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Ground State of the Charged Bose Gas™
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The ground-state energy of the charged Bose gas is calculated by the pair-correlation variational method
of Girardeau and Arnowitt. The method is exact in the high-density limit (#;<<1) and provides a variational
extrapolation to intermediate densities. The leading terms of the high-density expansion, obtained by
iteration of the variational integral equation, are #o= —0.804r,7%/*— (1/8) lnr,+O(1), where %, is the ground-
state energy per particle in Rydbergs and 7 is the ratio of the mean interparticle spacing to the Bohr radius.
The first term was obtained previously by Foldy, but the logarithmic term is new it is related to screening
of the long-range correlations at a distance 7¢~7;"12713 in analogy with the logarithmic term in the corre-
lation energy of the electron gas. Results of numerical solutions for the intermediate-density region are
presented, ranging up to 7,=10. On the basis of a comparison with the energy calculated from the known
low-density expansion, it is estimated that the transition into Wigner’s electron crystal (here a boson

1,

1962

crystal) should occur at 7,~5.

1. INTRODUCTION

HE high-density charged Bose gas has recently
been studied by Foldy' using the canonical
transformation method of Bogoliubov?; the reader is
referred to Foldy’s paper for a discussion of background
and motivation. The Bogoliubov method is a weak-
coupling treatment which takes advantage of the nearly
complete Bose condensation into the state k=0. That
it is applicable to the charged Bose gas at high density
follows from the fact that the only dimensionless number
which can be constructed from the parameters available
is 7¢~e€% /3 in units with z=m=1; thus, weak coupling
(small ¢?) for given density is equivalent to high density
(large p) for given ¢®. This argument is of course
identical with that used in the electron-gas problem,
e.g., in the paper by Gell-Mann and Brueckner.?

As a method of extending Foldy’s high-density
results to intermediate density, the pair-correlation
variational method of Girardeau and Arnowitt! im-
mediately suggests itself; that method was, in fact,
derived as a variational extension of the Bogoliubov
method to intermediate coupling strengths. The
present paper consists of a straightforward application
of the general formulas derived in I to the special case
of the Coulomb interaction. However, the results
obtained in the case of high density bear no resemblance
to those previously given’ for the case of weak repulsive
interactions; the latter results were limited to finite-
range interactions, whereas the infinite range of the
Coulomb interaction is decisive in the present problem.

The mathematical formulation is given in Sec. 2. In
Section 3 the leading terms in the weak-coupling
expansion for the ground-state energy are obtained by
analytical interation of the variational integral equation
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starting with the Bogoliubov approximation; the
essential difference from the result of Foldy is the
occurrence of a logarithmic term related to the screening
of the Coulomb interaction. The results of numerical
solution of the integral equation are presented in Sec. 4;
these extend up to 7,=10, whereas the high-density
expansion is only useful for r,<<1.

2. FORMULATION

In units with Z=m=1, the Hamiltonian is
H=3_ 3k axtax+307 2 (4me’/ ¢ty qlaw—glawax, (1)
k

qkk’

where the prime implies omission of the terms with
q=0, corresponding to cancellation of the boson charge
by a uniform background charge so as to preserve
over-all charge neutrality. Equation (1) corresponds
to Eq. (1.2) with

v(k)=4re*/k?, ks£0; v(0)=0. (2)
The variational trial ground state is given by Egs.
(1.16), (1.19), and (1.20), and its energy is given by
(1.21). Assuming ¢ spherically symmetric, ¢ (k)=¢(k),
one finds

Eo/n=— (po/p) s () / {[k2+12<k>3

¢*(k) o (k)
I,(k)
1—¢%(k) 1—¢%(k)
where po, 1, and I, are given by (1.22), and®

It is convenient, following Gell-Mann and Brueckner?
and Foldy,! to define dimensionless quantities

uo= (2/¢*) (Eo/n),
re= (3/4mp)"e’,
p= (4mpe®) ™'k,
g(p)=9¢(k).

6 We shall find that the integrals 7;(0) and I.(0) are both
divergent in lowest order, but that their difference I3is convergent,

}kzdk, 3)

)
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The parameter 7, is the ratio of the mean interparticle
spacing to the Bohr radius, #, is the ground-state
energy per particle in Rydbergs, and # is a dimensionless
momentum defined so that in the high-density case
(r¢<1) one has, as will presently be shown,
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Then
tho= — 2 X 32 12 fiy 42X 3y 8
- 2(p) ¢(p)
X {£p4+i ] Fip) ap, (7)
/o ) 1—g(p)

where one finds after performing the angular integra-

gp)=p~t; P>, 1Ll (6) tions in (1.22)7
© g2
fEPo/pf—‘1—2X3—1/4,r—1r83/4/ _%_(z)___p:de’
1—-g%(p)
® +
= pli=g (17) o
e
12(17) (47rpg2) lkzlz(k) 3-Uag—1y 3/4P ? In ___(P_)_ '
° =" 11=g*(#")
“ g(;b)
= (dmpe?) V2 ;=2 X 31/ -—1,,83/4/
73 P 3 v ) 1+g(?)

According to (1.23), the variational trial function g(p)
is determined by the nonlinear integral equation

L/—a(p) [1+g()]
=205 fHia(p) % Jg(p) =0 (9)
which, when formally solved for g(p), becomes
g(p)=A7[B— (B*—A4H)""],
A(p)=f—1:(p),
B(p)=3p"+ [+1i2(p)+ %5

3. HIGH DENSITY

(10)

The leading terms in the high-density expansion of
uo can be obtained by analytical iteration of the
variational integral equation, in analogy to the pro-
cedure used previously® for the case of finite-range
potentials. In constrast to that case, however, the
Bogoliubov approximation

g0 () =1+3p'— P (I+5p)"”, (11)
obtained by neglecting all the integrals in (10) including

1+3p*

©) = 1 — 3~1/4p—1y 3/4 l:—_ 2]dp=
! ) TEEYOEN

that occurring in f, cannot now be used as the lowest-
order approximation to g in evaluating uo, because the

integrals
* g (p)
i, [ ipap
0

/“’% ® g(p)
0 1- 82( ) 1- g( )

in (7) would then diverge logarithmically at their
lower limits.® As in the case of the charged Fermi gas,?
this can be taken as an indication of the fact that the
correct g(p) is such as to effectively provide a low-
momentum cutoff proportional to some positive power
of 7,, thereby replacing the logarithmic divergence by a
logarithmic dependence on 7,. This conjecture will be
verified by the subsequent analysis.

A better approximation to g(p) is obtained by retain-
ing the various integrals in (10), but making the
Bogoliubov approximation in evaluating these in-
tegrals. When one makes this approximation in the
condensed fraction f [Eq. (8)] one obtains the zero-
order approximation

(12)

—1(4/3) 1y JHEK (271/7) = 1—0.21149 314, (13)

where K is the complete elliptic integral of the first kind®; this result was obtained already by Foldy. Similarly,

the corresponding approximation to ¢; is

i3(0)=3—1/47r—1r33/4f [1—————— :I p=0.2899r 3/,
oL 20+

r (14)

?The ubiquitous term (4mpe?)V/? is just the classical plasma frequency.
8 The functions 4, (p) and 7.®(p), obtained by replacing g by g© in (8), vary linearly with p as » — 0 [see Eq. (16)], whereas

g(ﬂ)/[l (g(o))2] and (g(O))Z/[l (g(O))?] behave like ?'—2

Y E. Jahnke and F. Emde, Tables of Functions (Dover Publications, Inc., New York, 1945), pp. 52ff.
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The functions 7, (p) and 7,® (p),

1811

3,0 (p) =3 Veg—ly Bi4p / In
0

i, (p) =3 Vag—ly 3l1p / In

0

are not expressible in closed form except for small and large p. It is shown in Appendix A that

7, © (P) 227, (P) ~ % X3—1/47rrsa/4p = 0.5968733/4p,

B0 (p) — 06341731,

The first-order approximation g® to the solution g
of (10) is obtained by replacing f, 1, 72, and 73 by their
zero-order approximations (13) to (15); thus

g0 ()= (AO)HBO—[(BOP— (4],

AD(p)=1—-0.2114r 34— 1,0 (p), an
BY(p)=1p*41—-0.2114r 34+ 1,0 (p)+0.28997 3/4p%
In the low-momentum limit!?

gW(p) =1—1.54527 318p12 pLr M4, (18)

whereas g reduces to the Bogoliubov approximation
g©® [Eq. (11)]for p>>r 4. The effective low-momentum
cutoff in the integrals (12) thus occurs at p~7,'/¢; for
p<LrH* one sees from (18) and (16) that the integrands
behave like p*/2 so that the integrals converge at their
lower limits. On the other hand, for 7%<Kp<K1 the
functions g®/[1— (g®)*] and (g®)?/[1— (g®)?] behave
like =% and hence the integrands behave like p—%. It
is thus clear that the integrals (12) have a logarithmic
dependence upon the effective cutoff 7,4

We are now in a position to evaluate the leading
terms in the ground-state energy. Let us begin with the
first term, proportional to f73, in (7). According to (13),

f=1—0.2114r 34 - -, (19)

the terms not explicitly indicated being of higher order.
Similarly, the leading term in 73 is 73® [Eq. (14)]; but

A
p=p' 120/ (11
| (15)
ar AR
| 1 oy
p—' |29 (1+3proye
KL
35 (p) ——> 0.21147 314, (16)

since the second term will also be needed, we shall
evaluate the integral more accurately by using g®
instead of g®. Thus, by (8) and (17) one finds after a
little algebraic manipulation

S BMO— 4\ 12
iy 31y / [1_(m) ]dp. (20)
0 BW4A4®

In view of (18) it is desirable to consider Jy"* and
J>4” separately. It follows from (17) and (16) that
the integrand of (20) is 140(7,'/?) for 0K p< 7:4/4; hence

rslid
3—1/4—1, 3/4 / [ :l dj)
0

rslld

— Gty s / dp+0(ra).  (21)
0
To evaluate S;,+° we first note from (17) that
BO— O =1 piiy© (p) 50 (p)-+0.28997,3/4p?,
BO4 AD =241 p4— 0422873441, (p) (22)

—3©(p)+0.28997,3/4p2.

The leading term in BO—A® for p>r,l/t is 3p4,
while the leading term in BW4A4® is 24-3p% Thus,
expanding in inverse powers of these leading terms, one
finds

P4

B — )y 12 P2 I— 31O (p) i (p)  0.2899r 34

< ) = 1+ 0
2(1-+ip el 2

| 0422873540 (p)—ia® (p)—0.28997 5149

BWHA4M

+ ] (23)

2434

The dominant contribution to f7,:+” in the neighborhood of its lower limit comes from the first two terms in this

10 Equation (18) is obtained by dropping the term 3p* in AD, inserting the low-momentum approximations (16) to 4, and 7,(,
and expanding the resultant expression for gV for small p. Since (1/2)p* is no longer negligible when it becomes comparable to

0.59687#/4p, (18) is only valid for p<<rl/4.
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expansion; thus we separate these explicitly:

) B — 4y 172
3~ 1Ag—ly 314 [1 __( § - dp
18 B4 AW

0 2 0
:3—1/47,.——17,83/4/ [1_—P—_._:'dp._3——1/47r—1783/4'/‘
ok 2(1+1phe

B(l)_Am)l/zL P J_il(o) (p)+4,© (p)]d

_{._3—1/47'.——-1’,83/4 [_ (
rgll4 B

The integrand of the first integral on the right side is
just that of (14). In view of the low-momentum
behavior (16) of 7,/ and 4, the second integral has
a logarithmic contribution from its lower limit,!
given by

dp
—1X 31y / —=(1/16)3~1% 32 Iny,.
1/4 P

The integrand of the third integral, when expanded,
gives those terms in (23) which have not been separated
explicitly in (24); one can show in this way that the
integral is only of order 7,%2. Then, substituting (21),
(24), and (25) into (20) and using (14),'? one finds

135=0.239973/4+ (1/16)3-27,32 Inr +0 (r?),  (26)

so that the first term in the expression (7) for the
ground-state energy becomes, with use of (19),

— 2X V2 2 fy= —1.00427,34—} Inr, 0 (1).

(25)

@7

Application of similar methods to the evaluation
of the other integrals in (7) gives the kinetic energy
contribution!?

0 2
253Uty i / PRAS
v 0 1"5’2(?)
=0.20057,~%+3% Inr,+0(1), (28)

11 Since, according to (16), 7,(® and 7,‘” approach a constant
value of order 73/ for p>>1, there is no logarithmic contribution
from the upper limit, but instead a negligible contribution of
order 732,

12 Changing the integrand of the integral on the right side of
(21) from 1 to 1—%/2(1+1p*)'2 so that it can be combined with
the corresponding integral in (24), one only changes the value of
the integral by an amount of order »3/2.

18 Approximating g by g® in (28), as in (20) one finds

0 2 ) B(l)
ﬁ""’li;f(p)‘”’ i {r@wy=coym copE 7

The appropriate decomposition of the integrand gives

7 war=s [ THSEE - Jar

? (1432000 () +59(p) ]

f N RV B0,
The first integral on the right side is equal to 0.2393, while the
second gives a logarithmic contribution from its lower limit

analogous to (25), when one takes into account the low-momentum
behavior (16).
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WO+
2921+ p) e

(24)

(1)+A(1) I 2(1_{,_%_?4)1/2 I 2p2(1+i_P4)1/2

and the pair-pair scattering and forward scattering
contributions!

2)(3”47"17’3—3/4/ I:“(P) g(p)
0 1—g*(p)

&)
i)
e

Adding the contributions (27) to (29), one finds
sto=—0.8037r,~34—1 Inr,+0(1) (30)

as the leading terms in the asymptotic expansion of the
ground-state energy for the case of high density. The
first term agrees with that found by Foldy,'® but the
logarithmic term is new; it arises from the forward
scattering terms NNy and pair-pair scattering terms
ax'e_yla_waw in the Hamiltonian, such terms being
omitted in the Bogoliubov approximation.'t It is

]dpz —1Inr40(1). (29)

4 The result (29) can be found by the same method as used in
obtaining (27) and (28), but, since the first nonvanishing term is
the logarithmic one, a 51mp1er method suffices. Using (16) and
(18) one finds

rll . (1) 751/4. )
[ oS o [ o 8

NT“B/S/ it Pll?dp=0(783/4)’
0

where the symbol ~ denotes order-of- magmtude equality;
although (18) is only valid for p<<r,!/4, it retains order-of-magni-
tude validity up to p=r¢/4. Noting from (17) and (16) that

g<1) (g(l))z 1
T2 ORI O 2% 7ML pKLl,
one finds, using (16)
v g (g®
[,’1/4“(0)(1’)1_(54(1))2‘11’ = ), OO oy (1))2 ap

1

~ i [ d—;’— — X3y I, O (r,5);
Ts

it should be noted that the coefficient of the logarithmic term is

independent of the precise value of the lower limit; all that is

important is that it is of order 7:/%. The contributions to the

integrals from p of order unity and greater are clearly O(r:%*).

15 Eq. (22) of reference 1, as corrected in a later erratum
[L. L. Foldy, Phys. Rev. 125 2208 (1962)]; Foldy’s Eq. (22)
should be multiplied by a factor 1/2.

16 The pair-pair_scattering contribution is the part of (29)
involving 41, and the forward scattering contribution is the part
involving 7. The other logarithmic terms [those in (27) and (28)]
cancel each other.
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shown in Appendix B that this logarithmic term is
related to a screening of the long-range correlations at
a distance

ro~rY2pmlls,

(1)

for 7 /4r<Kr<r, the pair correlation function falls off
like 72, whereas for 7>>7, it falls off like 4. It is note-
worthy that the correlation length 7 is the same as
that of the high-density electron gas; although (31)
can be derived for the electron gas by a simple Thomas-
Fermi calculation,'” such a derivation is not applicable
to a Bose system.

As a consistency check on the derivation of (30)
one has available the following well-known consequence
of the variational theorem for the ground-state energy
Ey: .

Ey=E(0)+ / g Va(g)ds, (32)

0
where Eo(g) and Vo(g) are, respectively, the total and
potential energies of the ground state when the interac-
tion e?/r is replaced by ge?/r. Noting (5), one finds!®

1

o= / gu(g)ds, (33)

where v9(g) is the potential-energy part of u,(g), and
#o(g) is obtained from #, by replacing 7, by gr.. Sub-
traction of (28) from (30) gives

v9(g)= —1.0042¢—%4;~%/*— L Ing—% Inr,+0(1) (34)

and hence
1

/ go(g)dg= —0.8034r,34—% Inr,+-0(1).  (35)
0

Aside from a difference of three in the last place in the
coefficient of 7,7%4, which represents the error of the
numerical integrations, (35) agrees with (30).

It is shown in Appendix C that the lowest-order
corrections to #y, due to ‘‘non-pair” processes, the
simplest of which is a three-plasmon ‘‘vacuum fluctua-
tion” process, are of order unity and higher. Hence,
the term of order unity is not significant either in
Foldy’s theory or in ours.

4. INTERMEDIATE DENSITY

The high-density expansion (30) was derived under
the assumption 7:<<1. Even when this condition is
satisfied the expansion is most probably asymptotic
rather than convergent, and hence gives no information
about the behavior of the ground-state energy at
intermediate densities. Our variational method is not
subject to this limitation, although one has to resort to
a direct numerical solution of the variational integral

7 D. J. Thouless, T%he Quantum Mechanics of Many-Body
Systems (Academic Press Inc., New York, 1961), pp. 144 fi.

18 The unperturbed ground-state energy Fy(0) is, of course,
zero for the Bose gas.
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results described below show that (30) is already in
error by 49, at r,=0.1 and by 409, at r,=1. In the
opposite limit of low density (r,>1) the potential
energy dominates the kinetic energy and, as was
pointed out by Foldy, the ground state is a crystal
with energy!®

wuo=—1.792r;"142.65r,7324-0 (r,72). (36)

The domain of validity of this expansion, estimated by
requiring that the second term be less than 109, of
the first, is 7,2200. There is thus a large intermediate
range of 7, for which neither the high- nor the low-
density expansion is useful. This range can be at least
partially spanned by our variational method, which is
exact in the high-density limit and should, therefore,
remain accurate up to intermediate densities.

The variational integral equation (10) can be solved
numerically by iteration, the new approximation
gD being obtained by substitution of g'? for g in the
evaluation of the integrals (1— f), 41, 72, and 43. The
numerical calculations leading to the results presented
here were performed on an IBM 1620 computer; for
each value of 7, the iteration was continued until two
successive approximations to #q, calculated by Eq. (7),
differed by less than 19). For the smallest values
of 7, the iteration was started with a modification®
of the Bogoliubov approximation g® [Eq. (11)] and
for larger 7, it was started with an approximate g
obtained by extrapolation of the solutions for smaller
values of 7,. The logarithmic singularities of the
integrands of 7, and 72 [Eq. (8)] at p=9" had to be
treated carefully in evaluating the integrals numerically;
the method employed is described in Appendix D.
Difficulties with convergence of the iterative process
were encountered for 7,>3, but it was possible to
secure convergence up to 7,= 10 by a minor modification
of the algorithm.?! Convergence again failed for »,>10.

19 The leading term is the Madelung energy of Wigner’s electron
crystal [E. P. Wigner, Phys. Rev. 46, 1002 (1934)7], and the
second is the zero-point energy [Rosemary Coldwell-Horsfall and
A. A. Maradudin, J. Math. Phys. 1, 395 (1960); W. J. Carr,
Jr., Phys. Rev. 122, 1437 (1961)]. It was shown by Wigner
that the effects of statistics first enter in overlap terms of order
exp(—constr/2),

® Since the integrals (12) diverge when g is replaced by g, it
is necessary to modify (11) at low momentum when using it to
start the iterative process. The subroutine for the evaluation of
the integrals (12) implicitly assumed the integrands to vanish at
p=0, as is indeed the case for the correct solution g, and indeed
already for the first approximation gV (see Appendix A). This is
equivalent to modifying g® at low momentum so that the first

approximations to (12) converge.
% The integral equation (10) can be written symbolically as

£= EF(g ):
where § denotes a certain inhomogeneous and highly nonlinear
functional defined by (8) and the right side of (10). The iteration
algorithm employed for small values of 7, was
gD =g (g).

This process converges for r,<3, but for r,>3 the successive
approximations oscillate in an undamped fashion. It was possible
to secure converge in the region 3 <r, <10 using the modified

algorithm
¢ = (1/2)[gD 45 (s@)].
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F16. 1. Ground-state energy.

Although it might have been possible to obtain solutions
in this low-density region by further refinements of the
iteration algorithm, this was not attempted since our
variational method cannot be expected to retain
accuracy there; a crystalline wavefunction would be
more appropriate for low-density calculations.

The computed values of the ground-state energy
and the condensed fraction f are given in Table I and
Figs. 1 and 2. One notes that the energy calculated

TasBLE I. Ground-state energy and condensed fraction.

7s #o (Ry) f
0.01 —24.6 0.995
0.03 —10.5 0.991
0.10 —4.05 0.983
0.30 —1.65 0.971
1.00 —0.582 0.956
3.00 —-0.211 0.945
10.00 —0.0666 0.937

o7
f ol — F16. 2. Condensed
| . fraction.
KeJ| A 1.0 10

from the low-density expansion (36) (the dashed line
in Fig. 1) lies lower than that given by our variational
method when 7,>35; hence the transition into Wigner’s
electron crystal probably takes place at 7,~35.22 The
condensed fraction f displays a marked insensitivity
to the density, only falling from 1 to 0.94 as 7, varies
from O to 10; this is to be contrasted with what (19)
would predict were it to remain valid up to intermediate
values of 7,. The momentum distribution function?

n(k)=¢*(&)/[1—¢*(%)], 37)
the mean number of particles with momentum k, and
2 Note, however, that this estimate is rather uncertain due to

the poor convergence of (36) at r.=35.
% See Eq. (1.32).
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the pair distribution function D(r) [Egs. (B1) and
(BS)], the relative probability of finding two particles
with a separation 7, were also calculated numerically
for 7,=0.1, 1, and 10, and are plotted in Figs. 3 and 4.
The salient feature of the momentum distributions is
the increase in the high-momentum components with
decreasing density (increasing 7,); the pair distribution
functions show the outward displacement of charge
responsible for screening of the Coulomb interaction,
and the increasing effectiveness of this screening with
decreasing density.

5. DISCUSSION

By use of a variational method based on a trial
ground state involving pair correlations, we have
obtained the leading two terms of the high-density

n(k)

F16. 3. Momentum distribution functions.

expansion for the ground-state energy [Eq. (30)] as
well as a numerical upper bound (Table I and Fig. 1)
valid both at high and intermediate densities. This is to
be compared with Foldy’s application of the Bogoliubov
method, which only gives the first term of the high-
density expansion correctly and is not applicable at
intermediate densities.

We have not examined the excitation spectrum since
the excitation energies in the pair theory [Eq. (1.37)]
do not satisfy a variational theorem and are hence less
accurate than the ground-state energy. Foldy has

T
1.0F e S ]
8 /"/// ]
8 S/ — =0l
o 7/ L= F o
/ s 1G. 4. Pair distribution
6 f— re=10 N functions.
S
/
4L -
i . J
[¢] !
/3
Py
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already shown that the low excitations at high density
are plasmons in the Bologiubov approximation, and we
are not able to improve on his expression?* for the
plasmon dispersion relation.

It might be instructive if the high-density expansion
(30) could be obtained independently by a diagram-
summation method along the lines of the treatment of
the high-density electron gas due to Gell-Mann and

1815

Brueckner.? This might, however, be difficult, since all
terms (even the first) in the high-density expansion

are nontrivial in the Bose case, as was pointed out by
Foldy.
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APPENDIX A. ASYMPTOTIC BEHAVIOR OF THE INTEGRALS i; AND i,

The integrals 412 and 5@ [Eq. (15)] are transformed into the forms

510 ()= 3X3nty G / In
0

150 (p) =5 X3 Wi~y 3“?/ In
0

1+«

dx

1—zx

(141 4x4)1/2’
14+« ; (A1)

[ 1+1ptat
w(1+1pt)

- pzx:ldx

by the substitution p’ — px. For p<<1, the terms involving p* or p? in both integrands may be dropped; the low-
momentum approximation (16) then follows from the formula?

0

142
/ xs—l 11’1 —_
0

1—x

dx=ms! tan(3ws),

—1<Res<1 (A2)

upon letting s — 0. For p>>1 the dominant contribution to the integrals comes from x < p~<1 where the logarithm
may be replaced by 2x. Then the substitution (1/ 4)p4x4=y4 gives

31 © 4/3) 41y 314
(D)= @/ / o

+ 2y
(Ayhyr

o 1
2 () = (4/3) I / [
0

where K is the complete elliptic integral of the first
kind?; substitution of the numerical values gives (16).
In order to extend (16) to the general case of ¢; and
is [g instead of g©® in (8)] we note, as in obtaining
(A3), that the dominant contribution to the integrals
41 and 145 for large p comes from the region p’<<p where
the logarithms in (8) may be replaced by 2p’/p, so that

in(p) —— 2X3 iy 31 / P @D e,
1—g*(#) (Ad)
g*(p")
ia((p) —— 2X 3 imtr o / P =1,
=& (")

The relationship between the condensed fraction f
[Eq. (8)] and the asymptotic behavior of 75 proved
useful as a check on the numerical calculations for the
intermediate-density region [Sec. 4 and Appendix D].

2 Equation (8) of reference 1.

25 T'ables of Inlegral Transforms, edited by A. Frdélyi (McGl aw-
Hill Book Company, Inc., New York, 1954), Vol. I, p. 316,
Eq. (24).

(4/3)1/471.—1,,33/4K (2—1/2)’

(A3)

—2y2}dy=%<4/3)1/47r~1r£'41<<z—1/2>,

In the opposite limit of low momentum the dominant
contributions come from p”>>p where the logarithms
may be replaced by 2p/p’, giving

i1(p) = 2X 3 ey g2 / _@l—dpu
o 1=-g%(p")
o 2(P/> (AS)
is(p) e 2X 3 Wiy Hlip? / B gy,
o 1—g2(p")

Equations (AS5) fail when g is replaced by g© since the
integrals then diverge; the method used above in
obtaining the low-momentum behavior (16) of ;@
and 75 shows that these functions are linear in p,
rather than quadratic, for small p. But (1—g®)—2
diverges only like (p')~Y2 as p’ — 0 [see Eq. (18)] so
that (AS) is correct in first approximation and presum-
ably also in higher approximations.

APPENDIX B. ASYMPTOTIC BEHAVIOR OF THE
PAIR CORRELATION FUNCTION

The pair distribution function D(r) for our varia-
tional ground state is given by Eq. (1.28); we define
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the pair correlation function x(r) by

x(r)=D(r)—1. (B1)

The potential energy per particle of the ground state
can be expressed in terms of x(7) by

Va/n=1o / () (e/r)ébr. (B2)

x(r) occurs in (B2) instead of D(r) because of the
compensation of the average boson charge by the
uniform background; the infinite term with ¢q=0
omitted from (1) can be written in coordinate space in
the form %p /" (¢®/7)d*r when particle-number conserva-
tion is taken into account.

Introducing the dimensionless quantities (5) and a
dimensionless distance

£= (4mpe®)'*r (B3)

and performing the angular integrations, one finds

0

vo= (/) (Vo/m) = 312 2 / XD, (B4)

0

where, according to (B1) and (1.28),
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x(&)=—=2f[/1(H)— f( T+ [2(O+f22(8),

S1(§)=2X 3 Uig—1y Si4g1 / ¢@) p sin(£p)dp, 3
o 1=¢g%(p) (BS)
o 2
f2(§)=2X3 Mgty Sag / i) p sin(£p)dp.
o 1=¢%(p)

Because of a near cancellation of the low-momentum
contributions of f; and f. to the term in x involving
Jfi— fe, it is desirable to also separately evaluate the
integral

i = f2(8)

— 23X 3ty g / s
o 14g(p)

Approximating g by g® and noting from (17) and
(22) that to lowest order in the small parameter 7,

AW =1,

B® =14 (1/2)p4,
BO—A® x (1/2) 40,0 (p) 4520 (p),
BO A =24 (1/2)pt

for all values of p, one finds after algebraic reduction

psin(ép)dp.  (B6)

(B7)

Ji(§) =3~ Wer—ly Bligt / { Q220"+ (p) 0 (0) [y sin(ép)dp,
0

po~s e [
0

1) — f2(8) ~ 3*1/47r_11’33/4$"1/ { 1— [

L ~1}p sin(p)ds, (B8)
Q32 TP ir () 4 ia® (5) T2
1P O () ig® (m]w }p e
2+3p!

Although these integrals cannot be evaluated analytically for general values of £, it is possible to determine their
asymptotic behavior both for 1<<&<r;~* and £>7,7/4. In the former case the dominant contribution comes from
p>r M where 1@ and 72 may be dropped since they are <<p* [cf. (16)7, so that

fl (E) =~ 3’1/47"—1733/45_1/” ﬂ(g)_'dﬁz % X3“1/4733145—17

o p(A+ip)2 (B9)
=3t [ [—iﬂ—— 1 |psin(eplap= s

o Ly

These asymptotic forms were evaluated by noting that since£>>1, the dominant contribution comes from p<<1
where p* may be dropped compared to unity, so that the integrals reduce to /i*p~!sin(£p)dp=n/2. The exact
asymptotic form of fi— f» in the interval 1<<&<r;~/* cannot be obtained in this way, but one estimates

2

4 . Sip,-
2(1 4";;4555]1’ sin(Ep)dpar g e P,

Fi(®) = fo(§) = 31 Mgty plag / [1~— (B10)

=2me~2t whose integrand is the same as that of (B10)
for small p but falls off less rapidly for large p. The

where « and § are positive constants of order unity, by
comparison with the integral /i*(143p%)~1p sin(&p)dp
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contributions from f,* and f,?> dominate the exponen-
tially small contribution from fi— fs in (BS), so that

x(§)=FX3- W 22 1LELr Ve (B1N)

To obtain the asymptotic behavior for £>r,~4 we
note that the dominant contributions then come from
p<Lr; 7t where 4,9 and 4, dominate p* in (B8); then
using the low-momentum approximation (16) for #;©
and 72, one finds

arsl/d

Fu(O) ~ fal®)~r 305 f 17 sin(£p)dp

0
= SI8E — a2 V08 (o AE) 3 (2 £) V2C (a1 11E) ]
~ =722 cos(ar; E), ESrsV (B12)

where the symbol ~ denotes order-of-magnitude
equality, « is a constant of order unity, and C is the
Fresnel integral

z  cost
()= / dl— 1. (B13)

0 (21,.;)1/2 2>

On the other hand, an argument analogous to that
used in obtaining (B10) shows that fi;— fs is again
negligible compared to f,* and f,% Thus, by (BS)

x (&) = r &2 (r,1*%),

where ¥ (%) is some function which is oscillatory with
wavelength ~1 and amplitude ~1 for #>>1.

Substituting (B11) into (B4), one sees that vy would
have a long-range (large £) logarithmic divergence if
(B11) were to remain valid for arbitrarily large &.
However, because of (B14) there is an effective cutoff
at E~r;V4 hence r~ry [Eq. (31)], so that the log-
arithmic divergence is replaced by a finite logarithmic
contribution to v, given by

EDr (B14)

—1/4

/ Fidg——1 o, (B15)

the logarithmic term in (30). The correlation function
x (£) is positive for £3>1 because the repulsive Coulomb
interaction displaces charge outward from a given
boson; x must accordingly be negative for ¢<1, where
the term involving fi—fs in (B5) predominates,
although our asymptotic calculation does not allow an
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investigation of this range here. This effect is evident
in the numerical results shown in Fig. 4.

APPENDIX C. “NON-PAIR” CORRECTIONS TO
THE GROUND-STATE ENERGY

We use a perturbation method analogous to that
employed in Appendix B of reference 5. The simplest
“non-pair’’ contribution to Z,/n# comes from a three-
plasmon ‘“‘vacuum fluctuation” process; this is given
by Egs. (ILB9) and (I1.B10) with »(k) given by (2)
and E(k) by (1.37). Since we are interested here in the
case of high densities, we can estimate the integral
(IL.BY) by replacing ¢ by the Bogoliubov approxima-
tion ¢©@ [corresponding to g®, Eq. (11)] provided that
the integral is convergent in this approximation. The
only singularities of the integrand occur at k=0,
k’=0, and k+k’=0; since these are all equivalent,?®
we shall restrict our attention to what happens at k=0.
The function g(kk’) can be written in the form

g(kk") = —{[1—¢*(k) J[1 —¢* (k) J[1—¢* (k4 k) ]}~
X{r(K)[1—¢ (k) ][o (k) +o (k+k)]
+r(K)[1—¢ (k) J[¢ (k) +¢ (k+ k') ]
+r(k+k)[1-¢(k+k) oK)+ (k)] (CL)

by grouping terms in (II.B10). The interaction (2)
is singular at k=0, but this is canceled by the factor
[1—¢ (k)] which is proportional to %2 for small % in the
Bogoliubov approximation [cf. (11)]. Thus, the only
singularity in g(kk’) at k=0 comes from the factor
[1—¢?(k) "2, which has a k! singularity in the
Bogoliubov approximation; the function g?(kk’) in
(ILBY) thus has, in the same approximation, a %2
singularity. But this is canceled by the phase-space
factor k% coming from d3k. Since the energy denominator
is nonvanishing everywhere,? the integrand is non-
singular at k=0, and thus also at k'=0 and k+k'=0
Since there is clearly no trouble at high momenta,?®
one concludes that the integral (I1.B9) is convergent in
the Bogoliubov approximation. Introducing the dimen-
sionless quantities (5), one then sees that the corre-
sponding contribution to #, can be written as a con-
vergent dimensionless integral of order unity, the
various factors of p and e? having canceled; thus the
correction to u, affects only the term O(1) in (30).

The next-simplest process involves- four-plasmon
“vacuum fluctuations”; its contribution to Eo/# is
given by an expression analogous to (IL.B9):

where

h(kk'k") = {[1—¢*(k) J[1—¢* (k) J[1— (k") J[1—¢? (k+k'+k") ]}~/2

hz(kk/k//)
i(2m) / / / PREH PR, (c2)
E(k)+EXK)+EK")+Ek+kK+K’)
X X A(qq'q"|kk'k"")¢(q)o(q)»(q+4q"), (C3)

qq’q”’

% The integrand is symmetric under permutations of the set {k, k', —k—k'}.
% In the Bogoliubov approximation, E(k) approaches the plasma frequency (4mpe?)V2 as k— 0 [see Egs. (8) and (9) of reference 17.
28 Because of (6), the integrand falls off very rapidly at high momenta.
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the definition of the A function and the meaning of the
primed integration being the obvious generalizations of
their meanings in (II.B9) and (I1.B10). Introducing the
dimensionless quantities (5) as before, one concludes
that the corresponding contribution to #, is equal to
7% times a dimensionless integral. However, this
integral is in fact divergent, since the term »(q4q’’)
introduces a (q-+q'’)~* singularity in A4® which is not
cancelled by any of the factors involving ¢ and is only
reduced to a (q4-q"")~? singularity by inclusion of the
phase-space factor. This divergence is an indication of
the fact that the “‘quartet” part of the Hamiltonian
(IL.B3) actually contributes to #, in lower order than
the order 7,¥* suggested by a naive dimensional argu-
ment. Nevertheless, it seems quite unlikely that the
contribution is larger than O(1), or even as large as
O(1). If we assume a low-momentum cutoff of order
rs'/* as in (12), then we obtain a contribution to #
of order

00

p 34 / p2dp=0(r,11?).
7'31/‘

pt+p’
=1

[B+C(p'—p)+D(p' —p)*1dp’

p+s
/ ' In
p—0

8
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Such a cutoff would, no doubt, be introduced if one
were to consider not merely the single second-order
diagram?® leading to (C2) but, following Gell-Mann
and Brueckner,® were to supplement it by an infinite
set of higher-order diagrams involving successive
interactions all with the same momentum transfer p.

APPENDIX D. NUMERICAL EVALUATION
OF INTEGRALS

The numerical integration subroutines used to
evaluate the integrals (7) and (8) employed Simpson’s
rule, the integrands being tabulated at intervals Ap
of 0.2 from p=0 to p=2, of 0.5 from p=2 to p=3,
and of 1 from p=35 to p=13. Although the logarithmic
singularities at p=4’ in ¢; and ¢, are integrable, they
require special treatment in a numerical evaluation.
The method adopted was to represent g(p")/[1—g2(p")]
and g2(p")/[1—g*(p’)] by quadratics in the vicinity of
p'=p, and then to use the formula

= | (e+p)[In(2p)—In|x|+ (x/2p)— 1 (x/2p)2+ - - (B+Co+Da)dx

—3

=2Bps In(2p)+3[(C+Dp) In(2p)+%p(3B+4Cp) 16*—2Bp5(Ind—1)— 2(C+Dp)8* (Ind — 1) 40 (8,6 Ins), (D1)

the parameter 6 being taken equal to the step length
used in the numerical integrations. This method
permitted 4,(p) and ¢3(p) to be calculated at the
interior points of the intervals 0<p<2, 2<p<5,
and 5K p<13 (see above); the values of 4; and i,
at the boundary points were then determined by
quadratic interpolation.® The error of these numerical
calculations was checked for the special case g=g©
[hence 71=41, 43=1s®] by comparison with an
independent calculation®! of 1 and 7,©, and found to

% The accuracy of (D1) was found to be insufficient at the point
#=0.2 because g/(1—g?) and g2/(1—g?) cannot be represented by
quadratics in a neighborhood of p’=0; hence, 7:(0.2) and 7:(0.2)
were also obtained by quadratic interpolation [note from Appendix
A that 7;(0)=42(0)=0 and that 7, and ¢, are quadratic in p for
small p7.

31 The functions 7, (p) and 72 (p) were calculated from (A1)
by numerical integration, the integrations through the singularity

be of the order of 19 ; another useful check valid even
when 7, is not small was provided by the relationship
(A4) between f and the asymptotic behavior of i»;
this relationship was found to be satisfied to within a
few percent. Since the accuracy of the numerical
integrations involved in calculating f, 7s, and %, was
even greater,’ the values of #, given in Table I should
be rigorous upper bounds to within a few percent.

at x=1 being effected by an analytic formula obtained by integra-
tion of the leading terms of the expansions of the integrands about
x=1. The accuracy of the calculations was checked by the familiar
method of doubling the step length and by comparison with the
known low- and high-momentum behavior (16).

2 This diagram is of second order only in the plasmon represen-
tation, obtained by the Bogoliubov transformation; in a free-
particle representation, the quartet Hamiltonian first contributes
in sixth order.

3 This was checked by doubling the step length.



