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Ultrasonic Absorption in Liquid Helium at Temperatures below 0.6°K
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An explanation is given for the sound absorption observed in liquid He 11 in the phonon region below
0.6°K, arising from an interaction between acoustic phonons and thermal phonons. This interaction occurs
between the acoustic wave and only those thermal phonons which propagate parallel to the wave. There is
a “bunching” of thermal phonons within certain regions of the acoustic wave, analogous to the bunching
of electrons in a traveling wave tube. The sound absorption calculated varies with temperature, frequency,
and pressure in agreement with all available experimental data and is of the right order of magnitude. When
the mean free path of the thermal phonons is reduced, for instance, by adding He3, the absorption is ex-
pected to decrease as found experimentally by Harding and Wilks.

INTRODUCTION

HE absorption of sound in liquid He* has been

measured below 1°K,*3 and shows a broad
maximum at 0.9°K. The high-temperature side of this
maximum, including the maximum itself was explained
by Khalatnikov* to arise from relaxation processes
between the thermal excitations of the liquid, phonons,
and rotons. However, at temperatures below 0.8°K
this relaxation process could not even approximately
account for the observed absorption. As can be seen
from Fig. 1, the measured absorption decreases with
about the fourth power of the temperature, whereas
the relaxation process alone (solid line) would lead to
a much more rapid decrease. At 0.6°K the relaxation
process already gives values about 3 orders of mag-
nitude too small, and the discrepancy becomes even
more serious at lower temperatures. Thus, it is evident
that some other mechanism must be responsible for
the absorption at these low temperatures.

In He 11 below 0.6°K the thermal excitations are
predominantly phonons with a long mean free path
which according to the heat conductivity data’ is at
least 1 mm, and thus considerably longer than the
acoustistic wavelength used (107-10~2 mm). During
one acoustical cycle and in one wavelength the thermal
phonons cannot, therefore, establish statistical equi-
librium and, thus, thermodynamical concepts are not
very useful here.

On the other hand, from the fact that the mean free
path of the thermal phonons is longer than the acous-
tical wavelength, it follows that the uncertainty in
their energy is less than 7%w,% w being the acoustical
frequency. In He 1 below 0.6°K, therefore, it is ap-
propriate to consider processes in which a thermal
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phonon may absorb one acoustical phonon, thereby
increasing its energy by #w.

It is the purpose of this paper to show that an
acoustic wave influences the propagation of thermal
phonons in a manner which leads to a net energy
transfer from the wave to the thermal phonons, as
pointed out earlier in a short note.” This process, which
can also be looked at as a three-phonon process, can
explain the ultrasonic absorption in liquid He* below
0.6°K and also seems to account for the experimental
results of Harding and Wilks® which showed a decrease
of the absorption if small amounts of He?® are added to
He!. A more recent theoretical treatment by Woodruff,’
based on the Boltzmann equation, leads to results
which are similar in some respect to the ones presented
here.
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F1c. 1. Absorption of 12 Mc/sec ultrasonic waves in liquid
helium. Experimental points by Chase and Herlin,! theoretical
curve according to calculations by R. B. Archipov [Doklady
Akad. Nauk. U.S.S.R. 98, 747 (1954)], based on a relaxation
process.
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F16. 2. Variation of the velocity of thermal phonons caused by
an ultrasonic wave travelling to the right. The arrows represent
the paths of thermal phonons going in almost the same direction
as the sound wave.

ACOUSTIC ABSORPTION BY THREE-PHONON
PROCESSES IN He 11

The interaction considered here takes place between
the acoustic phonons, representing the impressed ultra-
sonic wave and the thermal phonons of energy kT
whose mean free path we will assume to be limited only
by the walls of the apparatus. Although the wavelength
of the thermal phonons is much shorter than the
acoustic wavelength, it is still at least several hundred
A units below 0.6°K, and we will therefore neglect any
dispersion due to the structure of the liquid, i.e. we
will ascribe the same velocity to acoustic and thermal
phonons.

The interaction between acoustical and thermal
phonons takes place, of course, by virtue of the elastic
nonlinearity of the medium. We will only mention here
the simplest case in which the elastic energy of the
liquid contains a term in the third power of the strain.
It is well known! that a third-order term leads to
three-phonon processes, in which, for example, two
phonons combine to give a third. If the wavelength of
all three phonons is large compared to the interatomic
distance, as in our case, the “momentum” as well as
the energy is conserved'

k1+k= kQ, (1)
e+e=eo. (2)

k; and k, are the wave vectors of the initial and final
thermal phonon and e;, € are their respective energies.
k and e=7#w refer to the low-frequency acoustic phonon
which is absorbed in the process.

Since all three phonons, being longitudinal, have the
same velocity, Egs. (1) and (2) can be written

k; k k,
wr—Fo—=w;y ) (1a)

kx| LRl Rl
witw=w;. (2a)

10 See, for example, J. M. Ziman, Electrons and Phonons
(Clarendon Press, Oxford, 1960).
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It is evident that (1a) and (2a) can be satisfied simul-
taneously only if

k, k k,
[ka]  |&] |Re|

i.e., if all three phonons are traveling parallel.® Thus,
acoustic phonons can be absorbed only by those thermal
phonons which travel parallel with the sound wave.
The elastic nonlinearity of the liquid, as defined by a
third-order term in the elastic energy can be expressed
also by “Griineisen’s constant’ v which relates a density
change Ap/p to the corresponding change of the velocity

of sound, Av/v.
Av/v="(Ap/p). 3)

The low-frequency acoustic wave has naturally a
wavelength several orders of magnitude larger than
the wavelength of the high-frequency (k7/k) thermal
waves. The density variations of the acoustic waves
cause therefore, according to (3), a long-wavelength
modulation of the velocity of sound in the liquid. As
the sound wave moves to the right with velocity » the
sinusoidal spatial variation of the velocity moves to
the right.

At a fixed time, therefore, the velocity of thermal
phonons shows a variation in space as indicated in
Fig. 2. Let us look at a thermal phonon traveling for
a distance xo within a small angle a with respect to the
sound wave. If the angle « is small, the thermal phonon
remains within the same phase of the sound wave for
an appreciable time. However, for angles « larger than
corresponding to

aL2: (A/xo), (4)

one can see by geometrical arguments (Fig. 3) that the
thermal phonon will lag behind the sound wave by
more than half an acoustic wavelength A after having
traversed the distance xy (xo>A). Thus, assuming that
the phonons propagate in straight lines and equally as
fast as the sound wave, we conclude that only those
phonons whose angle with the sound wave is smaller
than (A/x,)* can keep in step with the sound wave for
the whole distance .

This conclusion is, however, not yet quite correct
because, in general, the thermal phonons do #ot propa-
gate in straight paths. The propagation of thermal
phonons through a liquid with a velocity gradient is
similar to the case of light passing through a medium
with gradually changing refractive index: Both the
phonon path and the beam of light are bent towards
the direction of decreasing velocity.

A thermal phonon moving at an angle a with respect
to the sound wave (Fig. 2) and the velocity gradient
(8v/dx) will experience a rate of change of its direction
which is given by geometrical optics

do/dt= (8v/dx) sina= (9v/9x)a

for a small a. Thus, the angle can increase or decrease



ULTRASONIC ABSORPTION IN LIQUID He 19

in time, depending on the sign of the gradient (9v/9%).
A phonon traveling in region “I” of Fig. 2 will, for
example, become more and more parallel to the x axis,
while another one in “IIT” would increase its angle in
time. While traveling for a distance x,, a phonon
changes its initial angle « by a small increment

Aa= (8v/0x)a(x0/v0), for Aa<a, (5)

which is negative in region I and positive in III.

Consequently, a phonon in region I will stay in step
with the sound wave for the whole distance x,, if its
initial angle is smaller than

ar=ar+Aaz, (6)

therefore, allowing larger angles than (4). Vice versa,
a phonon in region ITI can only stay in phase with the
wave if its initial angle is smaller than

am=or—Aar. )

The density N of those phonons in the region I,
which can keep in step with the wave for a distance w0,
because their initial angle is smaller than ar, is

Ni~N/2(ar/4r),

where N is the total density of thermal phonons. In
regions IT1, since azr is smaller, there are fewer phonons
N able to stay in phase

NIII = N/Z (a1112/4).

Thus, in regions I there are more phonons in step with
the wave than in the regions ITI, after the wave has
traveled for a distance x,. For the excess number
AN = N1— N1, one finds from (5), (6), (7)

AN/N=%}(a?—am?®) =3arla
= (ar?/2) (89/9%)o(x0/20), (8)

where (9v/0x,) is the gradient at the center of region I.
(8v/0x)o is related to the amplitude of the velocity
modulation Av as (8v/0x)e= (2r/A)Av. Using (4)
equation (8) reduces to

AN/N=n(Av/v). 9)

We conclude: T'ke sound wave causes a bunching of the
number of phonons staying in regions 1. This excess
number does not vary with the distance %, traveled by
the wave, but it increases linearly with the amplitude
of the wave.

While the phonon bunching was a consequence of
the spatial variation of the phonon-velocity only, we
will now consider also the fact that the acoustic wave
causes, at any fixed point, a change of the velocity in
time at a rate

99/ 3= (9v/ dx)v,.

Using again (dv/9x)== (2r/A)Av for regions I and
IIT, respectively, we find

(1/v) (8/8t) = == (27 /A) Av= £ w(Av/v),

F1c. 3. A thermal phonon
travelling a distance o
under the small angle
ar,=(A/xo)} with respect to
the sound wave lags behind
the wave by half an acoustic
wavelength A.
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which is the relative rate of change of the velocity at
points in space where region I or III is passing by,
with w being the acoustic frequency.

If a wave is propagating through a medium, while
the local velocity of propagation changes in time by
(8v/dt), one can show in general that the frequency »
of the wave for an observer at rest is also changed by

(1/v)(3v/86) =1/2(8v/ 3.

A phonon of initial energy kv traveling in region I of
the sound wave is therefore gaining energy at an average

rate
(10)

while phonons in region IIT are losing the same amount
(for dv/8t<0).

However, in virtue of the bunching of thermal
phonons there are more phonons in regions I than in
IIT and thus there is a net energy transferred to the
thermal phonons, at the expense of the acoustic wave.
The energy loss of the ultrasonic wave per unit volume
and unit time is, by using (9) and (10)

dW /dt=ANk(9v/3t)=N (AN/N)hvew(Av/v)
= Nhwor (Av/v)2.

h(dv/38)=hv(1/v)(0v/3t) = hvw (Av/9),

Introducing the thermal energy density of the liquid
U= Nhv and remembering (3), we have

dW /dt=Uwny*(Ap/p)?,

with Ap/p being the acoustic amplitude. The absorption
coefficient ¢ is defined by

energy absorbed per sec per cc
2e= (energy transported through cm? per sec)
aw/ds
B w

Since the energy transport W of an acoustic wave with
amplitude (Ap/p) is

W =pv*(Ap/p)?,

we arrive at the following absorption coefficient for
sound in liquid helium

a= (wrU~?%/2pv*) cm1]. (11)
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DISCUSSION
(1) Comparison with Experiments in Pure He*

Although the derivation of the absorption coefficient
(11) is only semiquantitative in view of various sim-
plifying assumptions made, the agreement with the
available experimental data is satisfactory. Values for
U and v can be derived from specific-heat work by
Kramers et al! and from acoustic experiments by
Atkins et al.,? respectively. For a frequency of 12
Mc/sec and at a temperature of 0.5°K, the absorption
according to (11) is a=0.4 cm™, while the experimental
value (see Fig. 1) is ¢=0.6 cm™. Thus, the absorption
coefficient (11) is of the right order of magnitude.
Besides it agrees well with the observed dependence on
temperature, frequency? and pressure,?? as previously
pointed out.”

(2) Mean-Free-Path Effects

A proper three-phonon process as described above
can only occur if the mean free path of the thermal
phonons is long enough so that they remain bunched
in the sound wave until they have, on the average,
absorbed one acoustic quantum #w. In order to absorb
just one acoustic quantum, the bunched thermal
phonons need on the average a certain ‘‘interaction
time” 7 which is, according to Eq. (10),

h(dv/0t)T=hw= hvw(Av/v)T

7= (1/2wv)/(Av/%).

This corresponds to an “‘interaction length”

l=1v=(\/27)/(Av/v)

(A=wavelength of thermal phonons) which can be
larger than the acoustic wavelength, for small ampli-
tudes of the sound wave.

If He® impurities restrict the mean free path of the
thermal phonons to less than this interaction length a

or

1 H. C. Kramers, J. D. Wasscher and C. J. Gorter, Physica 18,
329 (1952).
12K. R. Atkins and R. A. Stasior, Can. J. Phys. 31,1156 (1953).

simple three-phonon process as described above will
probably no longer occur. The acoustic absorption due
to 3-phonon processes is, therefore, expected to fall
with increasing He® content, in agreement with the
measurements of the absorption in He*—He® mixtures
by Harding and Wilks.?

If the mean free path of the thermal phonons be-
comes even smaller than the acoustic wavelength the
phonon energy is uncertain by more than 7w and one
can no longer speak of the absorption of an acoustic
quantum #%w by a single thermal phonon. In this case
the sound wave can no longer interact with individual
phonons but only with the whole ensemble of thermal
excitations, and the absorption of sound is caused by
relaxation processes within the ensemble, as described
in detail by Khalatnikov* for liquid helium at higher
temperatures.

(3) Effects at Large Amplitudes

All previous discussions refer to small acoustic
amplitudes, i.e., Ap/p~Av/vKA/x%o. For amplitudes
larger or equal to A/x, a sound wave, after traveling a
distance xo, does not preserve its sinusoidal shape, but
transforms into a shock wave having a steep gradient
in region I and almost no gradient dv/0x in region III.
All thermal phonons which are bunched in region I,
would be further compressed by being sharply focused
in the immediate vicinity of the steep gradient. All
these modifications would tend to greatly increase the
absorption above the low-amplitude value expressed
in Eq. (11). At a frequency of 20 Mc/sec and over a
path length of 1 cm, these effects would become
noticeable as soon as the amplitude Ap/p~Av/v
approaches 1073, which is almost certainly above the
peak amplitudes used in all previous experiments so
that these effects can be neglected here.
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