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Low-Energy Limit of the Photodisintegration of the Deuteron
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The exact transition amplitude for the photodisintegration of the deuteron at the zero-energy limit of the
incident vy ray is presented as a function of the electric charges and the magnetic moments of the proton,
neutron, and deuteron, the effective range for triplet #n—p scattering, and the binding energy of the deuteron.
The method used in this article is based on the theory of composite particles in quantum theory which has
been developed by Nishijima, Zimmermann, and Haag. The low-energy limit presented here is the general-
ization of the Kroll-Ruderman theorem of pion photoproduction to the problem, including a composite

particle.

I. INTRODUCTION

ISPERSION relations have been applied to the
photodisintegration of the deuteron by assuming
the analyticity of the transition amplitude as a function
of energy for a fixed difference of squares of the momen-
tum transfers of the two final nucleons.! The dispersion
relations of electric and magnetic dipole amplitudes thus
obtained have a certain low-energy limit. Therefore, it is
desirable to prove the low-energy limit theorem from
another standpoint in order to lend support to these
dispersion relations. In proving the low-energy limit
theorem, we use the theory of the composite particle
developed by Nishijima, Zimmerman, and Haag.? As a
consequence of this theory, we can derive the low-energy
limit of the photodisintegration of the deuteron for both
of the electric and magnetic dipole amplitudes, so that
we can compare the theory of the composite particle
with experiment.

The low-energy limit theorem for the Compton
scattering by a spin-1/2 particle has been proved by
several authors.® A remarkable point of this theorem is
that the structure of the target particle contributes to
the matrix element in the low-energy limit only through
its magnetic moment. Therefore, we might have a hope
that the transition amplitudes of the photodisintegra-
tion of the deuteron at the low-energy limit also can
be expressed as a function of measurable quantities such
as the electric charge and the magnetic moments.

As a preliminary, in Sec. II, we define the deuteron
operator B,(x), which is a pseudovector, and we
derive the integral representation of its one-body
Green’s function. The electromagnetic vertex function
of the deuteron and #np-d vertex function are also given.

The proof of the low-energy limit theorem is given
in Sec. III, along the lines of the proof of the Kroll-
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Ruderman theorem.* The exact transition matrix
clement at the long-wavelength limit of the incident
ray is given as a function of the electric charges and
magnetic moments of the proton, neutron, deuteron,
the effective range of the triplet n-p scattering, the
ratio of the wave function of the deuteron in the 3§
state to the D state at infinite distance, and the binding
energy of the deuteron.

In the final section we remark briefly about the
application of the low-energy limit theorem.

II. DEUTERON FIELD OPERATOR AND ITS
GREEN’S FUNCTION AND VERTEX
FUNCTIONSS

As a preparation to deriving the low-energy limit
theorem, we define the deuteron field operator based on
the theory of the composite particle and present the
integral representation of the Green’s function and the
general forms of the y-d and np-d vertex functions.

In order to describe the deuteron in a covariant
formalism, it is convenient to consider the deuteron as
a pseudovector particle whose four-vector spin function
(or polarization vector) is orthogonal to the four-
momentum vector of the deuteron

4,U,®(d)=0, 2.1)

where d, and U, (d) are the four-momentum vector
and the spin function with spin direction 4. The reason
for describing the spin function as a pseudovector
satisfying the above equation is that the deuteron is in
a triplet even state. We normalize the spin function by

U0, D=4, (2.2)
so that

(2.3)

3 dud,
2 U, (d) Uv(i)*(d) = O t+—,
i=1 M2
where M is the mass of the deuteron.

Let y.(x) be the nucleon field operator, in which «
denotes the ordinary four-component spinor label and
the two component isospinor label. In order to generate

4+ N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954);
A. Klein, Phys. Rev. 99, 998 (1955).

5 We use units of z=c=1, €?/4r=1/137, and take the scalar
product of four-vectors as a¢-b=a-b—agb,.
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PHOTODISINTEGRATION OF DEUTERON

the deuteron field out of the nucleon field operators,
we introduce the pseudovector field operator B,(x,£)
defined by®

Bu(#,8) = Ouap(0) T Wa(6+3E¥s(x—38)), (24)
where 0,,05(95) is given by
0,(3) =C (vt bo0,+cdy), (2.5)
with constant @, b, ¢, and’
C=irC. (2.6)

The constants ¢, b, and ¢ in Eq. (2.6) are to be adjusted
so that

(0] By(x,6) | d,5)70,

0,(0| B, (x,£)| d,)=0, 2.7)

where |d ) is a deuteron state with momentum d and
spin direction 7 while |0) is the vacuum state. We
shall assume that this adjustment is possible and the
first equation of (2.7) is finite. We can easily demon-
strate the usual translation relation

e -eBy(x,8)et7*=B,(x+a, £). (2.8)

In the limit £ — 0, B, behaves like a local pseudovector
field operator under a Lorentz transformation.
Due to the Lorentz covariance, the first equation of
(2.8) can be written as
id-z
(0] Bu(x,8) | d,i)= —fu?(£,d).

—_— 2.
(2)92(2do) 2 29

Using the relation (2.1) and the second equation of
(2.7), we can see that

L (ED=U2D)f(&, ¢-d), (2.10)

where f is a function only of £ and &-d since d*=— M2
Thus
lsinol f(£2, £-d)= fo=const. (2.11)

Let us define the deuteron field operator B,(x) by

“(x:E)
1513} - = B,(x), (2.12)
so that B,(x) satisfies
O] Bu(x) | d,i)= (2m)}(2do) et =U, D (d).  (2.9)

Applying the weak reflection invariance® to Eq. (2.9),
we obtain the condition that the constants a/fs, b/ fo

6 We use here the general form suggested by Nishijima and
Zimmermann. However, we shall be interested only in space-like
£ so that time ordering indicated by T is not necessary.

7C is the charge-conjugation Dirac matrix, which has the
properties C*= —C, Ct=C, C1y,C=—,7.

8 W. Pauli, Niels Bohr and the Development of Physics (McGraw-
Hill Book Company, Inc., New York, 1955), p. 30.
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and ¢/ fo in Eq. (2.6) must be real.? This leads to the
following equation for the charge conjugation of B,(x):

RcBu(x)Rg—1=B,‘*(x). (213)
For the strong reflection,® we obtain
RsB,(x)Rg'=—B,.(—x). (2.14)

By the prescription of Nishijima and Zimmermann,?
we can derive the following reduction formulae for the

deuteron:
il s )| 0= D itk
(dys AYB _(27r)3/2(2d0)”2 € z

X{0| TWa¥s- -+ Bu(x))]0), (2.152)

iU, (d)
e = | gidg

O|TYays---)|d,i) PR /e Ix K,

X{(O| T(Watn- - - B,*(%))] 0), (2.15b)
where

KIZM?‘-—DZ,

A. One-Body Green’s Function of the Deuteron
The Green’s function of the deuteron is defined by

Gon(w—y) =(T(B, (%) By*(y))o. (2.16)

The method of the derivation of the integral representa-
tions of the Green’s function given by Lehmann!
can be applied to our problem if we use the relation
(2.14) in order to relate the negative-frequency part
of the Green’s function to the positive-frequency part.
Thus, we obtain

w0

dk?

pa)\
2 (2my?

J
pr(x)=<5px— s )w; Mo+

X( () (2>a"[h>A (w569, (2.17)
T1 K")0pn—02(K e F\X;K*), .

where o; and o are weight functions which depends in
a complicated way on the possible intermediate states
and m is a nucleon mass.

B. v-d Vertex Functions

The electromagnetic vertex function of the deuteron
is defined by

(T(B.(%)B\*(y)Au(2)))o

=—e/d£/d"7/d§' va’(x—f)AV’N;u’(E_{;§_n)

X G, (n—y)Du'p(i'—Z), (2'18)

9 We assume that the limiting process of ¢ in (2.11) and (2.12)
is taken on a space-like surface. Then, what actually is shown by
weak reflection is that the phases of these three constants are
equal and opposite of the phase of U. If we choose a real spin
function U, therefore, the statement in the text follows.

10 H, Tehmann, Nuovo cimento 11, 342 (1954).
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where A, is the electromagnetic field operator and
Dyru(f—2) is defined by

Du’u(f_z) = (T(An’ (f)A#(z)»O-

Takahashi! has shown that in order to derive the
generalized Ward’s identity for quantum electro-
dynamics it is sufficient to assume

[ (), 7o(x") 16 (w0 —w0") = €8 (w— )5 (14 73) (),

which is actually satisfied in the usual case of minimal
electromagnetic interaction. Also in a certain class of
the strong interactions,

L/ (), fo(x") 16 (wo— o) = €8 (x— ") (1+73) f (),
(yo+my (x)= f(x),
will be satisfied. We will assume that in our case Eq.

(2.19) and Eq. (2.20) for the nucleon field are satisfied.
By means of this equation and the definition of the

(2.19)

(2.20)
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deuteron field B,(x), it is not difficult to prove the
corresponding equation for B,(x):

[Bu(2), 70 (%) 16 (50— 00") =8 (x— ") B, ().  (2.21)
by following the same procedure as Takahashi, we
obtain the generalized Ward’s identity for the electro-
magnetic vertex function of the deuteron!®:

Gv)\ (d’) - Gy)\ (d)
= —z(d’-— d)qur (d,)AP')';M (d/ 5 d)G)‘I)\ (d). (2.22)
Using Eq. (2.13) and the invariance of the theory
under charge conjugation, we obtain

(T (B, (%) B* () Au(2)))o=—(T(Br(y) B,* (%) 44(2)))o.

The above relation and the definition of the vertex
function A, Eq. (2.18), give the condition:

fxv)\;n(d,; d): _A)\y;“(_d; —d,). (2.23)
The most general form of Ay, is
Arkm (d/;d) = i[ﬁ,,)\ (d+ d/)u)‘l"*"ar)\ (d/_d)u>\2+ {Bm (d,'“d)k_ ’SM (d/ - d)v}>\3+ {5vu (d'—d)x+5xy (d/—d),,})u
+ {61';4 (d,+d))\— 6)\;: (d,+d)v})\5+ {6144 (dl+d))\+6)\u (d/+d)v})\6+ (dvd)\_}“dvld)\’) (d/-l-d),)w
+ (ddr—d,/d\") (@' +d) s+ (dudr—-d)/d)) (@' —d)phoF (dudr—d,/d)) (&' —d) 1o
+([dd+d,)/d\) (d'+d) i+ (dodr'—d)'d) (@' +d) i+ (ddh'+d)dr) (& — d) s
+ (dvd)\/_ dv,d)\) (d,_ d)uxﬂ_—_], (2.24)

where\; (i=1- - -14) are functions of 42, d"? and (d'—d)2.
Eq. (2.23) implies that =1, 3, 6, 7, 10, 11 and 14 are
even functions with respect to the interchange of d? and
d’? while the other N’s are odd functions. By using the
generalized Ward’s identity (2.22), we obtain a certain
relation among the various A’s. Especially in the limit
d*— —M?, d?— — M? and (d'—d)?— 0, we obtain
— M2 —M2 0)=

M (=20, —40%, 0)=1, (2.250)

Ne(— M2, —M?,0)=13.

For the lowest order of the electromagnetic interaction,
we obtain

_ U@
" (2m)* (245240}

eUd=d) ap . (d ;).

This relation gives us the value of A on the mass shell
ie.,
>\3(—MZ) — M, 0)= (M/m)/“LD}

>\11(_M27 _M27 0)= '—‘Q/Z\/lo:

where pp is the magnetic moment of the deuteron in
units of the nuclear Bohr magneton and Q is the
quadrupole moment.

(2.25b)
(2.25¢)

11'Y. Takahashi, Nuovo cimento 6, 371 (1957); K. Nishijima,
Phys. Rev. 119, 485 (1960). ‘

C. np-d Vertex Function'?
The np-d vertex function Q,,.5(£; ) is defined by

(Tl () B
— / at / dn / 08 (S8 (5= E))aar (S¥' (y=1))sp

Xsarg (§=55 =)Dy (§—2), (2.26)

where Sp'(x) is a nucleon one-body Green’s function
which is defined by

(S#' (@=3))as=(T Q)P (3)))o.

Interchanging & and y in Eq. (2.26), we obtain the
following relation by the definition of the T product:

Q& m)=—"(n; &), (2.27)

which is a statement of the generalized Pauli principle
in this formulation. The Fourier transform of ©,(£;7)
has, in general, the following form:

0(2',0)=[2+(0)0s@ (¥, 0)Z4 (B)+2_($))e, (', )
X2 OGP0 0
+2_(0)w® (', p)Z-(p)]e,
2y (p)=[Fiv- p+ (= p)2]/2(—p?)22,
!2 The Ward identity for the composite particle is discussed by
Nishijima [K. Nishijima, Phys. Rev. 122, 298 (1961)].
18 This vertex function was investigated by Blankenbecler and

Cook [R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745
(1960)].
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where w,'? (=0, 1, 2, and 3) is given by
w0, (p,p)=17.a?(p'%, p%, (p+1)%)
(?l'—P)v
2m

(' +p)

+

b, 1%, (p+2')%)

+ O, p2, (p+2)D).  (2.29)

The relation (2.27), the Pauli principle, implies that
a® and b© are even functions under the interchange of
p and p’ while 6@ is an odd function.

In order to see the magnitudes of the constants ¢©®
and 5@ on the mass shell, that is, when — p?= — p”?=m?
and — (p+p")?=M?, let us consider the matrix element

i) / dx e +(p| 1(2) | d),

where

= (o+m)y.

By using the reduction formulas and the definition of
the np-d vertex function, we obtain

a(y) / dx ' <(p| f(2)|d)

m 1/2
= 2 4 ’_.d —
@roots )[(Zw)SPOZdO:I
- U
Xd(p)[i'y-Ua<°)+@———1i)——b(°)}(91z(p’), (2.30>
2m

These constants ¢©@ and 5@ on the mass shell in the
form of (2.30) have already been obtained from the
deuteron pole for np-scattering.! Here we quote only

m2
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p

F16. 1. Feynman diagram for the photodisintegration
of the deuteron.

the results:
4O (=, —m, — M) = AT (1-+a),
O (—m2, —m?, — M2)=B23(m?/y)Ta,
[ 8 (v/m) jlm
(1+202)1—py)d

where y= (mB)Y2 (B is the binding energy of the
deuteron), p is the effective range of np scattering, and
V2a is the ratio of the amplitude of the 35 state wave
function of the deuteron to that of tue 3D state at
infinity."

(2.31)

III. LOW-ENERGY LIMIT THEOREM OF THE
PHOTODISINTEGRATION OF
THE DEUTERON
The transition matrix element for photodisintegration
of the deuteron can be expressed in terms of reduction
formulas as

1/2
(op'| le,d>=—i[ ] euU(d)ia(p)5(p") / g it ki ki dydydzady

(2m)8(2d,) (2k0) popo’

XS ()05 (WEKLT W (@5 (0)B*(2) ju ()0 (3.1)

§= ('Y' a+m):

where ¢, and U, are the polarization vectors of the incident photon and of the deuteron, respectively, and p, P,
k, and d are four-momentum vectors of the final nucleons, of the incident photon, and of the deuteron, respectively.

Let us introduce and external electromagnetic potential, 4°. Then the field operators ¥ and B, deviate from the
case of no external electromagnetic potential, so that these field operators are functionals of A Let us denote
these functional operators and Green’s functions by bold letters: 4, B, Sy, etc. The electromagnetic vertex function
of the deuteron, defined by Eq. (2.18), can be written in the lowest order approximation of the electromagnetic
interaction, using the functional derivative of the Green’s functions, as

3.2)

G,x(x-—y):l =e/d£[dn G (3= E)Asnriu (=75 r—1)Gan (=)

[Mu”(r)

14 This constant was calculated by Wong and by Blankenbecler and Cook. D. Y. Wong, Phys. Rev. Letters 2, 406 (1959).

A®>0
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Similarly, we obtain the electromagnetic vertex function of the nucleon, T',:

SF'<x—y>] e f pr / dn ¥ (5= BT (=7 r—n)S¥’ (1—9). (3.3)

[6A ,i ()

A0

It is well known that the Fourier transform of I'y, must have the following form:

Lu(',0) =24 ()@ (0",0)2+ () FZ- (007 (#',0)24 () + 24 (p)0® (2, £)Z- () +2-(p)0® (#',2)Z-(p) ],  (3.4)

where

B D) =100 @, (8= D)L — )./ 2T 2, = DI L = P 2O @, =), B.5)
with
pO (=, —2, 0) =} (1475,
p@ (—m?, —m?, 0)=nt4n"7s, (3.6)
1= =3[n,En.],

1, and 7, being the anomalous magnetic moments of the proton and neutron, respectively.!®
Using this method, the vacuum expectation value of Eq. (3.1) can be written as

6
<T(xl/(x)w(y)By*(Z)J'y(r))>o=[iaAe IO BA |

K f) A0

—— / gt / dn / ds“[aAi(r){SF’(x—S)SF’(y"n)ﬂw(E—s“;n—s‘)Gw(s“"—Z)] G

A0
Performing the functional derivative and using Eqgs. (3.2) and (3.3), we obtain

My =Tu(p, p—k)Sr (p—E)Q(p—k, p)+(p, p'—R)S¥'" (' =BT (p', p'— )

+QV' (P:Pl)GV'V” (d+k)AV"V;M(d+k7 d)+ C‘C}"’ (pyplyd7k); (3-8)
where 91 is defined by
2

(2m)8(2d) (2k0) popd’

1/2
(o.0'| Tk, d)= (21r)45(1>+1>’-d~k)i[ ] exU () (9) 25 (') [ s, (3.9)
and X, is given by

(2 (-9 ~d— )X (9, ) = —i / d / dn / & / dr e=it-v=in-p'tieriia -r[

Q,(E—¢; n—s“)] . (3.10)
8A,¢(r) 40

Each term in Eq. (3.8) can be represented by diagrams shown in Fig. 1, which are self-explanatory.

In order to see the behavior of 9, in the low-energy limit, we must know the behavior of &,, in this limit.
To see this, let us consider (T Wa(x)¥s(v)B,*(2) ju (7))o, take a four-dimensional divergence with respect to 7 and
apply the Eqgs. (2.19) and (2.21), then we obtain!®

ad
a*r—( T Wa(@)¥s(3)B*(2) 7u(1)))o
’ = —&(T Wa (s () B,* (2)))o{5 (1 75)aards8:0 (6—7) +Baard (14+73) 550 (y— 1) —BuarBp5: (5—7) }.

Taking the Fourier transform of the above equation and applying the generalized Ward’s identity for the nucleon

15 From the charge-conjugation invariance we obtain I,(p’,p)=—Tu?(—p, —p’), which implies that p©® and @ are symmetric with
respect to p? and p"2 while 7@ is antisymmetric. The same holds for p®, u®, and 7@ but p® 2 p®, ,® = ,4® and W 2 7@ by
changing p and p’.

16 This is the W-T equation obtained by Nishijima. See references 11 and 12.
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and the deuteron, we obtain

__k”fe—ip.x—«ip'.y+ik.r+id.2dxdydzdrl:6A ) fdffdﬂ/df Sﬁ',(x“'E)SF,()’*'W)QW(E_TI;’rl'_f)Gv’v(g"_Z)}
w7

= (2m)48(p+p' —d—k)e[ — ik (1+73)SF (P)Tu(p, p—R)SF (p— k) (p—k, p')SF'" ()G, (d)

—ikuSE (D) (P, o' = R)SF'T (P’ = BT (P, p'—R)SE' T (p')Gors(d) = ikuS¥ (P) R (£,0)) S ()

X Gy (A4+E)Ayrryrrru @k, d)Goror, () S (P)E (1 76)Q (p—k, §))+Qur (p, ' — ) E (1-73)
— Q0 (5,2 )}S¥' T ($)Gr1(d) ].

A®=0

Comparing the above expression with (3.7), (3.8), and (3.10), we obtain

— kR =5(1+1)R%(p—k, )+ (p, p'—R)5(1475) =2 (p,p").
Therefore,
9 9 d ]
hm R (9,0’ k,d) = { + +< )Ts:'ﬂy(ﬁ,ﬁl). (3.11)
Opu O \Opu Oy
Now let us divide the transition matrix element (3.8) into two parts:

M=

One is the Born term, 917,,3, which is the term containing the isolated pole of the one-body Green’s function in the
first three terms in Eq. (3.8) and is given by

upkp k)+ E—1'), +E—1p"),
My ® =(i‘y;,p—w pt\ =Rty 0+ p & b)6+[i—y,a+——(P ) b:|
o/ (p—k)2+m? \ 2m 2

. 104k,
X GI: { VYup— 14 }
2m

RUMS ) [

—iv'(P’-k)er:'T I R N e s
1Yy
Ryt Y m T arrtar

6 v
X { 2By 1AL — by A} +2—"—b, (3.12)
m
where the last term is added in order to make it be gauge invariant. The other term, 91,,, contains all the other
parts of the matrix element.

Then we expand My, in powers of w where w is the energy of the v ray. The Born term starts from the term
~1/w, while 917, starts from the term of zeroth power in w. Due to (3.11), the term of zeroth order in w in 91,
does not depend on k at all so that it is independent of the direction of the incident v ray k, while the term of
zeroth power in the Born term does depend on £. Therefore, we can say that the 1/w term of the Born approximation
is exact and also that the part of the Born term which approaches a constant as w — 0 and which is odd under the
operation £ — —k is exact in the limit w — 0. The former corresponds to the E1 transition while the latter corre-
sponds to the M1. The last term added to Eq. (3.12) is an even term, so that if we keep only the odd part for the
zeroth power of w in Eq. (3.11) it does not contribute at all.

Along this line, if we make in (3.12) a nonrelativistic expansion and neglect v?/m? and $2/m?, then we obtain

el
F=

g2 ) N
isira| — (1) [y bitn— 2(M/nm(e-o)(U-k>+n[(—f)[<1+a>(e-p)(U-@—-Sa(e»p)(U-p)(«-p)]

167m?

+<up—nn>{<1—2a>i[e-kaj—z»ai(e-p)m-ﬁxﬁ]}]}, (3.13)

where p is the direction of the relative momentum of
two final nucleons in the center-of-mass system while

where the matrix element i{ldicated is taken between
the two final Pauli spinors. Y is an abbreviation for the

k is the direction of the incident v ray. § is the transition
amplitude, such that the differential cross section of the
photodisintegration of the deuteron in the center-of-

mass system is
do (P
e (A ICI (3.14)
aQ 3

sum of the ordinary spin and isospin for the final state
and the average of the polarization for the initial y ray
and deuteron.

The amplitude § in Eq. (3.13) is the exact amplitude
in the long-wavelength limit of the incident y ray except
the small corrections of order of B/m.
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IV. APPLICATION

The low-energy limit derived in the previous section
is the result of the theory of composite particles and of
gauge invariance. It is interesting, therefore, to apply
this result to the #-p capture (M1 transition) in order
to compare the theory with experiment.

As we have shown,! the effect of rescattering in the
n-p state can be obtained as a function of the #-p phase
shift by using unitarity. The low-energy limit obtained
in the previous section and the enhancement factor

SAKITA

due to the rescattering effect will give a good approxima-
tion for the M1 amplitude and allows comparison with
experiment. This subject has been discussed in detail
in reference 1.
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G Parity and the Interactions of Heavy Mesons*
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Some implications of the G parity of heavy mesons are discussed. It is pointed out that the G parity of a
meson may determine whether it can contribute to a pole term in the nucleon-nucleon scattering amplitude.
Since G parity may not be conserved in the decays of some heavy mesons, G must be determined indirectly.
One method is to measure the charge parity of the decay products of a neutral meson, a quantity which
determines G is the isospin of the meson is known. Selection rules for the decay of neutral and charged
mesons are given. Results are applied to the ¢ and # mesons.

ECENTLY a number of heavy mesons of strange-
ness zero have been discovered, the w, p, 7, and

¢! and there may be more to come. Four quantum
numbers are required to specify such mesons (in addi-
tion to the strangeness which is zero): the spin J,
parity P, isospin T, and G parity. We wish to point out
some consequences of the G parity for the interactions
of these mesons with nucleons, and to emphasize that
it may not always be trivial to measure G. We illustrate
the problem by considering the ¢ and » mesons and
mention some (admittedly difficult) experiments which
can distinguish between the alternative possibilities.
The G parity of # pions is G=(—1)" Thus, if a
meson decays into pions with conservation of G, its G
parity is determined simply by counting the number
of final-state pions. However, as has been discussed by
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Feld? and others, G may not be conserved in the decay
of these mesons because of coupling to the electro-
magnetic field. Despite this fact, if the interaction
which causes the decay is invariant under charge con-
jugation C, then the properties of the decay products
under C can be used to obtain the G parity of the
meson. In the following, we consider only decays with
lifetimes which are very short compared to typical
weak interaction lifetimes and assume that P and C
are conserved.

Before discussing the measurement of G, we shall
point out how the meson G parity affects its interactions
with nucleons. If the interaction is linear in the meson
field, the meson should have the same quantum num-
bers as a bound state of a nucleon-antinucleon pair.
The parity and G parity of such a pair are?

P:_(_1>L’ G= (_1)S+T+L; (1)

where S, T, and L are the spin, isospin, and orbital
angular momentum of the pair. For neutral mesons
(including the neutral members of multiplets), G and
C are related by

(2)

From (1) and (2), we obtain for neutral mesons which
interact linearly with nucleons the following relations

G=C(—1)7.
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