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Application of Dispersion Relations to the Photodisintegration of the Deuteron*
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The calculation of the matrix element of the process y+d ~ n, +p by dispersion techniques is considered.
There are twelve invariant amplitudes; the covariant form of the transition amplitude is related to the
noncovariant (Pauli matrix) form, and we further relate this to partial wave amplitudes, keeping, however,
only the dipole amplitudes. The. Born terms of the dipole amplitudes are derived, and the dispersion rela-
tions for the dipole amplitudes are written down and solved in a low-energy approximation in which the
e-p 6nal-state rescattering is taken into account, but no other higher-order effects. In an Appendix these
calculations are performed directly in the nonrelativistic limit to illustrate the essential simplicity of the
technique. No light is shed on the well-known discrepancy between theory and experiment for the threshold
3f 1 amplitude; the nearest (anomalous) singularities, at least, will have to be included in order for the
dispersion calculation to be sufficiently accurate. But we remark that the form of the amplitude implies a
correlation between the threshold value of the amplitude and its energy dependence, a correlation that
would be interesting to check experimentally.

1. INTRODUCTION
'
ANY theoretical studies of the photodisintegra-

tion of the deuteron have been made since
Bethe and Peierls gave their quantum mechanical
calculation of the electric dipole transition. These
calculations, however, are based on nonrelativistic
quantum mechanics, and an electromagnetic interaction
which includes the phenomenological magnetic moment
of the nucleon. We want to show here a diferent
approach from the usual one, namely, through the
application of relativistic dispersion relations to this
process.

Chew et al.' applied relativistic dispersion relations at
6xed momentum transfer to the photoproduction of a
m meson from a nucleon. Our approach to our problem
is similar, except that we use the dispersion relation
in energy at a fixed digerertce of the momentum trans-
fers (i.e., the difference between squares of the momen-
tum transfers of the photon to the proton and to the
neutron), in order to have all poles appear explicitly in
the dispersion relation. The situation is that the
momentum transfer between the photon and, say,
the proton, is the momentum of the exchanged proton
in the one-proton pole diagram I see Fig. 1(c)];if the
y-p momentum transfer were held fixed, the one-
proton pole would not appear explicitly in the dispersion
relation. Our dispersion relation is of course equally as

valid as the fixed momentum transfer dispersion relation
if the amplitude is simultaneously analytic in both
energy and momentum transfer, i.e., if the Mandelstam
representation' for our process is valid.

Our treatment, as remarked above, is in the same
spirit as Chew et u/. ' We limit ourselves to low energies
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FIG. |.Diagrams for the process p+d —+ n+p which have the
nearest singularities: (a) Deuteron pole and elastic cut; (b)
inelastic cut; (c) one-nucleon cross poles; (d) n —111' crossed cuts.
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and neglect all except the dipole amplitudes. Then, the
use of the dispersion relation at just one momentum
transfer suf5ces; the obvious choice is zero, i.e., photo-
production at 90', for then, for example, there is no
unphysical region for the final state.

In order to form and solve the dispersion relations,
we use physical and invariant principles as much as
possible. We give in Sec. 2 these kinematical considera-
tions as a preliminary. The approximate expressions
for magnetic dipole (M1) and electric dipole (E1)
are given.

In Sec. 3 we give the dispersion relations which
will be used in later sections. In this dispersion relation
approach the .Born terms can. be calculated as the
contributions of isolated poles. For these, we must know
the various vertex parts, induding the deuteron-
neutron-proton vertex part; this latter is calculated in

Appendix A from the deuteron pole of the e-p scattering.
The dispersion relations thus obtained contain disper-

sion integrals which as usual run over both positive and
negative energies. The imaginary part of the amplitude
for negative energies is related not only to the process
of antiproton absorption on the deuteron but also to the
structure of the deuteron, which enters through the
anomalous singularities of the ep-d vertex as a function
of mass of one of the nucleons. However, we shall

neglect these complications and remain only the
isolated pole terms (Born terms). The imaginary
amplitudes at positive energies larger than the threshold
of the m-meson production are determined by inelastic
processes as well as by elastic scattering in the final

state. %e shall neglect these inelastic processes in the
final state since we apply our dispersion relations only
to the low-energy photodisintegration of the deuteron.

The most important amplitudes of the photodis-
integration at low energies are magnetic dipole and
electric dipole. In Sec. 4 we derive the formulas for
these amplitudes; these are functions of the e-p scatter-
ing phase shifts in the 'So state for M1, and in the 'P
states for Ei. We use the effective-range formula for
the 'So phase shift to estimate the value of the M1
amplitude.

In the final section we give a discussion and criticism
of this calculation. The correction due to the effect of
the singularities at negative energies is discussed.

2. KINEMATICAL CONSIDERATIONS

In this section we set forth some kinematical prelimi-
naries which we need to write the transition amplitude
for the photodisintegration of the deuteron in a form
suitable for relativistic dispersion relations.

The transition matrix element, in general, is propor-
tional to the polarization vectors of photon and
deuteron, which are denoted by e„and U„, respectively.
We treat the deuteron as a pseudovector particle in
the framework of the quantum field theory, therefore,
U„ is a pseudovector while e„ is a vector. Moreover,

U„should satisfy the I,orentz condition

(2 1)

in order that the deuteron be in the triplet state in its
rest system, where d is the four-vector momentum of
deuteron. We also take e„ to satisfy the usual Lorentz
condition.

I et the four-vector momenta of the incident photon
and deuteron be denoted by k and d, respectively.
while those of the final nucleons are p and p'. Momen-
tum-energy conservation,

k+d= p+p', (2.2)

means that of these four momenta only three are
indepen. dent. We choose to consider the combinations

I= 2 (p p') Q—= 2(p+ p'), (2 3)

44 = —
q k/m.

This choice of the four-vector momenta q, Q and scalars
v, 6 is convenient because in the center-of-mass system,

q= (O, p), p= (E/m)(o,

Q= (E,O), a= —p k/m,

where p and k are the momenta of one of the outgoing
nucleons and of the incident photon, respectively, while

E and co are their energies.
The transition matrix E is defined by

5= 1+iX, (2.6)

where 5 is the scattering matrix. The transition matrix
element for this process can be written

(pr; p' I~I%)
= (2~)484(p+ p' —k —d)(m'/(2m)'2(u2WEE']4

X i4.'(p)~.p""(p,p', k, d) &pp 44p'(p')

Xe„(k)V, (d), (2.7)

where co and 8' are the energies of the initial photon and
deuteron, while E and E' are the energies of the final
nucleons, and I '(p) is the usual Dirac spinor which
satisfies the Dirac equation and is normalized

44"(y)N" (y) =8„„.
The matrix 6 is defined by

e=i~,C,

where C is a charge conjugation Dirac matrix.

(2.8)

(2.9)

as the three independent four-vectors.
The mass shell restrictions, p'=p"= —m', k'=0,

and d'= —M', mean that only two independent scalars
can be formed from other three independent vectors,
where m and 3f are the mass of nucleon and deuteron,
respectively. We choose

(2.4)
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The most general transition matrix element (2.7)
must be a function of Lorentz invariants. Three sub-
stantial further restrictions on the form of the matrix
element result if we consider, in addition, the require-
ments: (1) the generalized Pauli principle for the two
final nucleons which demands that

k„M~'=0, (2.11)

(3) invariance under space inversion.
We construct the independent convariant forms of

M&" from the four-vectors Q, q, k, and the y matrix so
as to satisfy the above conditions. The I,orentz condi-
tions for e„and U„(2.1) and the Dirac equation for the
Dirac spinors, in addition to the above conditions,
limit the number of the independent covariant forms of
Ml'" to be twelve, which are listed in Table I. If we
denote them by I g"(Q,q, k,y), where i runs from 1 to
12, we can expand M&" in terms of the I&"(i) as follows:

12

M.,~"= P I.;"(i)H,(.,a), (2.12)

where the H; are scalar functions of the two scalar
variables v and h.

The number of invariants, 12 in this case, is the
number of transitions possible, starting from a given
orbital momentum; equivalently, it is the number of
transitions in a given total angular momentum state.
For instance, consider a photon and a deuteron in a
orbital angular momentum state l; this orbital momen-
tum can be compounded with the spin of the photon
to form two multipoles: X= 1 or 1+1;each of these two
can be compounded with the spin of the deuteron to
form three total angular momentum states; and finally,
each of these six states can decay into two ep states,
i.e., into 'Jq and 'Jq if (P= (—)~ or into '(J—1)~ and
'(I+1)q if (P= (—)~+'. The same result follows if we
start with an orbital state of the neutron-proton system.
Also, since the number of orbital states per total
angular-momentum state must be equal to the number
of total angular momentum states per orbital state, we
can start in the middle and calculate 12 as the number
of y—d states per value of the total angular momentum
with a given parity (=2&&3) times the number of np
states (=2).

Since we take the electromagnetic interaction only
to first order, the transition matrix element ca,n be
split into two parts, of which one is a contribution from
the isoscalar part. of the electromagnetic interaction,
and the other is from the isovector part; these lead,
respectively, to the charge singlet state and $u the
charge triplet state uf the final nucleons. The sign in
the second column of Table I denotes the change of
each invariant under the interchange of p and p'.

$M(p, p', k,d)ej.,= [M—(p',p; k,d)e], (2.10)

(2) gauge invariance, which demands that

TABLE I. Relativistic invariant forms.

3

5
6
7

8
9

10
11
12

(1/2m')[(e U)(Q. k) —(e Q)(U k).5
(1/2m')[(e U)(q k) (e q—)(U. k)5
(1/m')[(q k)(e Q) —(e q)(Q k)7(U q)
(1/m')[(q k)(e Q) —(e q)(Q k)7'U
(1/2m)[(e U)ik (U—k)ie5
(1/4m')[(Q k)ie (e—Q)i%5(U k)
(1/4me)[(q k)ie (e—q)ik5(U k)
(1/2m')[(Q k)ie —(e Q)i.k5(U q)
(1/2m')[(q. k)ie —(e q)ik5(U q)
(1/2m')[-', (eU—Ue)(Q k) —$(kU —Uk)(Q e)5
(1/2m')P, (eU Ue)—(q k) —-', (kU—Uk)(q e)7
(1/2m)e„,p,key, ice„U„

Sign

Since 5 changes to —6 upon interchanging p and p', the
generalized Pauli principle demands that if the sign
listed is +, the isoscalar part of H'"' must be a sym-
metric function with respect to 6 whereas the isovector
part must be antisymmetric, while the opposite holds
if the sign listed is —.

The standard invariance requirements and symmetry
considerations have now been exhausted but one general
principle still remains unexploited, the unitarity of the
S matrix. It is well known that for the photodisintegra-
tion of the deuteron, unitarity implies that the phase
of the production amplitude in a single partial wave is
the scattering phase shift of the two-nucleon final state
(this is known as Watson's theorem in case of the
photoproduction of m meson). The above decomposition
of 24 parts of H (12 each for isoscalar and isovector),
is not, however, an angular-momentum eigensta, te
expansion. In order to apply unitarity, it is necessary
to find the relation between the amplitudes H&" and
eigenamplitudes (partial waves).

As the first step we write the amplitude in terms of
Pauli, instead of Dirac, matrices. The photodisintegra-
tion amplitude 5 is defined so that the differential cross
section for disintegration in the center-of-mass system is

d~!«=Z(p/~) I &+) I', (2.13)

(2.14)

where the X"' are 2/2 matrices which depend on the
(direction of polarization of photon and deuteron and
on the direction of initia. l and final momentum. The
) &", hke the I(i), comprise twelve independent forms,
v hich are listed in Table II.

It is possible to relate the X~'~ and I""(i)by decompos-

where the matrix element indicated is taken between
the two final Pauli spinors and P is the abbreviation
for the sum of spin and isospin in the final state and the
average of polarizations for the initial state. It is
possible to expand F as follows:



1790 B. SAKITA AND C. J. GOEBEL

&op p m p
16«.fi =— Hi+— «H s—+ —«H p,

ms E E+m E
(2.15i)

ing the Dirac spinors to Pauli spinors. By a straight-
forward comparison, one then arrives at a set of linear
equations relating the 12 amplitudes H; to the 12
amplitudes f;:

We denote the electric and magnetic 2"-pole transition
amplitudes by Ez(«I.,), M&, (sI.;), where j is total
angular momentum and I.and 5 are the orbital angular
momentum and total spin of the final two nucleons.
Keeping only the dipole transitions, we obtain the
following formulas for the f, :

16«.fs = —(a&/m) Hs,

pop 2E m m
16«.fs ———— H4 Hii+——His, —

m' m E E
poco 2m m'

16«f4= 2Hs+ H4+ Hii
m' E+m E(E+m)

f =Mi('Si)+ (1/%2)Mi(sDi), (2.16ii)

fs= (~3/2—)Ei('I'i)+ Y~/2)Ei('I' s)

+ (1/v2)E&(sos)& (2.16iii)

(2.15ii) fi —(3——/v2) «M i ('Di)+Ei (sF'p) —(1/v3) E,('I's)

+ (1/V2)E, (sFs), (2.16i)

16~f,= (p'~/ms) H„

PM p m
16mfs= ———Hs+ Hp

m' E E+m

fs= —(5/&2)Ei (sos),
Hs, (2.15iv)

E+m
(2.15v)

fs (3/v2) M——i ('Di),

f7 0, ——

(2.16iv)

(2.16v)

(2.16vi)

(2.16vii)

16~f~ = —(PoP/2ms)Hp,

+ FI, , (2.15vi)
2m(I:+m)

(2.15vii)
fs= ( 3/2)»('Pi)+(v3/2)Ei('Ps)

+ (1/V2)E, (sFs), (2.16viii)

p E p m
16«-fs=——Hs ——«Hg +—His,

m' m E E

co EM p(d
16«fp Hp+ ———Hs «H7-

fg 2m 2m

167rf o= (p'(v/m'—E)H»,

(2.15viii) fo= —Mi('&o) —(1/v2)Mi('Di),

fip ——3M i ('Ds),

(2.15ix)
f»=Ei('I'&) 3«Mi('Ds)~

(2.15x) f 2M (iD )+M (iS )

(2.16ix)

(2.16x)

(2.16xi)

(2.16xii)

p~ p
16rfii ———Hio ——«Hii,m';:g
16«.fis ——(co/E) His,

where «= y k/
~ y ~ )

k ] .

(215x,') Continuing to neglect the higher multipole transi-
tions, we finally obtain by the help of Eqs. (2.15) and
(2.16) the following approximate expression for the2.15xis)
magnetic and electric dipole amplitudes in terms of
linear combination of functions H at 6=0:

1~-p2
Mi('Sp) —His+ —Hii

16m 8 m'

1 Mp pEo~ —3Hi —2—Hs+2H4 —Hs —Hii
16m- m' m' —6=0

1 (op E m——(2H4+Hs)+ —(2Hi —IIii)
16& m' m —8,=0

1 Mp 2 p) 2m
2FIs+ II4——

16«ms 5 m'I L'+m
IIs+ -IIii

E+m L(I~'+m)

1 pop 4 p' 3E+2m 2E+3m
Es — H:+ -(2FI4—Hs)———— Hi&'

16%m 5m
'

Sm SF.

(2.17)

(2.18a)

(2.18b)

(2.18c)

(2.18d)
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1

2

3

5
6
7
8
9

10

12

TABLE II y(z)

(e U)(e P)
(e. U)(e k)
(e j)(Ue)
(e P)(U f)(~ f)
(e P)(U f)(e.&)

(e f )(U P)(~ p)
(e p)(U k)(o' k)
(e ~)(U f)
( . )t'U &)

2(e p)(U PX&)
2(e UXp)
i(e UXk)

n= —(p k)/m, P= —(p' k)/m;

thus, they are related to v and ~ by

(3.1)

=—p(p+2y)/m. These last cuts result from the
anomalous threshold of the np-d vertex, considered as
a function of the square of the four-momentum of the
intermediate nucleon. The second pair of diagrams of
Fig. 1(d) have the same anomalous threshold.

In the present paper, we shall neglect all singularities
except the poles and the 22p rescattering cut, starting
at v=8, and will discuss the correction due to these
anomalous singularities in the final section.

In determining the pole contributions, it is convenient,
to replace v and 6 by n and p, defined by

v= (n+P)/2, 6= (n —P)/2. (3.2)

where

Ep ———3El( Po), El——v3E, ,('P,),
E2= —v3E1('P2)) and Er v2El('P2——). (2.19)

The R matrix element which was given in the previous
section Eq. (2.7) can be written as follows:

Im(E1('P2) cose+El ('F2) sine}

(tan82)Re(E1('P2)cose+El( P2)sine} (2.20a)

Im j El( P2)slue+El( P2)COSe}
= (tan8~)Re( —El('P2)sine+El('F2)cose}, (2.20b)

for El('P2) and El('F2), where 82 is a eigen phase shift
relating to 'J'2 state, and 6~ to 'F2, and e is a mixing
parameter.

3. DISPERSION RELATIONS

We shall assume that the scalar functions I/; with
fixed 6 are analytic on the entire complex v plane except
for possible singularities on the real axis. We will look
for these singularities by graphs.

First, the class of diagrams shown in Fig. 1(a) have
singularities for positive v. The first diagram, which
has a deuteron in its intermediate state, has an isolated
pole at v =0, while the others have continuous singular-
ities (branch cut) for v larger than the physical threshold
of this reduction, namely v=8, the binding energy
of the deuteron.

Second, the cia.ss of diagrams shown in Fig. 1(c)
have singularities for negative v —~h~. The first two
diagrams, which have a, one-nucleon intermediate state,
give the isolated poles at v = &6 plus continuous
singularities which start from v = vo& 6, where vo

' J. Blatt a,n(l L. Hie(lenhaIn, Phys. Rev. 24, 258 (1952).

Because of charge independence and parity conserva-
tion in nucleon-nucleon scattering there is no mixing
between triplet and singlet states, but there is mixing
between states of different orbital angular momentum,
but the same total angular momentum and parity.
We use the Blatt-Biedenharn' convention to specify
the phase shift of each angular momentum state and
the mixing, Then, by using unitarity, we arrive at

N. =e„-
(22r) '2ruE

where

27,"(p)i dx(P', r't T(f(x)j,(0))
~
d)

Xe—'" '+P, (3.3)

(P,r; P', r'~ &
~
&,d) = (22r)4&4(P+P' —&—d) .

y„ is the electromagnetic current operator and f(x) is
the nucleon current defined by

(yB+m)lP= f (3.4)

in the region of the isolated poles, we can determine the
pole terms if we know the y-p, y-r2, y-d, and rip-d
vertex functions on the mass shell.

Isolating its pole terms, we write the function
H(v, h) as

&.(~) &-(~) ~o(~)
H(p, h) = —+ + +h(v, 4), (3.6)

p+6 p —5 v

where h(v„d) is analytic in the complex v plane except.
for possible singularities on the real axis for v&8 and
volvo. We obtain 8&., 8, and Bo. which are listed in
Table III, by the help of the following vertex functions

The second term of (3.3) is a contribution from a
singularity of equal time in T product so that it is a
function of (p —k)2 and independent of P. The absorp-
tive part of (3.3) is related to H (u+ie; P) —H.(n —ie; P)
and can be calculated for its one-particle intermediate
state as the absorptive part of the pole term. The
singularity of H in the variable P can be obtained by
the symmetric property of H by interchanging p and p'.
Since the imaginary part of H on the real v axis is
obtained by

ImH(v, h) = (1/2i)LH(n+ie; P+ie) —H(n —ie; P+ie)
+H(cx ze i p+zE)H(cx '2e) p ze) j) (3.5)
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1
2
3

5
6
7
8
9

10
11
12

—p+A+ ', + (e—/2m)p+jB—g+A+ —,'+ (tr/2m)v+ jB—(m/2'�)B—( m/2n)A —(p+/2)D+ (6/2m)58
v+LA+ (n/2m)Ly'/m'+n/m)8 j182

P—(n/2m)v+jB—[-;—(n/2m) p+]8
~+8

—g+A+ (6/2m)p, +8
—(v+A+~+8)—@+LA+(3a/2m+ad'/m')Bj

—(mn /+10)8——,'(ilf m)poB
(m/n)8
(m/n)A—-', (M/m)pg)A
(2m'Q/+10)A

TABLE III. Born terms (charge singlet). ' De6ning BR and b; by

M, ('Sp) = (1/167r) (rp/E)OR, (3.13)

E;= (p/8prE) 8;, (3.14)

we can see from Eq. (2.17), (2.18), and (3.6) that OR

and b, are analytic functions with respect to v, if we
neglect the small v dependence of E in Eq. (2.18). We
use Cauchy's integral formula to construct the disper-
sion relations for these amplitudes and obtain a set of
equations of the form

The B (» can be obtained from B+(p& by using the symmetry of A.
The charge triplet terms can be obtained by replacing y+ by g and putting
all Bo(p) to zero.

1 ImOR(v')
OR(v) =ORn+ — dv',

P —P—Z6

(3.15)

which are derived in Appendix A.

(I) y-d vertex

(O'I j„Id)=L(2pr)p2W&2W& j lUp*(d')U, (d)
XL (d+d')„&„n(k')+ (k,l„„—k„5„,)P (k')

+ (d+d')„kpk, y(k') j (3.7)

n(0) =e, P(0) =e(M/m)tr~, 7(0)=eQ/2(10)''; (3.8)

where pD is the deuteron magnetic moment in units of
nucleon Bohr magnetons and Q is the deuteron quad-
rupole moment.

(Z) y-X vertex

(p'I v. I p&
=

I m'/(2~) pL'~'1*'~(p')

XI py„f(k') —pp„,k,g(k') j~(p) (3.9)
and

f(0)=p(1+rp)e, g(0) =e(rt++rt rp)/2m,

n+= p(Vv+n. ), n =s(~. n-.), - (3.10)

where g~ and g„are the proton and neutron anomalous
magnetic moments in units of the nucleon Bohr
magn eton.

(3) re duertex-
m

~(p)(p'I f I d)
(2pr)PE

tS

, tp-(V) —7.A((d —p')')
(2pr) g2WdZZ'

(p p'). —
+ &((d—p')') «e(p') U.(d), (3 11)

2

where we assumed that 5K vanishes as v goes to infinity
in any direction in the complex v plane and we have
neglected the cut at negative energies.

Equation (3.15) is the basic equation which will be
solved in the next section.

4. SOLUTION OF THE DISPERSION RELATIONS
AT LOW ENERGY

In this section we consider the solution of the
dispersion relations for the photodisintegration of the
deuteron at low energy. Our criterion of "low energy"
is that the momentum of the incident photon is much
larger than the momentum of the outgoing nucleons;
we consider only M1 and E1 transitions, leading to
s- or p-wave rp-p states.

Ml Transition

From Table IV, we can see that there are 6ve
magnetic dipole transitions; i.e., Mr('Sp), Mr(S1),
Mr('Ds), Mr('Dr), and Mr('Dp). However, we do not
consider the last three, D-wave amplitudes; they are
proportional to p' so that we may neglect them near
threshold. Moreover, the Horn term of the amplitude
Mr('Sr) is proportional to

Epv+ p, „(M/2m) try) 3 =
—0.0233;

this is smaller by a factor of 1/500 than pv —p, „, the
corresPonding factor for Mr('Sp). P Therefore, we neglect
PMr(PSr) too, and will consider only the amPlitude
Mr('Sp).

The approximate dispersion equation for this ampli-
tude was given above by Eq. (3.15). The Born term
SP can be calculated from 8+ and J3 listed in Table
III,

where C=irsC
I
see Eq. (2.9)j and RP= e(harv

—tr„)I'. (4.1)

A (—m')~ —I'(1+n) 8 ( m')~3m'I'n/y'—

8pry/mr= n = —tan&
-(1+2n') (1—t V)-

(3.12)

The meaning of the notation in these expressions is
explained in the Appendix.

By the unitarity of the S matrix the phase of Mr('Sp)
for v)B is the phase shift of n pscattering -in the 'Sp

' It might be noted that the amplitude 3III(gSI) would vanish
completely in the absence of the n-p tensor interaction; in the
usual calculation the reason would be the orthogonality of the
initial and final '5 wavefunctions, and in the present calculation
the equality of the magnetic moments of the initial and the final
states.
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TABLE IV. Dipole transition amplitudes. we find F(p) to be

Dipole amplitude

MI('S0)
R('&o)
~i (1D,&)

Mg('Sg)
K('&o)
I'g('Pg)
&i('&e)
Mi('Dg)

)VS�

(cDe)
K('&e)

Final np state

lg
1P
1D9
'SI
3P
3P'
3jp~

D1
'D2
3P2

sinb (p)
F(p) =— 1 pa —', p'r—a-

(p'+v') v'«

y'L1+ (1—2r/a) &+prj
(4.8)

F(p) I =o=(1—~a)L1+p'a'j '.

In terms of P', we have

(4 9)

In the zero-range approximation (r=0), F(p) becomes
simply

state. This statement; is exact only for v&140 MeV;
above this energy other channels, xd or x2E, are then
open so that this simple rule does not hold anymore.
But as far as low energy is concerned, the contribution
to the dispersion integral from the high-energy region
is negligible, so we take the phase of OR to be everywhere
6, the 'Sp n-p phase shift. Therefore, our dispersion
equation becomes

e(pv —p )I" 1 " tanb(r ') ReOR(v')
alt(v) = +— dv' . (4.2)

v 7l gg v v z6

;fart=i(e UXk)o2rsrpl e(pv p—)/„16wmj

XIF(p)e"&» (4.10)

for the magnetic dipole transition amplitude. Using
this expression, we write the total cross section of the
photodisintegration of the deuteron near threshold
with the help of Eq. (2.13):

&
2w ~(e'~ pa

II
—1(~.—l -)' F'(p). (4.11)

l 3rN'l t 4rrl (1—py) (p'+y')

In the zero-range approximation (r= 0), this becomes,
using (4.9),

g g , q (
range approximation) Blatt and Weisskopf. '

Austern and Rost~ have made a careful discussion of
the numerical evaluation of the ordina, ry (i.e., non-
relativistic and nonmesonic) expression for the threshold
M1 matrix element OK„, „,„;,where OR is a "reduced"
matrix element some known constants having been
factored out. According to them, the nonmesonic
matrix element is given by the Bethe-Longmire (B-L)
approximation plus three corrections which are each
of the order of 1%, and almost cancel one another.
Deciding on best values of the singlet scattering length
a and the effective r (singlet) and p (triplet), they find

cosh(p)

—p +Y
art (p) =e"&»e(pv IJ,„)I'm—

sin5 (k) e-'& "&

, (43)
(k'+y') (k' —p')

+ee&» P (Q2

6(u)
P dk'

p (k'+y') (k' —p')

ps+ ~2

r(p) = (44)

where p, the magnitude of outgoing nucleon momentum
in the center-of-mass system, is related to v by

5Knonmeeonic ~B—i = (1 7a)/7 a (r+p)/4
=5.10—1.10=4.00(4.5)mv= p'+y'.

In order to have a unique solution of the singular
integral equation (4.2) we impose the condition that
the amplitude BR(v) is zero at infinite v. The method of 3~2] 4 (ps++2)(1+pp+~)'

I

—(»—~-)'

solving the integral equation is given by Omnes. ' The
solution is a reein with the standard result uoted in zero

In order to evaluate the integrals appearing in (4.3)
and (4.4), we use the effective range formula for the
'Sp n-P scattering phase shift 8(P)r:

in units of 10 " cm. With this is to be compared our
result in the elastic rescattering approximation )see
Eq. (4.8) above, and Eq. (B22) belowj

Setting
p cotli(p) =—a—'+-,'rp'. (4 6)

OR"= 1.—+Q r
=4.12.

y'a 1+(1—2r/a) &+yr
ppo)T(p)/mF. = e(tv p) I'e"& F—(pv), (4 &)

The experimental result is

' R. Omnes, Nuovo cimento, 8, 316 (1958).
~ J. M. Blatt and V. F. Weisskopf Theoretical N'Nclear Physics

(J. Wiley &k Sons, Inc. , New York, 1952).

OR-&. =4,18.
s N. Austern and E. Rost, Phys. Rev. 117, 1506 (1960).
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From Table IV, we can see there are five electric
dipole transition amplitudes: Ei('Pt), Ei('Ps), Et('Pi),
Ei('Es), and Ei(sFs). However, we see that the Born
term of Ei(Pr) (the spin-flip transition) is smaller

by a factor (o&/m) than the others, and, therefore, we
shall neglect it.

Defining Es, Ei, Es, and Ey by (2.19), the electric
dipole transition amplitude becomes

&i'1 02727sI e Ud Pf&+e Pd Ufs+ ePU Pd Pf4
+'«A'3, (414)

H we neglect n in the above expression, in other words
if we neglect the D-state probability of the deuteron,
and use (4.16), we obtain

agreeing with the standard result, quoted in Blatt and
Weisskopf. ~

Proceeding now to the calculation of the integral in
(4.19), we observe that the unitarity of the 8 matrix
implies

where fi, fs, f4, and fs are given by

fi= —
s (Es—Es)+ sEr

fs = '(Ei+—E-s Er)—
4
————'Bg,

(4.15)

Imbp= tan8p RCBO,

ImBy= tangly Reby,

ImBs ——tangos Re(Bs—v3 sine By),

II118f———(1/%3)sine tangos Re Bs,

(4.23)

f = ', (E E+-E ).—

Using the differential cross-section formula, (2.14), we
obtain for an unpolarized photon beam,

(do/dQ) gi ——(p/oi) (u+ b sin'e), (4.16)

where a and b are given by

o = (4/3)L I
fil'+

I fs I'j
b= s L3 I fs I'+

I
f4I'+2 «4fifs*+fif4*+fifa'

+fsf4*+fsfs*+f4fs*)] (4.17)

Using (4.15), we obtain'

~= (1/») t4IEs —Eo+ssEr I'+9IEi—Es+E~I') ~

b= (2/9)(IEQI'+3IEiI'+5IEsI' (4.18)

+(12/5) IEr I') —s~.

A set of dispersion equations for 8; (i=0, 1, 2, f)
which are defined in (3.14) are given by an equation
similar to (3.15), that is,

1 " tanhi Re(Bs—K3 sine By)
Bs(P) = hP+ — dk'

k2 p2

p' "dk' tangos sine ReBs
Br(P) = Br'

v3w p
ks ks(ks Ps ze)

(4.24)

Here we have made a subtraction at p'=0 for B~,
because B„should be zero at Ps=0. Since the coupled
term is proportional to sine, an iteration procedure is
not bad if sine is small in the entire energy region.
%e make the first iteration and obtain

where bs, 8i, and Bs are the phase shifts of zzp scattering
in the 'Po, 'P~, and 'P2 states, respectively, and e is the
mixing parameter of 'P2 and 'F2. In the above expres-
sions we have omitted terms containing the 'P2 phase
shift because it is very small compared with 82. Putting
(4.23) into (4.19) we obtain uncoupled singular integral
equations for Bo and 8~ and the following coupled
integral equations for b2 and b~.

1 " Im 8;(v')
8;= BP+— dv'

P P $6

v3 " k' tangos 8 n sine
(4.19) hs (P) BP+— dk'

2(ks++2) (ks ps ze)

The Born terms B,~ can be calculated from Table III
and we And

Bpn ——(1—2n)/mv, hP = (1+n)/mv,

hP = (1—n/5)/mv, BP= —6n/Smv. (4.20)

As a 6rst approximation we neglect the integral in
(4.19) (Born approximation). Since the imaginary part
of 8 is proportional to the corresponding final zzp-
scattering phase shift, this approximation is a neglect
of the final state interaction. Using (4.18), we obtain

a=0 b=2P (1+2n )I eI'/Sir(y +P )P (4 21)

1 " tan82 Re 82
+— dk', (4.25)

p k' —p' —ie

P tanbs sine BP.
Br(P) = hP — dk'

%3zr p k (k —p' —ze)
(4.25)

+&'
I

expl '(P)+zb'(P)3,
ps+ ~s )

i=0, 1, 2; (4.26)

These integral equations can be solved in the standard
way. The solution is given by

This agrees with the expression obtained by J. deSwart. f 3f
J.J. deSwart, thesis, University of Rochester, 1959 (unpublished) Br = +Icf expzbf (p)d
and Physica 25, 233 (1959). 7' P'+7'
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where

Ep=Ei=o,

%3 " k' sin5& bP sjne e
—'o&"&

&2=—P dk'
~s(ks ps)

y tan8~ sin& g~
P dk'

k'(k' —p')

Bi=bi,

52 8s+V3$k'hP sine sin8s e "&»g/'y'
~

8& ~,

5r= —tP'hP tangos i sjn/sly'~ h&~.

S. DISCVSSION

We have shown in detail for the process y+d —+ ri+ p
that the deuteron can be treated as an ordinary
particle. "But, in fact, the deuteron exhibits itself as
a not quite "ordinary particle" by the existence of
anomalous singularities, corresponding to an inner
structure which arises from the long range nature of the
e-p potential. Although it is clear in principle how these
singularities can be included, " in the present work we

have neglected them, keeping only the elastic rescatter-
ing cut. Thus, our result for the Afar matrix element

Kq. (4.8) depends on the '5 scattering parameters,
but not on the '5 parameters except through the binding
energy and the epd-coupling constant. '

It is due to the crudeness of our calculation in

neglecting the anomalous cuts that we cannot be said
to have shed any light on the experimental-theoretical
discrepancy in the threshold value of the M1 ampli-
tude, even though our result agrees with experiment
better than does the ordinary calculation. But we can
conclude that a dispersion calculation which does take
the nearest anomalous cut into account will agree
better with experiment than does the ordinary calcula-
tion only if the jump on the nearest anomalous cut is
exceptionally small, that is, smaller than expected from

"In this connection, compare the field theory of composite
particles developed by K. Nishijima, Phys. Rev. 111,995 (1958);
R. Haag, ibid. 118, 669 (1958);Vf. Zimmermann, Nuovo cimento
10, 597 (1958).

"The inclusion of the anomalous singularities in an effective
range potential approximation does not improve the agreement
with experiment of the threshold M1 amplitude; nor, by the way,
does it add to M" any terms of 6rst order in the eGective range
and so does not lead when expanded to first order in the eGective
range to the Bethe-Longmire formula.

Fro. 2. A part of diagram (1d) which has the nearest anomalous
singularity. (a,b,c): The Born contributions to this diagram,
which may be described as representing the eBects of (a) deuteron
structure due to the long-range part of the a-p potential, (b)
structure of the n-p 6nal state due to the long-range part of the
a-p potential, and (c) the long-range part of the meson current.
The heavier lines are off the mass shell.

the ordinary calculation. This can result if, for instance,
there is cancellation between the contributions of
Figs. 2(a), (b), and 2(c). An experimental check on our
results is in principle possible through the observation
of the energy dependence of the M1 matrix element.
The argument goes as follows.

For our process, y+d ~ n+p, we have, a,s usual,
"threshold theorems, " or better termed, "zero-energy
theorems": At zero photon energy, the matrix elements
are given exactly by Born approximation, hence in
terms of charges and magnetic moments of the particles
involved. "But to what extent is the photodisintegration
cross section above threshold related to the zero energy,
below threshold valueP In the BI case, where the final

n pstate is P wave, t-he zero-energy pole term is

dominant, and the matrix element extrapolates smoothly
across threshold; but in the 3f1 case, where the final

I-p state is 5 wave, we have a cusp as is usual with 5
waves, i.e., the slope of the matrix element is discon-
tinuous at threshold. Thus, though zero energy is only
2.2 MeV below threshold, simple extrapolation of the
M1 matrix element is nonsense. But the cusp depends
only on the final-state ('5) scattering, and, in fact,
we have the following result: The matrix element can
be written in the form

M =Mrs[1+C,k+C,k'+ ], (5.1)
's B.Sakita, following paper [Phys. Rev. 127, 1800 (1962)g.
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where M" is the solution of the dispersion relations
taking into account only the zz-p elastic rescattering,

I
i.e., Eqs. (4.i) and (4.8) or Eq. (822)j and the series

1+Cik+. represents a function without the elastic
cut, and so converges until the next branch point is
reached, at Ikl = (pP+2zzy)/m=35 MeV. It might be
remarked again that the factor 1+Cik+ contains
eGects both contained in the ordinary static calculation
Lwavefunction structure, e.g. , Figs. 2(a) and 2(b)7,
and not contained in it Lmesonic "transition moments, "
e.g. , Fig. 2(c)].

The thermal neutron capture experiment yields the
following result:

L1+Cik+C2k'+ ]i 2.z M.v=1.015. (5.2)

which is not far from unity; that is, the "distant"
effects on the matrix element are small. Now the ratio
of the third to the second term of the series in Eq. (51)
is k/E, where E is roughly the energy from which the
"distant" contributions to the matrix element come,
and is at least of the order of 40 MeV. Thus, Eq. (52)
gives us an estimation of the energy dependence of the
Mi matrix element,

3II= (1+0.015 k/B)M" for k(&40 MeV,

where 8 is the binding energy of the deuteron.
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show by comparison with (A1) that n(0) is equal to
the total charge of the deuteron:

n(0) =e. (A3)

Now let us operate with —iV~ X on the space component
of Eq. (A2) and take the limit of k —& 0, then we obtain

d' d'x ,xxXj d

P (0)= 2Mmn ——e(M/zzz) IzD, (A4)

where pD is the deuteron magnetic moment in units of
nuclear Bohr magnetons. Let us now operate V'~' —3VA, ,'
to the time component of Eq. (A2) and take the limit
of k —& 0, then we obtain

d'x (3x,'—x')p(x) d) (A5)

The operator inside is just the quadrupole moment
operator so that the above quantity is equal to

The operator inside of the above matrix element is
just the magnetic moment operator so that this can be
written

m~(d'IS
I d) =—zmnu'yu,

in the rest system of deuteron, where u and u' are the
polarization vectors of the deuteron, S is its spin
operator, and mD is the magnetic moment of deuteron.
Thus, by comparison with (A1) we find

APPENDIX A
—(2/5)'eQ, (A6)

In this appendix we derive the p —d and np dvertex-
functions.

y-d Vertex

when initial and Anal deuteron polarization are in z
direction in its rest system. In above expression Q
denote the quadrupole moment of the deuteron. Apply
the same operation to (A1), and we find

Lorentz convariance and gauge invariance determine
the following unique form for the matrix element of
the current operator between one deuteron states:

v(0) =eQ/2(1o)'

by comparing with (A6).

nP-d Vertex

(Ai)

(O'I j„ld) =
I (d+d')„b, „n(k')

L2We2We (2zr)'j&

+ (kp8„„—k„5„p)P(k')

+ (d+d')„k,k.y(k') j, (A1)
where k=d' —d.

To determine the mass-shell values of the parameters
n, P, y, let us consider the time component of

tS
~(p)(p'I fl d&

i E(2zr)'

2WEE'(2zr) ' ~-(p)~e(p') &.(d')

Lorentz invariance and the Lorentz condition for the
deuteron polarization vector N„(2.1) means that

dz&e'"'*(d'I j„(x)I d) = (2zr)'&(d' —k—d)(d'I j„ld) (A2) (p p'). —
&& zv.~((d—p')')+ &((d—p')') 6 (A8)

m
in the limit of k~0. Then the left-hand side is just
the expectation value of total charge operator which where B=irzC and A and 8 are real constants on the
should be diagonal; therefore, we can immediately mass shell.
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In order to determine the mass shell values of A and
B, we shall compute the pole terms of mp scattering by
using (AS) in perturbation theory and compare this
with the extrapolation to the pole of the actual scatter-
ing. The R matrix element of the nucleon-nucleon scat-
tering, can be written as follows:

In a general coordinate system this can be written

IDP+P')+M'3~(ae' P,P')

Popo'(2~)' '
I-(«')Z&«I f.I d&&dlfp I p&(2~)'

Xb(p —p' —d)~p(p). (A12)

where I" is given by (p+y') 2~—M2

&n'IRIPP'&=(2 )'~'(P+P' ~ ~')

XLoi4/(2o)i2popo qoqp j&p(q q; p, p'), (A9) Using (AS), we obtain

I:(P+P')'+M'j&v, v'I R
I P,P')

~'4 v' P P')

Popo'(2o)' '.
d4xe '«+'&'~'ri, ,(q')

2SE

/X) ( X

X q& a —
P

——

= (2~)'b(V+V' —P—P')~= («)~p («')~-(1)Np(1i')

m' &-
(g—g')„

iq„A+ B IP
Eq E, E,E„(2m')i2 2m i .p

(P P'). q-—
X 8' ip„A — B

I
. (A13)

2m i .p

The second term contains an equal-time anticommuta- &&& I I Pp &= ( ) (P+P
tor, which gives a 3-dimensional 5 function. Therefore,
we can integrate over x immediately and obtain a
quantity depending only on (p —q)'. In the center-of-
mass system this term depends only on momentum
transfer and is independent of the total energy. In
the center-of-mass system the first term of (A10) can
be written

m4 —~4 Z
X — T, (A 14)

(2~)i2E,Eq E„E„oi'

do./dQ=xi Tr{TT*).

In order to compare the constants A and 8 with the
e-p scattering amplitude by Eq. (A9), we decompose
the Dirac spinors on the right-hand side of this equation
into Pauli spinors. Straightforward calculation gives

N(li)L Y~+(«/~)B]~ (—li')

=(oa+I 3j(o j)—ojb/&2)o2r~/2, (A15)

P(E,1i,«)

(2n.)'E' &

~=(«)~p(p) E-(2o)'b(n-o)

(g) f s The R matrix element of e-p scattering is related to
—g(~,) f I

—
I peal

—— p ~p(p). (A10) the scattering amplitude T in the center-of-mass system
&2i, k 2 by the following equation:

&
—«If-In)(nlfpl —

p&
X 2-(2~)'b(n —1i+ «)

Ã{)—2E 16

&
—«lfp In&&nl f-I —I»

X —. (A11)

The first term of (A11) contains the deuteron as an
intermediate state so that the function F has a pole at
2E=M (M is the deuteron mass). The other term does
not contain a pole at 2B=M, and, of course, the
equal-time anticommutator term also does not. There-
fore, we obtain

where

a= —22+3(p/nP)B
b = (K2/3) (p/m)'(A+ 2B) . (A16)

here p= y/I pl and j=«/I «I. If we use the expression
(A15) in the right-hand side of Eq. (A13), each 0
connects the two final spinors and two initial spinors
separately, whereas usually, in nucleon-nucleon scatter-
ing, one takes the matrix element between initial and
final spinors for each of the two particles. So let us
reorder the legs of the Pauli spinors from ( )
( )pp, to ( ) p( ) p. The right-hand side of Eq.
(A13) becomes

+sou'Ps ab (Pso+Pos)+b2P—'Dj, (A17)-(2n)'E' &

~-(«)lim (M—2E)F(L~")=
Jl-+M(2 m2 where 6'z, I'8, I'zD, I'&z, and I'D are the projection

operators in the charge singlet state for 'S —+ 'S,
Xp~i&&—«I f Id&&dlfpl —p&b(d —0). 'S~'D, 'D —+'5, and 'D —+'D, respectively. On the
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other hand, T is given by

2 =(Pslcos 8 Ps+cos6 sing (Psn+Pns)
+sin2e Pg)$(e"' —1)/2ip, (A18)

where d is the momentum of the deut. eron.

&1 e &0"~X&
vp~p:

2m (2k) &

(B3)

where 8 is a Blatt-Biedenharn 'S~ eigenphase shift and
e is their mixing parameter. In the above equation we

omitted the other eigenamplitudes, but these give no
contribution in Eq. (A13) because in the limit of
(P+P')'~3P these have no pole while the retained
term in (A18) does have a pole.

Let us substitute Eqs. (A17) and (A18) to (A13)
and estimate the values of a and b t

related to 2 and 8
by Eq. (A16)] from the knowledge of low-energy e-p
scattering phase shifts and mixing parameter. To do
this we have to extrapolate the phase shift from positive
energy to the (negative) binding energy of deuteron.
Ke assume that such a procedure makes sense. This
extrapolation can be done by the help of the effective-
range formula for the e-p scattering phase shift:

where k is the momentum of the photon, and @~=2.8
is the magnetic moment of the proton; the same for-
rnula holds of course for the neutron.

e -ik&& e-
&&( i~f&& & )' (B4)

2m (2k)-'*

where 8,.~. is the initial (final) polarization unit
pseudovector of the deuteron.

d ~ Np: Gx„*(o"8/V2)x o,
where

(B5)

As an example of the meaning of this formula, consider
the case that the deuteron has spin up; then

p cotb= —y+-;p(p' jy'), (A19)
E= —(*"+ij)/&2

where

A (—m') =—I'(1+n),
8(—m') =3(m'/y')nI',

(A20)

where y= (mB)l (8: binding energy of deuteron) and

p is the triplet rI peffective ran-ge. If we put (A19) into

(A18), then we find that this has a pole at p=iy. This
is nothing but the pole of the bound state in S-matrix
theory.

Finally, we obtain

and so

(e 6+i o 2)/K2= —i(o.,+jg,)0,/2= (1+0,)/2,

which is unity if the spins of proton and neutron are
up, arid zero otherwise.

The Npd- coupling constant G is most directly
determined by comparing the pole term of 'S I-p
scattering as calculated in two ways, firstly by regarding
the deuteron as an intermediate particle, and secondly
by evaluating the scattering amplitude at the pole by
"effective range" techniques. The first calculation yields

im262
-(1+2~') (1—P7)-

n= lim 2 & tan&.
pe —72

(A21)
ole—

87ry p —iy

The second calculation evaluates the first factor in

APPENDIX B. CALCULATION IN A SIMPLE FORM ole—

We have actually applied our relativistic formulas ~.l:P c
only in the nonrelativistic limit. It may be illuminating
to see directly a nonrelativistic derivation of some of our
results; it will be seen that the calculations are really
simple, as simple as the ordinary quantum mechanical
calculation.

%e need the following vertex factors:

os —ip] ~;~ p —iy

0

(B7)

gy P'8
yp~p: e

m(2k) &

where p is the momentum of the proton, and r. is the
polarization unit vector of the photon.

d'e

where Q„'(r) =sin(pr+8)/sin8 and $~(r) is the exact
radial wavefunction, normalized so as to equal @~'
outside the range of the potential. When p=i7 then

i~ and so p,~o=e ~" (na—turally), while P,~=n/K
where u is the normalized bound state radial wave
function, X being its asymptotic amplitude, i,e.,
u= Ke ~" outside the potential (for a zero-range
potential, X= (2y)**. Thus, (BS) gives us

yd~d: e
M(2k) &

(B2)
{B„pcot8)„; =2iyt (1/2y) —(1/Ot') J, (B9)
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f"""=L /(1 —7r)X1/(p —V)j
we have immediately, by comparison with (86),

G"= (1/m)(S~y/(1 —yr) j'*.

(812)

(813)

We can now proceed to calculate the Born approxima-
tion photodisintegration matrix elements. For E1, the
term in which the photon is absorbed by the deuteron
contributes nothing since k e=0; so the only term is
that in which the proton absorbes the photon:

p a 1 e 8
MEj~=e Gx~* x-'

m(2k)& (—k) W2
(814)

For M1 we have all three terms contributing, one of
which requires the use of

Pn' Xn IrIXn' 'Xy &Iixn X'y Irii &Ixn y (816)

giving
ieG

,xn*L(~.—p.)kXe a
2riIkV2 (2k) &

+i(l „+p„Ia)n (kXe)X—sjx.'
ie(u —

w ) x *x
-(k&& e c),

2rII (2k) & v2
(817)

since y„+p„—yq=0. Our results (814) and (817) are,
of course, identical with the result of the usual calcula-
tions of these matrix elements.

With the assumption that each matrix element is an
analytic function of the energy except for Born poles
and for the cut on the positive real axis due to final-
state rescattering, we can write for each a simple
dispersion representation, of the form of (3.16). The
worst approximation here is the neglect of the nearest
out which is the anomalous cut starting at

k= (p'+2')/m

and so, according t:o (87),
f""=( &'/2v) L1/(p —v)j (810)

Comparing the results (86) and (810),we conclude that

G = —(4Ir) '*K/m, (811)

where the sign is fixed by considering the calculation of
the amplitude of the rip component of the deuteron by
perturbation theory, which also immediately makes
clear that the coupling constant is proportional to the
asymptotic bound-state amplitude.

In the effective-range approximation, i.e.,

F"=L v ip—+(—7'+p')v/2j '

and so

which obviously satisfies the requirements.
If we make the further approximation of using the

effective range approximation for the ri-p scattering
amplitude, then the determination. of D(k) and hence
M" becomes trivial algebra. In the effective-range
form, p cot5 is a polynomial in p', so t:hat the negative-
energy singularities of the scattering amplitude f are
isolated poles, and so to find D(p), which has the same
phase as f but not the left-hand singularities, the
foHowing procedure suffices: For each pole of f on the
physical energy sheet, i.e., the upper half momentum
plane, say, at p=iiI, replace in f the factor (p—i')—'

by p+i~, thus, removing the singularity but not
changing the phase, for real p.

Thus, if p cot5= a I+I2rp'—we have

——P+-',.P ]- =C/(P+ )(P—,), (820)

where C=2/r andn+=L(1 —2r/a)'&1j/r. For the case
of IS scattering we have a(0, and so from (820) we
have

and hence,
1/D= C(p+in+)/(p+&n )-(821)

y+n p+in+ e"' sinb y+n p'+n+'
M"= 3f~

y+ni. P+in P y+n+ C

e"'F(P)Mn— (822)

where this is the F(p) of (4.8) of the text.

due to the diagrams of Fig. 2. Actually, in this approx-
imation it is unnecessary to write down the dispersion
representation, for we can work directly with the
analytic properties of the matrix element.

For definiteness, let us work with the M1 matrix
element, which we shall call M" in our rescattering
approximation. It has the following properties:

(a) M"=M at k=0 (threshold theorem), because
all 3f1 matrix elements contain a factor 0, and only the
Born term has an energy denominator which vanishes
at k=0.

(b) M"(k) is analytic in the complex k plane
)equivalently the p' plane, since rIIk=p'+y'] except
for the "elastic cut" k&B=p'/m, where its phase is
the scattering phase shift of the IS I-p state. It follows
that

M"(k) =LD(0)/D(p)iMs(k), (818)

where D(p) is the so-called denominator function of
the I pscattering -amplitude; it is analytic in the
energy plane except that on the elastic cut it has the
phase B. Omne—s has given the formula for D(k):

1 " dp"
D(p)= p ——

'Il' p p p Ze


