'+i "'(P)+i "'(P)j'"
—1 p sin(pp)dp,

f ($) f (() 3 I/4~ Ir 3/4/I— —
--p+'() V»+'. ()(p)- /

2+2p'
p sin(gp)dp.

Although these integrals cannot be evaluated analytically for general values of $, it is possible to determine their
asymptotic behavior both for 1«+&r, '/' and $)&r, '/'. In the former case the dominant contribution comes from
p))r, '/ where iI(') and i2(') may be dropped since they are «p Ecf. (16)j, so that

f (() 3—I/4~ —lr 3/4(—I
sin(pp)

dp 1X3—I/4r 3/4$ I—
P(1+'P')"'-

f (()=3 "4z. 'r /4+'
p2(1+ 2p4)1/2

—1 p sin(pp)dp=-, 'X3 "4r 2/4+I

These asymptotic forms were evaluated by noting that since/)&1, the dominant contribution comes from p«1
where P' may be dropped compared to unity, so that the integrals reduce to J0"P ' sin(PP)dP=2r/2. The exact
asymptotic form of f, f2 in the inte—rval 1«$«r, /4 cannot be obtained in this way, but one estimates

f (P) f, (P) 3—I/4~ Ir 2/40 —I—p'———p Sin(pp)(lp=((r 2/4$ Ie /It,r-
2 (1 +I,p4) I/'2

(Il10)

where n and p are positive constants of order unity, by =22re lt whose integrand is the same as that of (810)
comparison with the integral J~"(1+-',p') 'p sin(fp)dp for small p but falls off less rapidly for large p. The
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contributions from frs and fss dominate the exponen-
tially small contribution from fr f—s in (85), so that

~(()= 1 X3-I/2» 3/s(-s 1(((((»-t/4 (81.1)

To obtain the asymptotic behavior for $»», '/' we
note that the dominant contributions then come from
p«», '/'. where irl / and is/'/ dominate p' in (88); then
using the low-momentum approximation (16) for /', r&s/

and i200, one finds

f (~)-f.(~)-:"~' p'/' sin(pp)dp

=» s/st-'[ —n"-'» ""cos(n» '"()+-.'-(27r/$)'/'C(n» '/4()']

», "/'—
$ cos(n», '/'$) j»», "/' (812)

where the symbol denotes order-of-magnitude
equality, a is a constant of order unity, and C is the
Fresnel integral

cost
f, (x)= Ck

s (2x/)"'
(813)

On the other hand, an argument analogous to that
used in obtaining (810) shows that fr fs is aga—in
negligible compared to frs and fss Thus, b.y (85)

Q'dg= —-,'ln»„ (815)

the logarithmic term in (30). The correlation function

y($) is positive for $»1 because the repulsive Coulomb
interaction displaces charge outward from a given
boson; y must accordingly be negative for )&1, where
the term involving fr fs in (85) pr—edominates,
although our asymptotic calculation does not allow an

where P(x) is some function which is oscillatory with
wavelength 1 and amplitude 1 for x))1..

Substituting (811) into (84), one sees that t/s would
have a long-range (large $) logarithmic divergence if
(811) were to remain valid for arbitrarily large
However, because of (814) there is an effective cutoff
at &», "', hence»»p [Eq. (31)], so that the log-
arithmic divergence is replaced by a finite logarithmic
contribution to vo, given by

investigation of this range here. This eGect is evident
in the numerical results shown in Fig. 4.

APPENDIX C "NON-PAIR" CORRECTIONS TO
THE GROUND-STATE ENERGY

%e use a perturbation method analogous to that
employed in Appendix 8 of reference 5. The simplest
"non-pair" contribution to Ep/e comes from a three-
plasmon "vacuum Auctuation" process; this is given
by Fqs. (II.89) and (II.810) with v(k) given by (2)
and E(k) by (1.37). Since we are interested here in the
case of high densities, we can estimate the integral
(II.89) by replacing P by the Bogoliubov approxima-
tion $'"' [corresponding to g&"&, Eq. (11)]provided that.
the integral is convergent in this approximation. The
only singularities of the integrand occur at k=O,
k'=0, and k+k'=0; since these are all equivalent, "
we shall restrict our attention to what happens at k=0.
The function g(kk') can be written in the form

g (kk') = —([1—ys {k)]['1—ys (k')][1—ys (k+k')] }—r/s

X{.( )[1—4 (k)][4 (k')+4 (k+k')]
+p(k') L1—4 (k') 7[4 (k)+4 (k+k')]
+~(k+k')L1 —&(k+k')][4(k)+4(k')]} (C1)

by grouping terms in (II.810). The interaction (2)
is singular at k=O, but this is canceled by the factor
[1—p(k)] which is proportional to k' for small k in the
Bogoliubov approximation [cf. (11)].Thus, the only
singularity in g(kk') at k=0 comes from the factor
[1—g'(k)] "', which has a k ' singularity in the
Bogoliubov approximation; the function g'(kk') in
(II.89) thus has, in the same approximation, a &

—'
singularity. But this is canceled by the phase-space
factor k' coming from d'k. Since the energy denominator
is nonvanishing everywhere, " the integrand is non-
singular at k=O, and thus also at k'=0 and k+k'=0.
Since there is clearly no trouble at high momenta, "
one concludes that the integral (II.89) is convergent in
the Bogoliubov approximation. Introducing the dimen-
sionless quantities (5), one then sees that the corre-
sponding contribution to No can be written as a con-
vergent dimensionless integral of order unity, the
various factors of p and e' having canceled; thus the
correction to ms affects only the term 0(1) in (30).

The next-simplest process involves four-plasmon
"vacuum fluctuations"; its contribution to Es//s is
given by an expression analogous to (II.89):

where

—4p '(2~) ' h'(kk'k")
d'kd'k'd'k",

E(k)+E(k')+E(k")+E(k+k'+k")
(C2)

/s(kk'k") = {[1—@'(k)][1—y'(k')7[1 —y'(k")][1—y'(k+k'+k")] }—'/'

X 2 &(qq'q"
I
kk'k")y(q)4 (q'). (q+q"), (C3)

"The integrand is symmetric under ermutations of the set {k, k', —k—k'}."In the Bogoliubov approximation, 8 k) approaches the plasma frequency (4s ps )'/s as k ~ 0 /see Eqs. (8) and (9) of reference 1$.
"Because of (6), the integrand falls off very rapidly at high momenta.
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the definition of the 6 function and the meaning of the
primed integration being the obvious generalizations of
their meanings in (II.B9) and (II.B10).Introducing the
dimensionless quantities (5) as before, one concludes
that the corresponding contribution to uo is equal to
r,"' times a dimensionless integral. However, this
integral is in fact divergent, since the term & (q+q")
introduces a (q+q")—' singularity in h' which is not
cancelled by any of the factors involving p and is only
reduced to a (q+q") ' singularity by inclusion of the
phase-space factor. This divergence is an indication of
the fact that the "quartet" part of the Hamiltonian
(II.B3) actually contributes to I&& in lower order than
the order r, '~4 suggested by a naive dimensional argu-
ment. Nevertheless, it seems quite unlikely that the
contribution is larger than O(1), or even as large as
O(1). If we assume a low-momentum cutoff of order
r, '&' as in (12), then we obtain a contribution to zip

of order

Such a cutoEf would, no doubt, be introduced if one
were to consider not merely the single second-order
diagram" leading to (C2) but, following Gell-Mann
and Brueckner, ' were to supplement it by an infinite
set of higher-order diagrams involving successive
interactions all with the same momentum transfer p.

APPENDIX D. NUMERICAL EVALUATION
OF INTEGRALS

The numerical integration subroutines used to
evaluate the integrals (7) and (g) employed Simpson's
rule, the integrands being tabulated at intervals hp
of 0.2 from p=0 to p=2, of 0.5 from p=2 to p=5,
and of 1 from p=5 to p=13. Although the logarithmic
singularities at p=p in it and is are integrable, they
require special treatment in a numerical evaluation.
The method adopted was to represent g(p')/(1 —g'(p') j
and g'(p')/L1 —g'(p')) by quadratics in the vicinity of
p'= p, and then to use the formula

"+', P+P'
P' ln, L8+C(P' P)+D(P'—P)'3~P'—

(x+p) Lln(2p) —ln
~ xi + (x/2p) ——', (x/2p) '+ j(8+Cx+Dx') dx

= 28p&& ln(2P)+ss E(C+Dp) ln(2p)+s'p '(38+4CP) jt&s —28P&&(lnl& —1)—s (C+Dp)&&s(in&& s)+0(&&'~~' in&&), (D1)

the parameter 6 being taken equal to the step length
used in the numerical integrations. This method
permitted it(p) and ss(p) to be calculated at the
interior points of the intervals 0 ~& p ~& 2, 2 ~& p ~& 5,
and 5~& p&~13 (see above); the values of sr and is
at the boundary points were then determined by
quadratic interpolation. "The error of these numerical
calculations was checked for the special case g=g("
Lhence it st"&, i——s is&'&j by——comparison with an
independent calculation" of i~"' and i2('), and found to

"The accuracy of (Dl) was found to be insufhcient at the point
p =0.2 because g/(1 —gs) and gs/(1 —gs) cannot be represented by
quadratics in a neighborhood of p'=0; hence, iI(0.2) and i2(0.2)
were also obtained by quadratic interpolation Lnote from Appendix
A that f&(0)=is(0)=0 and that i& and ss are quadratic in p for
small pj.

' The functions san&0&(p) and ss& &(p) were calculated from (A1)
by numerical integration, the integrations through the singularity

be of the order of 1%, another useful check valid even
when r, is not small was provided by the relationship
(A4) between f and the asymptotic behavior of is,
this relationship was found to be satis6ed to within a
few percent. Since the accuracy of the numerical
integrations involved in calculating f, ss, and u&& was
even greater, "the values of No given in Table I should
be rigorous upper bounds to within a few percent.

at x=1 being effected by an analytic formula obtained by integra-
tion of the leading terms of the expansions of the integrands about
x= 1.The accuracy of the calculations was checked by the familiar
method of doubling the step length and by comparison with the
known low- and high-momentum behavior (16)."This diagram is of second order only in the plasmon represen-
tation, obtained by the Bogoliubov transformation; in a free-
particle representation, the quartet Hamiltonian erst contributes
in sixth order.

"This was checked by doubling the step length.


